1
Geotechnical Engineering–I [CE-221]
BSc Civil Engineering – 4th Semester
by
Dr. Muhammad Irfan
Assistant Professor
Civil Engg. Dept. – UET Lahore
Email: mirfan1@msn.com
Lecture Handouts: https://groups.google.com/forum/#!forum/geotech-i
Lecture # 3
31-Jan-2017
2
S: Solid Soil particle
W: Liquid Water
A: Air Air
SOIL AS A THREE PHASE SYSTEM
3
SOIL AS A THREE PHASE SYSTEM
V = Total volume of soil mass
Vs = Volume of soil solids
Vw = Volume of water
Va = Volume of air
Vv = Va+Vw = Volume of voids
W = Total weight of soil
Ws = Weight of soil solids
Wa = Weight of air ≈ 0
Ww = Weight of water
4
1) Void ratio, e
(0 < e < ∞)
For sands, 0.5 ≤ e ≤ 0.9
For clays, 0.7 ≤ e ≤ 1.5 (or even higher)
)V(solidsofVolume
)V(voidsofVolume
e
s
v

VOLUMETRIC RATIOS
5
2) Porosity, n
(0 < n < 1)
Typical range, 9-70%
For sands, 25% ≤ n ≤ 50%
3) Air Porosity, na’
(0 < na’ < 1)
4) Percentage Air Voids, na
(0 < na < 1)
)V(samplesoilofvolumeTotal
)V(voidsofVolume
n
t
v

VOLUMETRIC RATIOS
)(
)(
'
t
a
a
VsamplesoilofvolumeTotal
VairofVolume
n 
)(
)(
v
a
a
VvoidsofVolume
VairofVolume
n 
6
5) Degree of Saturation/ Saturation Ratio, S (or Sr)
(0 < Sr < 100%)
6) Volumetric Water Content, θv
(0 < θv < 1)
VOLUMETRIC RATIOS
%100
)(
)(

v
w
VvoidsofvolumeTotal
VwatercontainingvoidsofVolume
S
)(
)(
t
w
v
VsamplesoilofvolumeTotal
VwatercontainingvoidsofVolume

7
1) Moisture/Water Content/Gravimetric Water Content, w
(0 < w < ∞)
Typical value for Sands >> 10-30%
For clays >> 10% or higher typically
For some organic soils w>100%, even up to 500%.
For quick clays w is typically > 100%.
WEIGHT RELATIONSHIPS
%100
)(
)(

s
w
WsolidssoilofWeight
WwaterofWeight
w
8
2) Unit Weight, γ
3) Dry Unit Weight, γd
4) Bulk Unit Weight, γb
5) Unit Weight of Soil Solids, γs
WEIGHT RELATIONSHIPS
);;( 333
cmgftlbmkN
V
Mg
Volume
Weight

t
s
d
V
W
VolumeTotal
solidssoilofWeight

t
b
V
W
VolumeTotal
WeightTotal

s
s
s
V
W
soildssoilofVolume
soildssoilofWeight

9
6) Saturated Unit Weight, γsat
7) Submerged Unit Weight, γsub (or γbouyant)
γw = 9.81 kN/m3 → 1 g/cm3
= 1000 kg/m3
= 62.4 lb/ft3
WEIGHT RELATIONSHIPS
wsatsub  
VolumeTotal
soilsaturatedofWeight
sat 
Archimede’s principle:
The buoyant force on a body immersed
in a fluid is equal to the weight of the
fluid displaced by that object.
10
SPECIFIC GRAVITY (Gs)
w
s
s
CatwaterofvolumeequalofweightUnit
soildssoilofweightUnit
G





4
Generally for soils 2.6 ≤ Gs ≤ 2.7
11
WEIGHT-VOLUME RELATIONSHIPS
w
b
d


1


n
n
e


1
e
e
n


1
VG
W
n
ws
s 1
.
1 

1
..

s
ws
W
GV
e










e
w
G wsb
1
1
.
e
G ws
d


1
.

S
Gw
e s.

 
e
eG ws
sat



1


 
 e
Gsw
sub



1
1

rv Sn.
12
CONCLUDED
REFERENCE MATERIAL
An Introduction to Geotechnical Engineering (2nd Edition)
By R. D. Holtz, W. D. Kovacs and T. C. Sheahan
Chapter #2
Geotechnical Engineering – Principles and Practices - (2nd Edition)
By Donald P. Coduto, M. R. Yeung and W. A. Kitch
Chapter #4
Fundamentals of Soil Mechanics
By M. S. Qureshi & Aziz Akbar
Chapter #3

Geotechnical Engineering-I [Lec #3: Phase Relationships]

  • 1.
    1 Geotechnical Engineering–I [CE-221] BScCivil Engineering – 4th Semester by Dr. Muhammad Irfan Assistant Professor Civil Engg. Dept. – UET Lahore Email: mirfan1@msn.com Lecture Handouts: https://groups.google.com/forum/#!forum/geotech-i Lecture # 3 31-Jan-2017
  • 2.
    2 S: Solid Soilparticle W: Liquid Water A: Air Air SOIL AS A THREE PHASE SYSTEM
  • 3.
    3 SOIL AS ATHREE PHASE SYSTEM V = Total volume of soil mass Vs = Volume of soil solids Vw = Volume of water Va = Volume of air Vv = Va+Vw = Volume of voids W = Total weight of soil Ws = Weight of soil solids Wa = Weight of air ≈ 0 Ww = Weight of water
  • 4.
    4 1) Void ratio,e (0 < e < ∞) For sands, 0.5 ≤ e ≤ 0.9 For clays, 0.7 ≤ e ≤ 1.5 (or even higher) )V(solidsofVolume )V(voidsofVolume e s v  VOLUMETRIC RATIOS
  • 5.
    5 2) Porosity, n (0< n < 1) Typical range, 9-70% For sands, 25% ≤ n ≤ 50% 3) Air Porosity, na’ (0 < na’ < 1) 4) Percentage Air Voids, na (0 < na < 1) )V(samplesoilofvolumeTotal )V(voidsofVolume n t v  VOLUMETRIC RATIOS )( )( ' t a a VsamplesoilofvolumeTotal VairofVolume n  )( )( v a a VvoidsofVolume VairofVolume n 
  • 6.
    6 5) Degree ofSaturation/ Saturation Ratio, S (or Sr) (0 < Sr < 100%) 6) Volumetric Water Content, θv (0 < θv < 1) VOLUMETRIC RATIOS %100 )( )(  v w VvoidsofvolumeTotal VwatercontainingvoidsofVolume S )( )( t w v VsamplesoilofvolumeTotal VwatercontainingvoidsofVolume 
  • 7.
    7 1) Moisture/Water Content/GravimetricWater Content, w (0 < w < ∞) Typical value for Sands >> 10-30% For clays >> 10% or higher typically For some organic soils w>100%, even up to 500%. For quick clays w is typically > 100%. WEIGHT RELATIONSHIPS %100 )( )(  s w WsolidssoilofWeight WwaterofWeight w
  • 8.
    8 2) Unit Weight,γ 3) Dry Unit Weight, γd 4) Bulk Unit Weight, γb 5) Unit Weight of Soil Solids, γs WEIGHT RELATIONSHIPS );;( 333 cmgftlbmkN V Mg Volume Weight  t s d V W VolumeTotal solidssoilofWeight  t b V W VolumeTotal WeightTotal  s s s V W soildssoilofVolume soildssoilofWeight 
  • 9.
    9 6) Saturated UnitWeight, γsat 7) Submerged Unit Weight, γsub (or γbouyant) γw = 9.81 kN/m3 → 1 g/cm3 = 1000 kg/m3 = 62.4 lb/ft3 WEIGHT RELATIONSHIPS wsatsub   VolumeTotal soilsaturatedofWeight sat  Archimede’s principle: The buoyant force on a body immersed in a fluid is equal to the weight of the fluid displaced by that object.
  • 10.
  • 11.
    11 WEIGHT-VOLUME RELATIONSHIPS w b d   1   n n e   1 e e n   1 VG W n ws s 1 . 1  1 ..  s ws W GV e           e w G wsb 1 1 . e G ws d   1 .  S Gw e s.    e eG ws sat    1      e Gsw sub    1 1  rv Sn.
  • 12.
    12 CONCLUDED REFERENCE MATERIAL An Introductionto Geotechnical Engineering (2nd Edition) By R. D. Holtz, W. D. Kovacs and T. C. Sheahan Chapter #2 Geotechnical Engineering – Principles and Practices - (2nd Edition) By Donald P. Coduto, M. R. Yeung and W. A. Kitch Chapter #4 Fundamentals of Soil Mechanics By M. S. Qureshi & Aziz Akbar Chapter #3