The document summarizes T. Nagell's 1960 proof of the theorem: When x is a positive integer, the number x^2 + 7 is a power of 2 only in the following five cases: x = 1, 3, 5, 11, 181. Nagell considers it necessary to publish the proof in English due to a related paper that was published. The proof proceeds by considering the Diophantine equation x^2 + 7 = 2^y in the quadratic field K(√-7) and obtaining congruences for y that lead to the five solutions for x.