This document presents a study on using machine learning and deep learning techniques for healthcare applications like disease prediction. It discusses algorithms like logistic regression, decision trees, random forests, SVMs and deep learning models like VGG16 applied on various disease datasets. For diabetes, heart and liver diseases, ML algorithms were used while CNN models were used for malaria and pneumonia image datasets. Random forest achieved the highest accuracy of 84.81% for diabetes prediction, SVM had 81.57% accuracy for heart disease and random forest was best at 83.33% for liver disease. The VGG16 model attained accuracies of 94.29% and 95.48% for malaria and pneumonia respectively. The study aims to develop an intelligent healthcare application for predicting different