SlideShare a Scribd company logo
FUZZY LOGIC
Origins and Evolution of Fuzzy Logic
• Origin: Fuzzy Sets Theory (Zadeh, 1965)
• Aim: Represent vagueness and impre-cission
of statements in natural language
• Fuzzy sets: Generalization of classical sets
• In the 70s: From FST to Fuzzy Logic
• Nowadays: Applications to control systems
– Industrial applications
– Domotic applications, etc.
Classical Sets
 Classical sets – either an element belongs

to the set or it does not.
 For example, for the set of integers,
either an integer is even or it is not (it is
odd).
Classical Sets
Classical sets are also called crisp (sets).
Lists: A = {apples, oranges, cherries, mangoes}
A = {a1,a2,a3 }
A = {2, 4, 6, 8, …}
Formulas: A = {x | x is an even natural number}
A = {x | x = 2n, n is a natural number}
Membership or characteristic function
A

( x)

1 if x A
0 if x A
Fuzzy Sets
 Sets with fuzzy boundaries
A = Set of tall people
Crisp set A

Fuzzy set A

1.0

1.0
.9

Membership

.5

5’10’’

Heights

function
5’10’’

6’2’’

Heights
Membership Functions (MFs)
 Characteristics of MFs:
 Subjective measures

 Not probability functions

“tall” in Asia

MFs
.8


“tall” in the US

.5


“tall” in NBA

.1
5’10’’

Heights
Fuzzy Sets
 Formal definition:
A fuzzy set A in X is expressed as a set of ordered pairs:

A
Fuzzy set

{( x,

A

( x ))| x

Membership
function
(MF)

X}
Universe or
universe of discourse

A fuzzy set is totally characterized by a
membership function (MF).
An Example
• A class of students
(E.G. MCA. Students taking „Fuzzy Theory”)

• The universe of discourse: X
• “Who does have a driver’s licence?”
• A subset of X = A (Crisp) Set
• (X) = CHARACTERISTIC FUNCTION
1

0

1

1

0

1

1

• “Who can drive very well?”
(X) = MEMBERSHIP FUNCTION
0.7

0

1.0

0.8

0

0.4 0.2
Crisp or Fuzzy Logic
 Crisp Logic
 A proposition can be true or false only.
• Bob is a student (true)
• Smoking is healthy (false)
 The degree of truth is 0 or 1.

 Fuzzy Logic
 The degree of truth is between 0 and 1.
• William is young (0.3 truth)
• Ariel is smart (0.9 truth)
 Fuzzy Sets
 Membership

function
A

X

[0,1]

Crisp Sets
Characteristic
function

mA

X

{0,1}
Set-Theoretic Operations
 Subset
A

B

A

( x)

B

( x),

x

U

 Complement
A U

 Union
C

A

B

C

A

( x)

A

( x) 1

max(

A

( x),

min(

A

A

B

( x)

( x))

A

( x)

B

( x)

 Intersection
C

A

B

C

( x)

( x),

B

( x ))

A

( x)

B

( x)
Set-Theoretic Operations

A

B

A

A B
A B
Properties Of Crisp
Set
Involution

A

Commutativity

A B B
A B B

Associativity

Distributivity
Idempotence
Absorption

A

De Morgan’s laws

A
A

A

C

A

B C

A B

C

A

B C

A B C
A B C
A A A
A A A
A
A

A
A

B
B

A B
A B

A
A

A C
A C

A

B

A

A B

B
B

A

B
Properties
 The following properties are invalid for

fuzzy sets:

 The laws of contradiction

A

A

A

A U

 The laws of exclude middle
Properties of Fuzzy Set
1

0
height
short

tall
Example
 we have two discrete fuzzy sets
Example (cont..)
Summarize properties
Involution

A

Commutativity

A

A B=B A, A B=B A

Associativity

A B C=(A B) C=A (B C),
A B C=(A B) C=A (B C)

Distributivity

A (B C)=(A B) (A C),
A (B C)=(A B) (A C)

Idempotence

A A=A, A A=A

Absorption

A (A B)=A, A (A B)=A
A A B A B
A A B A B
A X=X, A
=

Absorption of complement
Abs. by X and
Identity

A

=A, A X=A

Law of contradiction

A

A

Law of excl. middle

A

A X

DeMorgan’s laws

A

B

A

B

A

B

A

B
Fuzzy Set Operations
Crisp Set Operations
Representation of Crisp set
CARTESIAN PRODUCT
An ordered sequence of r elements, written in the
form (a1, a2, a3, . . . , ar), is called an ordered rtuple.
For crisp sets A1,A2, . . . ,Ar, the set of all rtuples(a1, a2, a3, . . . , ar), where a1∈A1,a2 ∈A2,
and ar∈Ar, is called the Cartesian product of
A1,A2, . . . ,Ar, and is denoted by
A1 A2 ··· Ar.
(The Cartesian product of two or more sets is not the
same thing as the arithmetic product of two or
more sets.)
Crisp Relations
A subset of the Cartesian product A1 A2 ··· Ar
is called an r-ary relation over A1,A2, . . . ,Ar.
If three, four, or five sets are involved in a subset
of the full Cartesian product, the relations are
called ternary, quaternary, and quinary
Cartesian product
The Cartesian product of two universes X and Y is
determined as
 X Y = {(x, y) | x ∈X, y ∈Y}
which forms an ordered pair of every x ∈X with

every y ∈Y, forming unconstrained
 matches between X and Y. That is, every element
in universe X is related completely to every
element in universe Y.
Fuzzy Relations
 Triples showing connection between two sets:

(a,b,#): a is related to b with degree #

 Fuzzy relations are set themselves
 Fuzzy relations can be expressed as matrices

…
32
Fuzzy Relations Matrices
 Example: Color-Ripeness relation for tomatoes

R1(x, y)

unripe

semi ripe

ripe

green

1

0.5

0

yellow

0.3

1

0.4

Red

0

0.2

1

33
Fuzzy Relations
A fuzzy relation R is a 2D MF:

R

( x, y),

R

( x, y) | ( x, y)

X Y
Fuzzy relation
 A fuzzy relation is a fuzzy set defined on the

Cartesian product of crisp sets A1, A2, ..., An
where tuples (x1, x2, ..., xn) may have varying
degrees of membership within the relation.
 The membership grade indicates the strength
of the relation present between the elements of
the tuple.
R

R

: A1 A2 ... An
(( x1 , x2 ,..., xn ),

[0,1]
R

)|

R

( x1 , x2 ,..., xn ) 0, x1

A1, x2

A2 ,..., xn

An
35
Max-Min Composition
X

Y

Z

R: fuzzy relation defined on X and Y.
S: fuzzy relation defined on Y and Z.
R。S: the composition of R and S.
A fuzzy relation defined on X an Z.

RS

(x, z) max y min
y

R

( x, y)

R

( x, y),
S

S

( y, z)

( y, z)
 Max-min composition
( x, y) A B, ( y, z) B C
max[min( R ( x, y ),
S R ( x, z )
y

y

[

R

( x, y )

S

S

( y, z ))]

( y, z )]

 Example

38
 Example

S R

(1,

) max[min(0.1, 0.9), min(0.2, 0.2), min(0.0, 0.8), min(1.0, 0.4)]
max[0.1, 0.2, 0.0, 0.4] 0.4

39
 Example

S R

(1,

)

max[min(0.1, 0.0), min(0.2,1.0), min(0.0, 0.0), min(1.0, 0.2)]
max[0.0, 0.2, 0.0, 0.2] 0.2

40
41
Max-min composition is not mathematically tractable,
therefore other compositions such as max-product
composition have been suggested.

Max-Product Composition
X

Y

Z

R: fuzzy relation defined on X and Y.
S: fuzzy relation defined on Y and Z.
R。S: the composition of R and S.
A fuzzy relation defined on X an Z.

RS

(x, y) maxv

R

( x, v)

S

(v, y)
Max Product
 Max product: C = A・B=AB=

 Example

C12

?
43
Max product
 Example

C12

0.1
44
Max product
 Example

C13

0.5
45
Max product
 Example

C

46
Introduction

Fuzzify crisp inputs to get the fuzzy inputs
Defuzzify the fuzzy outputs to get crisp
outputs
Fuzzy Systems

Input

Fuzzifier

Inference
Engine

Fuzzy
Knowledge base

Defuzzifier

Output
Propositional logic
 A proposition is a statement- in which English

is a declarative sentence and logic defines
the way of putting symbols together to form
a sentences that represent facts
 Every proposition is either true or false.
Example of PL
The conjunction of the two sentences:
Grass is green
Pigs don't fly
is the sentence:
Grass is green and pigs don't fly
The conjunction of two sentences will be true if,
and only if, each of the two sentences from
which it was formed is true.
Statement symbols and
variables
 Statement:

A simple statement is one that does
not contain any other statement as a part.
A compound statement is one that has
two or more simple statement as parts called
components.
Symbols for connective
ASSERTION

P

NEGATION

“P IS TRUE”

¬P

~

!

CONJUCTION

P^Q

.

&

DISJUNCTION

PvQ

||

IMPLICATION

P-> Q

EQUIVALENCE P⇔Q

NOT
AND

“BOTH P AND Q ARE
TRUE

|

OR

“ EITHER P OR Q IS
TRUE”

⇒
=

&&

“P IS FALSE”

IF…THEN

“IF P IS TRUE THEN Q
IS TRUE.”

⇔

IF AND
ONLY IF

“P AND Q ARE EITHER
BOTH TRUE OR
FALSE”
Truth Value
 The truth value of a statement is truth or

falsity.
P is either true or false
~p is either true of false
p^q is either true or false, and so on.
 Truth table is a convenient way of showing
relationship between several propositions..
Truth Table for Negation
P

~P

Case 1

T

F

Case 2

F

T

As you can see “P” is a true statement then its
negation “~P” or “not P” is false.
If “P” is false, then “~P” is true.
Truth Table for Conjunction

P

Q

PΛQ

Case 1

T

T

T

Case 2

T

F

F

Case 3

F

T

F

Case 4

F

F

F
Truth Table for Disjunction

P

Q

PVQ

Case 1

T

T

T

Case 2

T

F

T

Case 3

F

T

T

Case 4

F

F

F
Tautology
 Tautology is a proposition formed by

combining other proposition (p,q,r…)which is
true regardless of truth or falsehood of p,q,r…

 DEF: A compound proposition is called a

tautology if no matter what truth values
its atomic propositions have, its own truth
value is T.
Tautology example
Demonstrate that
[¬p (p q )] q
is a tautology in two ways:
1. Using a truth table – show that
(p q )] q is always true.

[¬p

L3

59
Tautology by truth table
p q ¬p p q ¬p (p q ) [¬p (p q )] q
T T
T F
F T
F F

L3

60
Tautology by truth table
p q ¬p p q ¬p (p q ) [¬p (p q )] q
T T

F

T F

F

F T

T

F F

T

L3

61
Tautology by truth table
p q ¬p p q ¬p (p q ) [¬p (p q )] q
T T

F

T

T F

F

T

F T

T

T

F F

T

F

L3

62
Tautology by truth table
p q ¬p p q ¬p (p q ) [¬p (p q )] q
T T

F

T

F

T F

F

T

F

F T

T

T

T

F F

T

F

F

L3

63
Tautology by truth table
p q ¬p p q ¬p (p q ) [¬p (p q )] q
T T

F

T

F

T

T F

F

T

F

T

F T

T

T

T

T

F F

T

F

F

T

L3

64
Modus Ponens and Modus
Tollens
 Modus ponens -- If A then B, observe A,

conclude B
 Modus tollens – If A then B, observe notB, conclude not-A
Modus Ponens and Tollens
 If Joan understood this book, then she would

get a good grade. If P then Q
 Joan understood .: she got a good grade.
 This uses modus ponens.

P .: Q

 If Joan understood this book, then she would

get a good grade. If P then Q
 She did not get a good grade .: she did not

understand this book.
~Q .: ~P
 This uses modus tollens.
Fuzzy Quantifiers
The scope of fuzzy propositions can be
extended using fuzzy quantifiers
• Fuzzy quantifiers are fuzzy numbers that take
part in fuzzy propositions
• There are two different types:
– Type #1 (absolute): Defined on the set of real
numbers
• Examples: “about 10”, “much more than 100”, “at
least
about 5”, etc.
– Type #2 (relative): Defined on the interval [0, 1]
• “almost all”, “about half”, “most”, etc.
Fuzzification
 The fuzzification comprises the process of

transforming crisp values into grades of
membership for linguistic terms of fuzzy sets.
The membership function is used to associate
a grade to each linguistic term.
 Measurement devices in technical systems
provide crisp measurements, like 110.5 Volt or
31,5 C. At first, these crisp values must be
transformed into linguistic terms (fuzzy sets) .
This is called fuzzification.
Input

Fuzzifier

Fuzzifier

Inference
Engine

Defuzzifier

Output

Fuzzy
Knowledge base

Converts the crisp input to a linguistic variable using

the membership functions stored in the fuzzy
knowledge base.
Fuzzy interference

If x is A and y is B then z = f(x, y)

Fuzzy Sets

Crisp Function
f(x, y) is very often a polynomial
function w.r.t. x and y.
Examples
R1: if X is small and Y is small then z = x +y +1

R2: if X is small and Y is large then z = y +3
R3: if X is large and Y is small then z = x +3
R4: if X is large and Y is large then z = x + y + 2
Defuzzification
 • Convert fuzzy grade to Crisp output

 The max criterion method finds the point at
which the membership function is a
maximum.
 The mean of maximum takes the mean of those
points where the membership function is at a
maximum.
Defuzzification

More Related Content

What's hot

Fuzzy relations
Fuzzy relationsFuzzy relations
Fuzzy relations
naugariya
 
Fuzzy logic
Fuzzy logicFuzzy logic
Fuzzy logic
Mahmoud Hussein
 
Fuzzy+logic
Fuzzy+logicFuzzy+logic
Fuzzy+logic
Mahesh Todkar
 
Fuzzy logic
Fuzzy logicFuzzy logic
Fuzzy logic
Fuzzy logicFuzzy logic
Fuzzy logic
Ashwini Yadav
 
fuzzy fuzzification and defuzzification
fuzzy fuzzification and defuzzificationfuzzy fuzzification and defuzzification
fuzzy fuzzification and defuzzification
Nourhan Selem Salm
 
Fuzzy Logic Ppt
Fuzzy Logic PptFuzzy Logic Ppt
Fuzzy Logic Ppt
rafi
 
If then rule in fuzzy logic and fuzzy implications
If then rule  in fuzzy logic and fuzzy implicationsIf then rule  in fuzzy logic and fuzzy implications
If then rule in fuzzy logic and fuzzy implications
Siksha 'O' Anusandhan (Deemed to be University )
 
Fuzzy set and its application
Fuzzy set and its applicationFuzzy set and its application
Fuzzy set and its application
KalaivananRaja
 
Fuzzy Logic ppt
Fuzzy Logic pptFuzzy Logic ppt
Fuzzy Logic ppt
Ritu Bafna
 
fuzzy logic
fuzzy logicfuzzy logic
fuzzy logic
Anmol Bagga
 
Classical relations and fuzzy relations
Classical relations and fuzzy relationsClassical relations and fuzzy relations
Classical relations and fuzzy relations
Baran Kaynak
 
Fuzzy logic and application in AI
Fuzzy logic and application in AIFuzzy logic and application in AI
Fuzzy logic and application in AI
Ildar Nurgaliev
 
Classical Sets & fuzzy sets
Classical Sets & fuzzy setsClassical Sets & fuzzy sets
Classical Sets & fuzzy sets
Dr.Ashvini Chaudhari Bhongade
 
Opearion on Fuzzy sets with Example
Opearion on Fuzzy sets with ExampleOpearion on Fuzzy sets with Example
Opearion on Fuzzy sets with Example
Karthikeyan Sankar
 
Fuzzy inference systems
Fuzzy inference systemsFuzzy inference systems
Fuzzy logic
Fuzzy logicFuzzy logic
Fuzzy logic
Babu Appat
 
Classical Planning
Classical PlanningClassical Planning
Classical Planning
ahmad bassiouny
 
Genetic Algorithms - Artificial Intelligence
Genetic Algorithms - Artificial IntelligenceGenetic Algorithms - Artificial Intelligence
Genetic Algorithms - Artificial Intelligence
Sahil Kumar
 
Fuzzy logic mis
Fuzzy logic misFuzzy logic mis
Fuzzy logic mis
Qamar Wajid
 

What's hot (20)

Fuzzy relations
Fuzzy relationsFuzzy relations
Fuzzy relations
 
Fuzzy logic
Fuzzy logicFuzzy logic
Fuzzy logic
 
Fuzzy+logic
Fuzzy+logicFuzzy+logic
Fuzzy+logic
 
Fuzzy logic
Fuzzy logicFuzzy logic
Fuzzy logic
 
Fuzzy logic
Fuzzy logicFuzzy logic
Fuzzy logic
 
fuzzy fuzzification and defuzzification
fuzzy fuzzification and defuzzificationfuzzy fuzzification and defuzzification
fuzzy fuzzification and defuzzification
 
Fuzzy Logic Ppt
Fuzzy Logic PptFuzzy Logic Ppt
Fuzzy Logic Ppt
 
If then rule in fuzzy logic and fuzzy implications
If then rule  in fuzzy logic and fuzzy implicationsIf then rule  in fuzzy logic and fuzzy implications
If then rule in fuzzy logic and fuzzy implications
 
Fuzzy set and its application
Fuzzy set and its applicationFuzzy set and its application
Fuzzy set and its application
 
Fuzzy Logic ppt
Fuzzy Logic pptFuzzy Logic ppt
Fuzzy Logic ppt
 
fuzzy logic
fuzzy logicfuzzy logic
fuzzy logic
 
Classical relations and fuzzy relations
Classical relations and fuzzy relationsClassical relations and fuzzy relations
Classical relations and fuzzy relations
 
Fuzzy logic and application in AI
Fuzzy logic and application in AIFuzzy logic and application in AI
Fuzzy logic and application in AI
 
Classical Sets & fuzzy sets
Classical Sets & fuzzy setsClassical Sets & fuzzy sets
Classical Sets & fuzzy sets
 
Opearion on Fuzzy sets with Example
Opearion on Fuzzy sets with ExampleOpearion on Fuzzy sets with Example
Opearion on Fuzzy sets with Example
 
Fuzzy inference systems
Fuzzy inference systemsFuzzy inference systems
Fuzzy inference systems
 
Fuzzy logic
Fuzzy logicFuzzy logic
Fuzzy logic
 
Classical Planning
Classical PlanningClassical Planning
Classical Planning
 
Genetic Algorithms - Artificial Intelligence
Genetic Algorithms - Artificial IntelligenceGenetic Algorithms - Artificial Intelligence
Genetic Algorithms - Artificial Intelligence
 
Fuzzy logic mis
Fuzzy logic misFuzzy logic mis
Fuzzy logic mis
 

Similar to FUZZY LOGIC

Ch1 sets and_logic(1)
Ch1 sets and_logic(1)Ch1 sets and_logic(1)
Ch1 sets and_logic(1)
Kwonpyo Ko
 
Chpt 2-sets v.3
Chpt 2-sets v.3Chpt 2-sets v.3
Chpt 2-sets v.3
ShahidAkbar22
 
Per6 basis2_NUMBER SYSTEMS
Per6 basis2_NUMBER SYSTEMSPer6 basis2_NUMBER SYSTEMS
Per6 basis2_NUMBER SYSTEMS
Evert Sandye Taasiringan
 
Otter 2014-12-22-01-slideshare
Otter 2014-12-22-01-slideshareOtter 2014-12-22-01-slideshare
Otter 2014-12-22-01-slideshare
Ruo Ando
 
Grovers Algorithm
Grovers Algorithm Grovers Algorithm
Grovers Algorithm
CaseyHaaland
 
4898850.ppt
4898850.ppt4898850.ppt
4898850.ppt
UsamaManzoorLucky1
 
Math
MathMath
Lecture 1.2 quadratic functions
Lecture 1.2 quadratic functionsLecture 1.2 quadratic functions
Lecture 1.2 quadratic functions
narayana dash
 
A
AA
COMMON FIXED POINT THEOREMS IN COMPATIBLE MAPPINGS OF TYPE (P*) OF GENERALIZE...
COMMON FIXED POINT THEOREMS IN COMPATIBLE MAPPINGS OF TYPE (P*) OF GENERALIZE...COMMON FIXED POINT THEOREMS IN COMPATIBLE MAPPINGS OF TYPE (P*) OF GENERALIZE...
COMMON FIXED POINT THEOREMS IN COMPATIBLE MAPPINGS OF TYPE (P*) OF GENERALIZE...
mathsjournal
 
COMMON FIXED POINT THEOREMS IN COMPATIBLE MAPPINGS OF TYPE (P*) OF GENERALIZE...
COMMON FIXED POINT THEOREMS IN COMPATIBLE MAPPINGS OF TYPE (P*) OF GENERALIZE...COMMON FIXED POINT THEOREMS IN COMPATIBLE MAPPINGS OF TYPE (P*) OF GENERALIZE...
COMMON FIXED POINT THEOREMS IN COMPATIBLE MAPPINGS OF TYPE (P*) OF GENERALIZE...
mathsjournal
 
COMMON FIXED POINT THEOREMS IN COMPATIBLE MAPPINGS OF TYPE (P*) OF GENERALIZE...
COMMON FIXED POINT THEOREMS IN COMPATIBLE MAPPINGS OF TYPE (P*) OF GENERALIZE...COMMON FIXED POINT THEOREMS IN COMPATIBLE MAPPINGS OF TYPE (P*) OF GENERALIZE...
COMMON FIXED POINT THEOREMS IN COMPATIBLE MAPPINGS OF TYPE (P*) OF GENERALIZE...
mathsjournal
 
COMMON FIXED POINT THEOREMS IN COMPATIBLE MAPPINGS OF TYPE (P*) OF GENERALIZE...
COMMON FIXED POINT THEOREMS IN COMPATIBLE MAPPINGS OF TYPE (P*) OF GENERALIZE...COMMON FIXED POINT THEOREMS IN COMPATIBLE MAPPINGS OF TYPE (P*) OF GENERALIZE...
COMMON FIXED POINT THEOREMS IN COMPATIBLE MAPPINGS OF TYPE (P*) OF GENERALIZE...
mathsjournal
 
Ch01
Ch01Ch01
Nbhm m. a. and m.sc. scholarship test 2006
Nbhm m. a. and m.sc. scholarship test 2006Nbhm m. a. and m.sc. scholarship test 2006
Nbhm m. a. and m.sc. scholarship test 2006
MD Kutubuddin Sardar
 
Four basic concepts.pptx
Four basic concepts.pptxFour basic concepts.pptx
Four basic concepts.pptx
JanicaMae2
 
Interval valued intuitionistic fuzzy homomorphism of bf algebras
Interval valued intuitionistic fuzzy homomorphism of bf algebrasInterval valued intuitionistic fuzzy homomorphism of bf algebras
Interval valued intuitionistic fuzzy homomorphism of bf algebras
Alexander Decker
 
A Probabilistic Algorithm for Computation of Polynomial Greatest Common with ...
A Probabilistic Algorithm for Computation of Polynomial Greatest Common with ...A Probabilistic Algorithm for Computation of Polynomial Greatest Common with ...
A Probabilistic Algorithm for Computation of Polynomial Greatest Common with ...
mathsjournal
 
27 power series x
27 power series x27 power series x
27 power series x
math266
 
27 power series x
27 power series x27 power series x
27 power series x
math266
 

Similar to FUZZY LOGIC (20)

Ch1 sets and_logic(1)
Ch1 sets and_logic(1)Ch1 sets and_logic(1)
Ch1 sets and_logic(1)
 
Chpt 2-sets v.3
Chpt 2-sets v.3Chpt 2-sets v.3
Chpt 2-sets v.3
 
Per6 basis2_NUMBER SYSTEMS
Per6 basis2_NUMBER SYSTEMSPer6 basis2_NUMBER SYSTEMS
Per6 basis2_NUMBER SYSTEMS
 
Otter 2014-12-22-01-slideshare
Otter 2014-12-22-01-slideshareOtter 2014-12-22-01-slideshare
Otter 2014-12-22-01-slideshare
 
Grovers Algorithm
Grovers Algorithm Grovers Algorithm
Grovers Algorithm
 
4898850.ppt
4898850.ppt4898850.ppt
4898850.ppt
 
Math
MathMath
Math
 
Lecture 1.2 quadratic functions
Lecture 1.2 quadratic functionsLecture 1.2 quadratic functions
Lecture 1.2 quadratic functions
 
A
AA
A
 
COMMON FIXED POINT THEOREMS IN COMPATIBLE MAPPINGS OF TYPE (P*) OF GENERALIZE...
COMMON FIXED POINT THEOREMS IN COMPATIBLE MAPPINGS OF TYPE (P*) OF GENERALIZE...COMMON FIXED POINT THEOREMS IN COMPATIBLE MAPPINGS OF TYPE (P*) OF GENERALIZE...
COMMON FIXED POINT THEOREMS IN COMPATIBLE MAPPINGS OF TYPE (P*) OF GENERALIZE...
 
COMMON FIXED POINT THEOREMS IN COMPATIBLE MAPPINGS OF TYPE (P*) OF GENERALIZE...
COMMON FIXED POINT THEOREMS IN COMPATIBLE MAPPINGS OF TYPE (P*) OF GENERALIZE...COMMON FIXED POINT THEOREMS IN COMPATIBLE MAPPINGS OF TYPE (P*) OF GENERALIZE...
COMMON FIXED POINT THEOREMS IN COMPATIBLE MAPPINGS OF TYPE (P*) OF GENERALIZE...
 
COMMON FIXED POINT THEOREMS IN COMPATIBLE MAPPINGS OF TYPE (P*) OF GENERALIZE...
COMMON FIXED POINT THEOREMS IN COMPATIBLE MAPPINGS OF TYPE (P*) OF GENERALIZE...COMMON FIXED POINT THEOREMS IN COMPATIBLE MAPPINGS OF TYPE (P*) OF GENERALIZE...
COMMON FIXED POINT THEOREMS IN COMPATIBLE MAPPINGS OF TYPE (P*) OF GENERALIZE...
 
COMMON FIXED POINT THEOREMS IN COMPATIBLE MAPPINGS OF TYPE (P*) OF GENERALIZE...
COMMON FIXED POINT THEOREMS IN COMPATIBLE MAPPINGS OF TYPE (P*) OF GENERALIZE...COMMON FIXED POINT THEOREMS IN COMPATIBLE MAPPINGS OF TYPE (P*) OF GENERALIZE...
COMMON FIXED POINT THEOREMS IN COMPATIBLE MAPPINGS OF TYPE (P*) OF GENERALIZE...
 
Ch01
Ch01Ch01
Ch01
 
Nbhm m. a. and m.sc. scholarship test 2006
Nbhm m. a. and m.sc. scholarship test 2006Nbhm m. a. and m.sc. scholarship test 2006
Nbhm m. a. and m.sc. scholarship test 2006
 
Four basic concepts.pptx
Four basic concepts.pptxFour basic concepts.pptx
Four basic concepts.pptx
 
Interval valued intuitionistic fuzzy homomorphism of bf algebras
Interval valued intuitionistic fuzzy homomorphism of bf algebrasInterval valued intuitionistic fuzzy homomorphism of bf algebras
Interval valued intuitionistic fuzzy homomorphism of bf algebras
 
A Probabilistic Algorithm for Computation of Polynomial Greatest Common with ...
A Probabilistic Algorithm for Computation of Polynomial Greatest Common with ...A Probabilistic Algorithm for Computation of Polynomial Greatest Common with ...
A Probabilistic Algorithm for Computation of Polynomial Greatest Common with ...
 
27 power series x
27 power series x27 power series x
27 power series x
 
27 power series x
27 power series x27 power series x
27 power series x
 

Recently uploaded

How to Make a Field Mandatory in Odoo 17
How to Make a Field Mandatory in Odoo 17How to Make a Field Mandatory in Odoo 17
How to Make a Field Mandatory in Odoo 17
Celine George
 
Pengantar Penggunaan Flutter - Dart programming language1.pptx
Pengantar Penggunaan Flutter - Dart programming language1.pptxPengantar Penggunaan Flutter - Dart programming language1.pptx
Pengantar Penggunaan Flutter - Dart programming language1.pptx
Fajar Baskoro
 
S1-Introduction-Biopesticides in ICM.pptx
S1-Introduction-Biopesticides in ICM.pptxS1-Introduction-Biopesticides in ICM.pptx
S1-Introduction-Biopesticides in ICM.pptx
tarandeep35
 
Walmart Business+ and Spark Good for Nonprofits.pdf
Walmart Business+ and Spark Good for Nonprofits.pdfWalmart Business+ and Spark Good for Nonprofits.pdf
Walmart Business+ and Spark Good for Nonprofits.pdf
TechSoup
 
The basics of sentences session 6pptx.pptx
The basics of sentences session 6pptx.pptxThe basics of sentences session 6pptx.pptx
The basics of sentences session 6pptx.pptx
heathfieldcps1
 
How to Manage Your Lost Opportunities in Odoo 17 CRM
How to Manage Your Lost Opportunities in Odoo 17 CRMHow to Manage Your Lost Opportunities in Odoo 17 CRM
How to Manage Your Lost Opportunities in Odoo 17 CRM
Celine George
 
What is Digital Literacy? A guest blog from Andy McLaughlin, University of Ab...
What is Digital Literacy? A guest blog from Andy McLaughlin, University of Ab...What is Digital Literacy? A guest blog from Andy McLaughlin, University of Ab...
What is Digital Literacy? A guest blog from Andy McLaughlin, University of Ab...
GeorgeMilliken2
 
C1 Rubenstein AP HuG xxxxxxxxxxxxxx.pptx
C1 Rubenstein AP HuG xxxxxxxxxxxxxx.pptxC1 Rubenstein AP HuG xxxxxxxxxxxxxx.pptx
C1 Rubenstein AP HuG xxxxxxxxxxxxxx.pptx
mulvey2
 
The simplified electron and muon model, Oscillating Spacetime: The Foundation...
The simplified electron and muon model, Oscillating Spacetime: The Foundation...The simplified electron and muon model, Oscillating Spacetime: The Foundation...
The simplified electron and muon model, Oscillating Spacetime: The Foundation...
RitikBhardwaj56
 
How to Add Chatter in the odoo 17 ERP Module
How to Add Chatter in the odoo 17 ERP ModuleHow to Add Chatter in the odoo 17 ERP Module
How to Add Chatter in the odoo 17 ERP Module
Celine George
 
ANATOMY AND BIOMECHANICS OF HIP JOINT.pdf
ANATOMY AND BIOMECHANICS OF HIP JOINT.pdfANATOMY AND BIOMECHANICS OF HIP JOINT.pdf
ANATOMY AND BIOMECHANICS OF HIP JOINT.pdf
Priyankaranawat4
 
BÀI TẬP BỔ TRỢ TIẾNG ANH 8 CẢ NĂM - GLOBAL SUCCESS - NĂM HỌC 2023-2024 (CÓ FI...
BÀI TẬP BỔ TRỢ TIẾNG ANH 8 CẢ NĂM - GLOBAL SUCCESS - NĂM HỌC 2023-2024 (CÓ FI...BÀI TẬP BỔ TRỢ TIẾNG ANH 8 CẢ NĂM - GLOBAL SUCCESS - NĂM HỌC 2023-2024 (CÓ FI...
BÀI TẬP BỔ TRỢ TIẾNG ANH 8 CẢ NĂM - GLOBAL SUCCESS - NĂM HỌC 2023-2024 (CÓ FI...
Nguyen Thanh Tu Collection
 
Your Skill Boost Masterclass: Strategies for Effective Upskilling
Your Skill Boost Masterclass: Strategies for Effective UpskillingYour Skill Boost Masterclass: Strategies for Effective Upskilling
Your Skill Boost Masterclass: Strategies for Effective Upskilling
Excellence Foundation for South Sudan
 
PCOS corelations and management through Ayurveda.
PCOS corelations and management through Ayurveda.PCOS corelations and management through Ayurveda.
PCOS corelations and management through Ayurveda.
Dr. Shivangi Singh Parihar
 
Digital Artifact 1 - 10VCD Environments Unit
Digital Artifact 1 - 10VCD Environments UnitDigital Artifact 1 - 10VCD Environments Unit
Digital Artifact 1 - 10VCD Environments Unit
chanes7
 
LAND USE LAND COVER AND NDVI OF MIRZAPUR DISTRICT, UP
LAND USE LAND COVER AND NDVI OF MIRZAPUR DISTRICT, UPLAND USE LAND COVER AND NDVI OF MIRZAPUR DISTRICT, UP
LAND USE LAND COVER AND NDVI OF MIRZAPUR DISTRICT, UP
RAHUL
 
Advanced Java[Extra Concepts, Not Difficult].docx
Advanced Java[Extra Concepts, Not Difficult].docxAdvanced Java[Extra Concepts, Not Difficult].docx
Advanced Java[Extra Concepts, Not Difficult].docx
adhitya5119
 
clinical examination of hip joint (1).pdf
clinical examination of hip joint (1).pdfclinical examination of hip joint (1).pdf
clinical examination of hip joint (1).pdf
Priyankaranawat4
 
The Diamonds of 2023-2024 in the IGRA collection
The Diamonds of 2023-2024 in the IGRA collectionThe Diamonds of 2023-2024 in the IGRA collection
The Diamonds of 2023-2024 in the IGRA collection
Israel Genealogy Research Association
 
Smart-Money for SMC traders good time and ICT
Smart-Money for SMC traders good time and ICTSmart-Money for SMC traders good time and ICT
Smart-Money for SMC traders good time and ICT
simonomuemu
 

Recently uploaded (20)

How to Make a Field Mandatory in Odoo 17
How to Make a Field Mandatory in Odoo 17How to Make a Field Mandatory in Odoo 17
How to Make a Field Mandatory in Odoo 17
 
Pengantar Penggunaan Flutter - Dart programming language1.pptx
Pengantar Penggunaan Flutter - Dart programming language1.pptxPengantar Penggunaan Flutter - Dart programming language1.pptx
Pengantar Penggunaan Flutter - Dart programming language1.pptx
 
S1-Introduction-Biopesticides in ICM.pptx
S1-Introduction-Biopesticides in ICM.pptxS1-Introduction-Biopesticides in ICM.pptx
S1-Introduction-Biopesticides in ICM.pptx
 
Walmart Business+ and Spark Good for Nonprofits.pdf
Walmart Business+ and Spark Good for Nonprofits.pdfWalmart Business+ and Spark Good for Nonprofits.pdf
Walmart Business+ and Spark Good for Nonprofits.pdf
 
The basics of sentences session 6pptx.pptx
The basics of sentences session 6pptx.pptxThe basics of sentences session 6pptx.pptx
The basics of sentences session 6pptx.pptx
 
How to Manage Your Lost Opportunities in Odoo 17 CRM
How to Manage Your Lost Opportunities in Odoo 17 CRMHow to Manage Your Lost Opportunities in Odoo 17 CRM
How to Manage Your Lost Opportunities in Odoo 17 CRM
 
What is Digital Literacy? A guest blog from Andy McLaughlin, University of Ab...
What is Digital Literacy? A guest blog from Andy McLaughlin, University of Ab...What is Digital Literacy? A guest blog from Andy McLaughlin, University of Ab...
What is Digital Literacy? A guest blog from Andy McLaughlin, University of Ab...
 
C1 Rubenstein AP HuG xxxxxxxxxxxxxx.pptx
C1 Rubenstein AP HuG xxxxxxxxxxxxxx.pptxC1 Rubenstein AP HuG xxxxxxxxxxxxxx.pptx
C1 Rubenstein AP HuG xxxxxxxxxxxxxx.pptx
 
The simplified electron and muon model, Oscillating Spacetime: The Foundation...
The simplified electron and muon model, Oscillating Spacetime: The Foundation...The simplified electron and muon model, Oscillating Spacetime: The Foundation...
The simplified electron and muon model, Oscillating Spacetime: The Foundation...
 
How to Add Chatter in the odoo 17 ERP Module
How to Add Chatter in the odoo 17 ERP ModuleHow to Add Chatter in the odoo 17 ERP Module
How to Add Chatter in the odoo 17 ERP Module
 
ANATOMY AND BIOMECHANICS OF HIP JOINT.pdf
ANATOMY AND BIOMECHANICS OF HIP JOINT.pdfANATOMY AND BIOMECHANICS OF HIP JOINT.pdf
ANATOMY AND BIOMECHANICS OF HIP JOINT.pdf
 
BÀI TẬP BỔ TRỢ TIẾNG ANH 8 CẢ NĂM - GLOBAL SUCCESS - NĂM HỌC 2023-2024 (CÓ FI...
BÀI TẬP BỔ TRỢ TIẾNG ANH 8 CẢ NĂM - GLOBAL SUCCESS - NĂM HỌC 2023-2024 (CÓ FI...BÀI TẬP BỔ TRỢ TIẾNG ANH 8 CẢ NĂM - GLOBAL SUCCESS - NĂM HỌC 2023-2024 (CÓ FI...
BÀI TẬP BỔ TRỢ TIẾNG ANH 8 CẢ NĂM - GLOBAL SUCCESS - NĂM HỌC 2023-2024 (CÓ FI...
 
Your Skill Boost Masterclass: Strategies for Effective Upskilling
Your Skill Boost Masterclass: Strategies for Effective UpskillingYour Skill Boost Masterclass: Strategies for Effective Upskilling
Your Skill Boost Masterclass: Strategies for Effective Upskilling
 
PCOS corelations and management through Ayurveda.
PCOS corelations and management through Ayurveda.PCOS corelations and management through Ayurveda.
PCOS corelations and management through Ayurveda.
 
Digital Artifact 1 - 10VCD Environments Unit
Digital Artifact 1 - 10VCD Environments UnitDigital Artifact 1 - 10VCD Environments Unit
Digital Artifact 1 - 10VCD Environments Unit
 
LAND USE LAND COVER AND NDVI OF MIRZAPUR DISTRICT, UP
LAND USE LAND COVER AND NDVI OF MIRZAPUR DISTRICT, UPLAND USE LAND COVER AND NDVI OF MIRZAPUR DISTRICT, UP
LAND USE LAND COVER AND NDVI OF MIRZAPUR DISTRICT, UP
 
Advanced Java[Extra Concepts, Not Difficult].docx
Advanced Java[Extra Concepts, Not Difficult].docxAdvanced Java[Extra Concepts, Not Difficult].docx
Advanced Java[Extra Concepts, Not Difficult].docx
 
clinical examination of hip joint (1).pdf
clinical examination of hip joint (1).pdfclinical examination of hip joint (1).pdf
clinical examination of hip joint (1).pdf
 
The Diamonds of 2023-2024 in the IGRA collection
The Diamonds of 2023-2024 in the IGRA collectionThe Diamonds of 2023-2024 in the IGRA collection
The Diamonds of 2023-2024 in the IGRA collection
 
Smart-Money for SMC traders good time and ICT
Smart-Money for SMC traders good time and ICTSmart-Money for SMC traders good time and ICT
Smart-Money for SMC traders good time and ICT
 

FUZZY LOGIC

  • 2. Origins and Evolution of Fuzzy Logic • Origin: Fuzzy Sets Theory (Zadeh, 1965) • Aim: Represent vagueness and impre-cission of statements in natural language • Fuzzy sets: Generalization of classical sets • In the 70s: From FST to Fuzzy Logic • Nowadays: Applications to control systems – Industrial applications – Domotic applications, etc.
  • 3.
  • 4. Classical Sets  Classical sets – either an element belongs to the set or it does not.  For example, for the set of integers, either an integer is even or it is not (it is odd).
  • 5. Classical Sets Classical sets are also called crisp (sets). Lists: A = {apples, oranges, cherries, mangoes} A = {a1,a2,a3 } A = {2, 4, 6, 8, …} Formulas: A = {x | x is an even natural number} A = {x | x = 2n, n is a natural number} Membership or characteristic function A ( x) 1 if x A 0 if x A
  • 6.
  • 7.
  • 8. Fuzzy Sets  Sets with fuzzy boundaries A = Set of tall people Crisp set A Fuzzy set A 1.0 1.0 .9 Membership .5 5’10’’ Heights function 5’10’’ 6’2’’ Heights
  • 9. Membership Functions (MFs)  Characteristics of MFs:  Subjective measures  Not probability functions  “tall” in Asia MFs .8  “tall” in the US .5  “tall” in NBA .1 5’10’’ Heights
  • 10. Fuzzy Sets  Formal definition: A fuzzy set A in X is expressed as a set of ordered pairs: A Fuzzy set {( x, A ( x ))| x Membership function (MF) X} Universe or universe of discourse A fuzzy set is totally characterized by a membership function (MF).
  • 11. An Example • A class of students (E.G. MCA. Students taking „Fuzzy Theory”) • The universe of discourse: X • “Who does have a driver’s licence?” • A subset of X = A (Crisp) Set • (X) = CHARACTERISTIC FUNCTION 1 0 1 1 0 1 1 • “Who can drive very well?” (X) = MEMBERSHIP FUNCTION 0.7 0 1.0 0.8 0 0.4 0.2
  • 12. Crisp or Fuzzy Logic  Crisp Logic  A proposition can be true or false only. • Bob is a student (true) • Smoking is healthy (false)  The degree of truth is 0 or 1.  Fuzzy Logic  The degree of truth is between 0 and 1. • William is young (0.3 truth) • Ariel is smart (0.9 truth)
  • 13.  Fuzzy Sets  Membership function A X [0,1] Crisp Sets Characteristic function mA X {0,1}
  • 14.
  • 15. Set-Theoretic Operations  Subset A B A ( x) B ( x), x U  Complement A U  Union C A B C A ( x) A ( x) 1 max( A ( x), min( A A B ( x) ( x)) A ( x) B ( x)  Intersection C A B C ( x) ( x), B ( x )) A ( x) B ( x)
  • 17. Properties Of Crisp Set Involution A Commutativity A B B A B B Associativity Distributivity Idempotence Absorption A De Morgan’s laws A A A C A B C A B C A B C A B C A B C A A A A A A A A A A B B A B A B A A A C A C A B A A B B B A B
  • 18. Properties  The following properties are invalid for fuzzy sets:  The laws of contradiction A A A A U  The laws of exclude middle
  • 21. Example  we have two discrete fuzzy sets
  • 23. Summarize properties Involution A Commutativity A A B=B A, A B=B A Associativity A B C=(A B) C=A (B C), A B C=(A B) C=A (B C) Distributivity A (B C)=(A B) (A C), A (B C)=(A B) (A C) Idempotence A A=A, A A=A Absorption A (A B)=A, A (A B)=A A A B A B A A B A B A X=X, A = Absorption of complement Abs. by X and Identity A =A, A X=A Law of contradiction A A Law of excl. middle A A X DeMorgan’s laws A B A B A B A B
  • 24.
  • 28.
  • 29. CARTESIAN PRODUCT An ordered sequence of r elements, written in the form (a1, a2, a3, . . . , ar), is called an ordered rtuple. For crisp sets A1,A2, . . . ,Ar, the set of all rtuples(a1, a2, a3, . . . , ar), where a1∈A1,a2 ∈A2, and ar∈Ar, is called the Cartesian product of A1,A2, . . . ,Ar, and is denoted by A1 A2 ··· Ar. (The Cartesian product of two or more sets is not the same thing as the arithmetic product of two or more sets.)
  • 30. Crisp Relations A subset of the Cartesian product A1 A2 ··· Ar is called an r-ary relation over A1,A2, . . . ,Ar. If three, four, or five sets are involved in a subset of the full Cartesian product, the relations are called ternary, quaternary, and quinary
  • 31. Cartesian product The Cartesian product of two universes X and Y is determined as  X Y = {(x, y) | x ∈X, y ∈Y} which forms an ordered pair of every x ∈X with every y ∈Y, forming unconstrained  matches between X and Y. That is, every element in universe X is related completely to every element in universe Y.
  • 32. Fuzzy Relations  Triples showing connection between two sets: (a,b,#): a is related to b with degree #  Fuzzy relations are set themselves  Fuzzy relations can be expressed as matrices … 32
  • 33. Fuzzy Relations Matrices  Example: Color-Ripeness relation for tomatoes R1(x, y) unripe semi ripe ripe green 1 0.5 0 yellow 0.3 1 0.4 Red 0 0.2 1 33
  • 34. Fuzzy Relations A fuzzy relation R is a 2D MF: R ( x, y), R ( x, y) | ( x, y) X Y
  • 35. Fuzzy relation  A fuzzy relation is a fuzzy set defined on the Cartesian product of crisp sets A1, A2, ..., An where tuples (x1, x2, ..., xn) may have varying degrees of membership within the relation.  The membership grade indicates the strength of the relation present between the elements of the tuple. R R : A1 A2 ... An (( x1 , x2 ,..., xn ), [0,1] R )| R ( x1 , x2 ,..., xn ) 0, x1 A1, x2 A2 ,..., xn An 35
  • 36.
  • 37. Max-Min Composition X Y Z R: fuzzy relation defined on X and Y. S: fuzzy relation defined on Y and Z. R。S: the composition of R and S. A fuzzy relation defined on X an Z. RS (x, z) max y min y R ( x, y) R ( x, y), S S ( y, z) ( y, z)
  • 38.  Max-min composition ( x, y) A B, ( y, z) B C max[min( R ( x, y ), S R ( x, z ) y y [ R ( x, y ) S S ( y, z ))] ( y, z )]  Example 38
  • 39.  Example S R (1, ) max[min(0.1, 0.9), min(0.2, 0.2), min(0.0, 0.8), min(1.0, 0.4)] max[0.1, 0.2, 0.0, 0.4] 0.4 39
  • 40.  Example S R (1, ) max[min(0.1, 0.0), min(0.2,1.0), min(0.0, 0.0), min(1.0, 0.2)] max[0.0, 0.2, 0.0, 0.2] 0.2 40
  • 41. 41
  • 42. Max-min composition is not mathematically tractable, therefore other compositions such as max-product composition have been suggested. Max-Product Composition X Y Z R: fuzzy relation defined on X and Y. S: fuzzy relation defined on Y and Z. R。S: the composition of R and S. A fuzzy relation defined on X an Z. RS (x, y) maxv R ( x, v) S (v, y)
  • 43. Max Product  Max product: C = A・B=AB=  Example C12 ? 43
  • 47.
  • 48. Introduction Fuzzify crisp inputs to get the fuzzy inputs Defuzzify the fuzzy outputs to get crisp outputs
  • 50. Propositional logic  A proposition is a statement- in which English is a declarative sentence and logic defines the way of putting symbols together to form a sentences that represent facts  Every proposition is either true or false.
  • 51. Example of PL The conjunction of the two sentences: Grass is green Pigs don't fly is the sentence: Grass is green and pigs don't fly The conjunction of two sentences will be true if, and only if, each of the two sentences from which it was formed is true.
  • 52. Statement symbols and variables  Statement: A simple statement is one that does not contain any other statement as a part. A compound statement is one that has two or more simple statement as parts called components.
  • 53. Symbols for connective ASSERTION P NEGATION “P IS TRUE” ¬P ~ ! CONJUCTION P^Q . & DISJUNCTION PvQ || IMPLICATION P-> Q EQUIVALENCE P⇔Q NOT AND “BOTH P AND Q ARE TRUE | OR “ EITHER P OR Q IS TRUE” ⇒ = && “P IS FALSE” IF…THEN “IF P IS TRUE THEN Q IS TRUE.” ⇔ IF AND ONLY IF “P AND Q ARE EITHER BOTH TRUE OR FALSE”
  • 54. Truth Value  The truth value of a statement is truth or falsity. P is either true or false ~p is either true of false p^q is either true or false, and so on.  Truth table is a convenient way of showing relationship between several propositions..
  • 55. Truth Table for Negation P ~P Case 1 T F Case 2 F T As you can see “P” is a true statement then its negation “~P” or “not P” is false. If “P” is false, then “~P” is true.
  • 56. Truth Table for Conjunction P Q PΛQ Case 1 T T T Case 2 T F F Case 3 F T F Case 4 F F F
  • 57. Truth Table for Disjunction P Q PVQ Case 1 T T T Case 2 T F T Case 3 F T T Case 4 F F F
  • 58. Tautology  Tautology is a proposition formed by combining other proposition (p,q,r…)which is true regardless of truth or falsehood of p,q,r…  DEF: A compound proposition is called a tautology if no matter what truth values its atomic propositions have, its own truth value is T.
  • 59. Tautology example Demonstrate that [¬p (p q )] q is a tautology in two ways: 1. Using a truth table – show that (p q )] q is always true. [¬p L3 59
  • 60. Tautology by truth table p q ¬p p q ¬p (p q ) [¬p (p q )] q T T T F F T F F L3 60
  • 61. Tautology by truth table p q ¬p p q ¬p (p q ) [¬p (p q )] q T T F T F F F T T F F T L3 61
  • 62. Tautology by truth table p q ¬p p q ¬p (p q ) [¬p (p q )] q T T F T T F F T F T T T F F T F L3 62
  • 63. Tautology by truth table p q ¬p p q ¬p (p q ) [¬p (p q )] q T T F T F T F F T F F T T T T F F T F F L3 63
  • 64. Tautology by truth table p q ¬p p q ¬p (p q ) [¬p (p q )] q T T F T F T T F F T F T F T T T T T F F T F F T L3 64
  • 65. Modus Ponens and Modus Tollens  Modus ponens -- If A then B, observe A, conclude B  Modus tollens – If A then B, observe notB, conclude not-A
  • 66. Modus Ponens and Tollens  If Joan understood this book, then she would get a good grade. If P then Q  Joan understood .: she got a good grade.  This uses modus ponens. P .: Q  If Joan understood this book, then she would get a good grade. If P then Q  She did not get a good grade .: she did not understand this book. ~Q .: ~P  This uses modus tollens.
  • 67. Fuzzy Quantifiers The scope of fuzzy propositions can be extended using fuzzy quantifiers • Fuzzy quantifiers are fuzzy numbers that take part in fuzzy propositions • There are two different types: – Type #1 (absolute): Defined on the set of real numbers • Examples: “about 10”, “much more than 100”, “at least about 5”, etc. – Type #2 (relative): Defined on the interval [0, 1] • “almost all”, “about half”, “most”, etc.
  • 68. Fuzzification  The fuzzification comprises the process of transforming crisp values into grades of membership for linguistic terms of fuzzy sets. The membership function is used to associate a grade to each linguistic term.  Measurement devices in technical systems provide crisp measurements, like 110.5 Volt or 31,5 C. At first, these crisp values must be transformed into linguistic terms (fuzzy sets) . This is called fuzzification.
  • 69. Input Fuzzifier Fuzzifier Inference Engine Defuzzifier Output Fuzzy Knowledge base Converts the crisp input to a linguistic variable using the membership functions stored in the fuzzy knowledge base.
  • 70. Fuzzy interference If x is A and y is B then z = f(x, y) Fuzzy Sets Crisp Function f(x, y) is very often a polynomial function w.r.t. x and y.
  • 71. Examples R1: if X is small and Y is small then z = x +y +1 R2: if X is small and Y is large then z = y +3 R3: if X is large and Y is small then z = x +3 R4: if X is large and Y is large then z = x + y + 2
  • 72.
  • 73. Defuzzification  • Convert fuzzy grade to Crisp output  The max criterion method finds the point at which the membership function is a maximum.  The mean of maximum takes the mean of those points where the membership function is at a maximum.