TThhee IIddeeaa ooff aa CCoonnggrruueennccee 
Two geometric figures with 
exactly the same size and 
shape. 
B 
A C 
F 
E D
HHooww mmuucchh ddoo yyoouu 
nneeeedd ttoo kknnooww.. .. .. 
. . . about two triangles 
to prove that they 
are congruent?
CCoorrrreessppoonnddiinngg PPaarrttss 
You learned that if all six pairs of 
corresponding parts (sides and angles) 
are congruent, then the triangles are 
congruent. 
B 
A C 
DABC @ D 
DEF 
E 
D F 
1. AB @ DE 
2. BC @ EF 
3. AC @ DF 
4. Ð A @ Ð D 
5. Ð B @ Ð E 
6. Ð C @ Ð F
DDoo yyoouu nneeeedd aallll ssiixx ?? 
NO ! 
SSS 
SAS 
ASA 
AAS
SSiiddee--SSiiddee--SSiiddee ((SSSSSS)) 
1. AB @ DE 
2. BC @ EF 
3. AC @ DF 
DABC @ D DEF 
B 
A C 
E 
D F
SSiiddee--AAnnggllee--SSiiddee ((SSAASS)) 
1. AB @ DE 
2. ÐA @ Ð D 
3. AC @ DF 
DABC @ D DEF 
B 
A C 
E 
D F 
included 
angle
IInncclluuddeedd AAnnggllee 
The angle between two sides 
Ð G Ð I Ð H
IInncclluuddeedd AAnnggllee 
Name the included angle: 
YE and ES 
ES and YS 
YS and YE 
E 
Y S 
Ð E 
Ð S 
Ð Y
AAnnggllee--SSiiddee--AAnnggllee ((AASSAA)) 
1. ÐA @ Ð D 
2. AB @ DE 
3. Ð B @ Ð E 
DABC @ D DEF 
B 
A C 
E 
D F 
included 
side
IInncclluuddeedd SSiiddee 
The side between two angles 
GI HI GH
IInncclluuddeedd SSiiddee 
Name the included side: 
ÐY and ÐE 
ÐE and ÐS 
ÐS and ÐY 
E 
Y S 
YE 
ES 
SY
AAnnggllee--AAnnggllee--SSiiddee ((AAAASS)) 
1. ÐA @ Ð D 
2. Ð B @ Ð E 
3. BC @ EF 
DABC @ D DEF 
B 
A C 
E 
D F 
Non-included 
side
WWaarrnniinngg:: NNoo SSSSAA PPoossttuullaattee 
B 
There is no such 
thing as an SSA 
postulate! 
A C 
E 
D 
F 
NOT CONGRUENT
WWaarrnniinngg:: NNoo AAAAAA PPoossttuullaattee 
B 
A C 
E 
D 
F 
There is no such 
thing as an AAA 
postulate! 
NOT CONGRUENT
TThhee CCoonnggrruueennccee PPoossttuullaatteess 
SSS correspondence 
ASA correspondence 
SAS correspondence 
AAS correspondence 
SSA correspondence 
AAA correspondence
NNaammee TThhaatt PPoossttuullaattee 
(when possible) 
SSAASS AASSAA 
SSSSAA SSSSSS
NNaammee TThhaatt PPoossttuullaattee (when possible) 
AASSAA 
AAAAAA 
SSAASS 
SSSSAA
NNaammee TThhaatt PPoossttuullaattee (when possible) 
Reflexive 
SSAASS 
SSAASS SSAASS 
Property 
Vertical 
Angles 
Vertical 
Angles 
Reflexive 
Property SSSSAA
HHWW:: NNaammee TThhaatt PPoossttuullaattee (when possible)
HHWW:: NNaammee TThhaatt PPoosstt(uuwhlleaan pttoseesible)
LLeett’’ss PPrraaccttiiccee 
Indicate the additional information needed 
to enable us to apply the specified 
congruence postulate. 
For ASA: 
For SAS: 
ÐB @ ÐD 
AC @ FE 
For AAS: ÐA @ ÐF
HHWW 
Indicate the additional information needed 
to enable us to apply the specified 
congruence postulate. 
For ASA: 
For SAS: 
For AAS:
A 
B 
F 
C 
E 
D
Slide 1 of 2
Slide 1 of 2
Before we start…let’s get a few things straight 
A B 
Y 
INCLUDED SIDE 
C 
X Z
Angle-Side-Angle (ASA) 
Congruence Postulate 
Two angles and the INCLUDED side
Angle-Angle-Side (AAS) 
Congruence Postulate 
Two Angles and One Side that is 
NOT included
}Your Only Ways 
To Prove 
Triangles Are 
Congruent
Things you can mark on a triangle when they aren’t 
marked. 
Overlapping sides are 
congruent in each 
triangle by the 
REFLEXIVE property 
Vertical 
Angles are 
congruent 
Alt Int 
Angles are 
congruent 
given 
parallel lines
ΔDEF ΔLMN Ð D @ Ð N DE @ 
NL 
Ð @ Ð 
In and , , and 
E L 
. Write a congruence statement. 
D D E F @ D N L M
What other pair of angles needs to be 
marked so that the two triangles are 
congruent by AAS? 
F 
D 
E 
M 
L 
N 
ÐE @ ÐN
What other pair of angles needs to be 
marked so that the two triangles are 
congruent by ASA? 
F 
D 
E 
M 
L 
N 
ÐD @ ÐL
ΔGIH @ ΔJIK by 
AAS 
G 
I 
H J 
K 
Ex 4
B A 
ΔABC @ ΔEDC by 
ASA 
C 
D E 
Ex 5
ΔACB @ ΔECD by 
SAS 
B 
A 
C 
E 
D 
Ex 6
J K 
M L 
ΔJMK @ ΔLKM by SAS or 
ASA 
Ex 7
Not possible 
K 
J 
L 
T 
U 
Ex 8 
V
Slide 2 of 2
Slide 2 of 2
Slide 2 of 2
Slide 2 of 2
(over Lesson 5-5) 
Slide 1 of 2
(over Lesson 5-5) 
Slide 1 of 2
Slide 1 of 2
Slide 1 of 2
Slide 1 of 2
Slide 1 of 2
Slide 2 of 2
Slide 2 of 2
Slide 2 of 2
Slide 2 of 2
All rights belong to their respective 
owners. 
Copyright Disclaimer Under Section 107 
of the Copyright Act 1976, allowance is 
made for "fair use" for purposes such as 
criticism, comment, news reporting, 
TEACHING, scholarship, and research. 
Fair use is a use permitted by copyright 
statute that might otherwise be 
infringing. 
Non-profit, EDUCATIONAL or personal 
use tips the balance in favor of fair use.

Geometry unit 4.1 4.3