The document discusses reversible and irreversible processes, defining reversible processes as those that can be reversed without leaving any trace on the surroundings, while irreversible processes leave changes in the surroundings. It explains the concept of entropy as a measure of disorder and its connection to the second law of thermodynamics, including the Clausius inequality. Additionally, it addresses the significance of isentropic processes in engineering, illustrating how no entropy is generated in reversible processes, which serve as ideal models for analyzing actual processes.
Defining reversible processes as ideal with zero net change and irreversible processes as those leaving traces.
Reversible processes do not occur in nature but are useful for analysis and model comparisons.
Factors causing irreversibility include friction, heat transfer differences, and mixing of fluids.
Internally reversible processes have no irreversibilities within the system; externally reversible processes avoid them outside.
Entropy is defined through the second law of thermodynamics as a measure of disorder within a system.
Deriving Clausius inequality involving heat exchange in engines with detailed calculations for various scenarios.
Calculating entropy changes in ideal cycles, establishing relations and quantifying energy availability.
Describes entropy generation during irreversible processes and the principle that entropy in isolated systems never decreases.
Examining processes and entropy change during various thermodynamic operations. Characteristics and implications of isentropic processes in engineering applications, efficiency comparisons. Presentation of T ds relations for energy conservation explaining entropy change for liquids, gases, and using property tables.
Work output during steady-flow processes, minimizing compressor work through reversible processes and intercooling.
Defining and calculating isentropic efficiencies for turbines and compressors, and examining conditions for reversible processes.
Addressing common questions regarding entropy changes, reversible and irreversible processes, including detailed calculations.
REVERSIBLE AND IRREVERSIBLEPROCESSES
• A reversible process is defined as a process that can be
reversed without leaving any trace on the surroundings.
That is, both the system and the surroundings are
returned to their initial states at the end of the reverse
process.
• This is possible only if the net heat and net work
exchange between the system and the surroundings is
zero.
1
2.
• Processes thatare not reversible are called irreversible
processes.
• It should be pointed out that a system can be restored to its
initial state following a process, regardless of whether the
process is reversible or irreversible.
• But for reversible processes, this restoration is made without
leaving any net change on the surroundings, whereas for
irreversible processes, the surroundings usually do some
work on the system and therefore does not return to their
original state
2
Reversible processes actuallydo not occur in nature. They
are merely idealizations of actual processes.
All the processes occurring in nature are irreversible. You
may be wondering, then, why we are bothering with such
fictitious processes.
4
5.
• There aretwo reasons. First, they are easy to analyze,
since a system passes through a series of equilibrium
states during a reversible process; second, they serve as
idealized models to which actual processes can be
compared.
• Engineers are interested in reversible processes
because work-producing devices such as car engines and
gas or steam turbines deliver the most work and work-
consuming devices such as compressors, fans, and
pumps consume the least work when reversible
processes are used instead of irreversible ones
5
6.
IRREVERSIBLITIES
• The factorsthat cause a process to be irreversible are
called irreversibilities.
• They include friction, unrestrained expansion, mixing of
two fluids, heat transfer across a finite temperature
difference, electric resistance, inelastic deformation of
solids and chemical reactions.
• The presence of any of these effects renders a process
irreversible.
6
7.
INTERNALLY REVERSIBLE PROCESS
•A process is called internally reversible if no
irreversibilities occur within the boundaries of the system
during the process.
• During an internally reversible process, a system
proceeds through a series of equilibrium states and when
the process is reversed, the system passes through
exactly the same equilibrium states while returning to its
initial state. That is, the paths of the forward and reverse
processes coincide for an internally reversible process.
The quasi-equilibrium process is an example of an
internally reversible process. 7
8.
EXTERNALLY REVERSIBLE PROCESS
•A process is called externally reversible if no
irreversibilities occur outside the system boundaries
during the process.
• Heat transfer between a reservoir and a system is an
externally reversible process if the outer surface of the
system is at the temperature of the reservoir.
8
9.
TOTALLY REVERSIBLE PROCESS
•A process is called totally reversible, or simply reversible,
if it involves no irreversibilities within the system or its
surroundings.
• A totally reversible process involves no heat transfer
through a finite temperature difference, no non quasi-
equilibrium changes and no friction or other dissipative
effects
9
Entropy and theClausius Inequality
The second law of thermodynamics leads to the definition of a
new property called entropy, a quantitative measure of
microscopic disorder for a system.
Entropy is a measure of energy that is no longer available to
perform useful work within the current environment.
To obtain the working definition of entropy and, thus, the second
law, let's derive the Clausius inequality. 11
12.
Consider a heatreservoir giving up heat to
a reversible heat engine, which in turn
gives up heat to a piston-cylinder device
as shown below.
We apply the first law on an incremental
basis to the combined system composed
of the heat engine and the system.
12
E E E
Q W W dE
in out c
R rev sys c
( )
where Ec is the energy of the combined system.
13.
Let Wc bethe work done by the combined system. Then the
first law becomes
If we assume that the engine is totally reversible, then
13
W W W
Q W dE
c rev sys
R c c
Q
T
Q
T
Q T
Q
T
R
R
R R
14.
The total network done by the combined system becomes
Now the total work done is found by taking the cyclic integral
of the incremental work
14
W T
Q
T
dE
c R c
15.
If the system,as well as the heat engine, is required to undergo
a cycle, then
and the total net work becomes
15
16.
If Wc ispositive, we have a cyclic device exchanging energy with
a single heat reservoir and producing an equivalent amount of
work; thus, the Kelvin-Planck statement of the second law is
violated.
But Wc can be zero (no work done) or negative (work is done on
the combined system) and not violate the Kelvin-Planck
statement of the second law. Therefore, since TR > 0 (absolute
temperature), we conclude
16
17.
or
Here Q isthe net heat added to the system, Qnet.
This equation is called the Clausius inequality. The equality
holds for the reversible process and the inequality holds for the
irreversible process. 17
18.
For a particularpower plant, the heat added and rejected
both occur at constant temperature and no other processes
experience any heat transfer.
The heat is added in the amount of 3150 kJ at 440oC and is
rejected in the amount of 1950 kJ at 20oC.
(a)Is the Clausius inequality satisfied and is the cycle
reversible or irreversible?
(b)Calculate the net work, cycle efficiency, and Carnot
efficiency based on TH and TL for this cycle.
18
Problem 1
20
(3150 1950) 1200
netin out
W Q Q kJ kJ
,
1200
0.381 38.1%
3150
(20 273)
1 1 0.589 58.9%
(440 273)
net
th
in
L
th Carnot
H
W kJ
or
Q kJ
T K
or
T K
Part b
The Clausius inequality is satisfied. Since the inequality is less
than zero, the cycle has at least one irreversible process and the
cycle is irreversible.
21.
For a particularpower plant, the heat added and rejected
both occur at constant temperature; no other processes
experience any heat transfer.
The heat is added in the amount of 3150 kJ at 440oC and is
rejected in the amount of 1294.46 kJ at 20oC.
(a) Is the Clausius inequality satisfied and is the cycle
reversible or irreversible?
(b) Calculate the net work and cycle efficiency for this cycle.
21
Problem 2
23
Part b
W QQ kJ kJ
W
Q
kJ
kJ
or
net in out
th
net
in
( . ) .
.
. .
3150 1294 46 18554
185554
3150
0589 58 9%
24.
Definition of Entropy
Let’stake another look at the quantity
If no irreversibilities occur within the system as well as the
reversible cyclic device, then the cycle undergone by the
combined system will be internally reversible.
As such, it can be reversed.
24
25.
In the reversedcycle case, all the quantities will have the same
magnitude but the opposite sign.
Therefore, the work WC, which could not be a positive quantity
in the regular case, cannot be a negative quantity in the
reversed case.
Then it follows that WC,int rev = 0 since it cannot be a positive or
negative quantity, and therefore
for internally reversible cycles
25
26.
Thus we concludethat the equality in the Clausius inequality
holds for totally or just internally reversible cycles and the
inequality for the irreversible ones.
To develop a relation for the definition of entropy, let us examine
this last equation more closely. Here we have a quantity whose
cyclic integral is zero.
Let us think for a moment what kind of quantities can have this
characteristic.
We know that the cyclic integral of work is not zero. (It is a good
thing that it is not. Otherwise, heat engines that work on a cycle
such as steam power plants would produce zero net work.)
Neither is the cyclic integral of heat. 26
27.
Now consider thevolume occupied by a gas
in a piston-cylinder device undergoing a
cycle, as shown below.
When the piston returns to its initial position
at the end of a cycle, the volume of the gas
also returns to its initial value. Thus the net
change in volume during a cycle is zero. This
is also expressed as
We see that the cyclic integral of a property is
zero. 27
28.
A quantity whosecyclic integral is zero depends only on the
state and not on the process path; thus it is a property.
Therefore the quantity (Qnet/T)int rev must be a property.
Since the quantity (Qnet/T)int rev is independent of the path and
must be a property, we call this property the entropy S.
The entropy change occurring during a process is related to
the heat transfer and the temperature of the system. The
entropy is given the symbol S (kJ/K), and the specific entropy
is s (kJ/kgK). 28
29.
The entropy changeduring a reversible process, sometimes
called an internally reversible process, is defined as
29
Notice that we have actually defined the change in entropy instead of entropy
itself. Engineers are usually concerned with the changes in entropy.
30.
A Special Case:Internally Reversible Isothermal
Heat Transfer Processes
Isothermal heat transfer processes are internally reversible.
Therefore, the entropy change of a system during an internally
reversible isothermal heat transfer process can be determined
by performing the integration
which reduces to
30
where T0 is the constant
temperature of the system and Q is
the heat transfer for the internally
reversible process
31.
A piston–cylinder devicecontains a liquid–vapor mixture of
water at 300 K. During a constant-pressure process, 750 kJ of
heat is transferred to the water. As a result, part of the liquid in
the cylinder vaporizes. Determine the entropy change of the
water during this process.
31
Problem 3
Solution
The system undergoes an internally reversible, isothermal
process, and thus its entropy change can be determined directly
from
32.
THE INCREASE OFENTROPY PRINCIPLE
Consider a cycle that is made up of two processes: process 1-2,
which is arbitrary (reversible or irreversible), and process 2-1,
which is internally reversible,
From the Clausius inequality
Or
32
33.
The second integralin the previous relation is recognized as the
entropy change S1 - S2. Therefore
It can also be expressed in differential form as
33
where the equality holds for an internally reversible process and the
inequality for an irreversible process.
34.
We may concludefrom these equations that:
• the entropy change of a closed system during an irreversible
process is greater than the integral of δQ/T evaluated for that
process.
• In the limiting case of a reversible process, these two
quantities become equal.
Remember T in these relations is the thermodynamic
temperature at the boundary where the differential heat δQ is
transferred between the system and the surroundings.
34
35.
The quantity ∆S=S2- S1 represents the entropy change of the
system.
For a reversible process, it becomes equal to
1
2 δ𝑄
𝑇
, which
represents the entropy transfer with heat.
The inequality sign in the preceding relations is a constant
reminder that the entropy change of a closed system during an
irreversible process is always greater than the entropy transfer.
That is, some entropy is generated or created during an
irreversible process, and this generation is due entirely to the
presence of irreversibilities. 35
36.
The entropy generatedduring a process is called entropy
generation and is denoted by Sgen
The difference between the entropy change of a closed system
and the entropy transfer is equal to entropy generation,
therefore
36
the entropy generation Sgen is always a positive quantity or zero.
37.
Its value dependson the process, and thus it is not a property of
the system. Also, in the absence of any entropy transfer, the
entropy change of a system is equal to the entropy generation.
For an isolated system (or simply an adiabatic closed system),
the heat transfer is zero,
37
This equation can be expressed as the entropy of an isolated
system during a process always increases or, in the limiting case
of a reversible process, remains constant. In other words, it
never decreases. This is known as the increase of entropy
principle.
38.
Entropy is anextensive property, and thus the total entropy of a
system is equal to the sum of the entropies of the parts of the
system.
38
Since no actual process is truly
reversible, we can conclude that some
entropy is generated during a process.
The more irreversible a process, the
larger the entropy generated during that
process.
No entropy is generated during
reversible processes (Sgen =0).
39.
The increase ofentropy principle does not imply that the entropy
of a system cannot decrease.
The entropy change of a system can be negative during a
process, but entropy generation cannot.
The increase of entropy principle can be summarized as follows:
39
40.
A heat sourceat 800 K loses 2000 kJ of heat to a sink at (a)
500 K and (b) 750 K. Determine which heat transfer
process is more irreversible.
40
Problem 4
Solution
(a) For the heat transfer process to a sink at 500 K:
41.
(b) Repeating thecalculations in part (a) for a sink temperature of 750 K,
we obtain
And
The total entropy change for the process in part (b) is smaller, and
therefore it is less irreversible. This is expected since the process in (b)
involves a smaller temperature difference and thus a smaller
irreversibility. 41
42.
ENTROPY CHANGE OFPURE SUBSTANCES
Entropy is a property, and thus the value of entropy of a system
is fixed once the state of the system is fixed. Specifying two
intensive independent properties fixes the state of a simple
compressible system, and thus the value of entropy, as well as
the values of other properties at that state.
The entropy values in the property tables are given relative to
an arbitrary reference state. In steam tables the entropy of
saturated liquid sf at 0.01°C is assigned the value of zero.
42
43.
A rigid tankcontains 5 kg of refrigerant-134a initially at 20°C
and 140 kPa. The refrigerant is now cooled while being stirred
until its pressure drops to 100 kPa. Determine the entropy
change of the refrigerant during this process.
43
Problem 5
Solution
44.
The refrigerant isa saturated liquid–vapor mixture at the final
state since vf < v2 < vg at 100 kPa pressure.
Therefore, we need to determine the quality first:
Therefore
Then the entropy change of the refrigerant during this process
is
44
45.
ISENTROPIC PROCESSES
The entropyof a fixed mass can be changed by
(1) heat transfer and (2) irreversibilities
The entropy of a fixed mass does not change during a process
that is internally reversible and adiabatic.
A process during which the entropy remains constant is called an
isentropic process.
45
46.
Many engineering systemsor devices such as pumps, turbines,
nozzles, and diffusers are essentially adiabatic in their
operation, and they perform best when the irreversibilities, such
as the friction associated with the process, are minimized.
Therefore, an isentropic process can serve as an appropriate
model for actual processes.
Also, isentropic processes enable us to define efficiencies for
processes to compare the actual performance of these devices
to the performance under idealized conditions. 46
47.
Steam enters anadiabatic turbine at 5 MPa and 450°C and
leaves at a pressure of 1.4 MPa. Determine the work output of
the turbine per unit mass of steam if the process is reversible.
47
Problem 6
Solution
48.
The inlet stateis completely specified since two properties are
given. But only one property (pressure) is given at the final state,
and we need one more property to fix it. The second property
comes from the observation that the process is reversible and
adiabatic, and thus isentropic. Therefore, s2 =s1,
48
49.
Then the workoutput of the turbine per unit mass of the steam
becomes
49
50.
THE T dsRELATIONS
The differential form of the conservation of energy equation for a
closed stationary system (a fixed mass) containing a simple
compressible substance can be expressed for an internally
reversible process as
But
Therefore,
50
This equation is known as the
first T ds, or Gibbs, equation.
51.
The second Tds equation is obtained by eliminating du by using
the definition of enthalpy (h =u +Pv):
Therefore:
The T ds relations are valid for both reversible and irreversible
processes and for both closed and open systems.
Or we can write as: and
51
52.
ENTROPY CHANGE OFLIQUIDS AND SOLIDS
Liquids and solids can be approximated as incompressible
substances since their specific volumes remain nearly
constant during a process. Thus, dv= 0 for liquids and solids
52
since cp =cv =c and du= c dT for incompressible substances.
Then the entropy change during a process is determined by
integration to be
53.
THE ENTROPY CHANGEOF IDEAL GASES
Since
By substituting du=cv dT and P=RT/v into Eq
The entropy change for a process is obtained by integrating this
relation between the end states:
53
54.
A second relationfor the entropy change of an ideal gas is
obtained in a similar manner by substituting dh=cp dT and
v=RT/P into Eq.
The specific heats of ideal gases depend on temperature.
The integrals in Eqs. cannot be performed unless the dependence of cv and cp on
temperature is known. Even when the cv(T) and cp(T) functions are available,
performing long integrations every time entropy change is calculated is not practical
54
55.
Two reasonable choicesare:
• Perform these integrations by simply assuming constant
specific heats
• Evaluate those integrals once and tabulate the results.
Constant Specific Heats (Approximate Analysis)
Variable Specific Heats (Exact Analysis)
56.
The entropy-change relationsfor ideal gases under the constant-
specific heat assumption are easily obtained by replacing cv(T) and
cp(T) in Eqs.by cv,avg and cp,avg, respectively, and performing the
integrations.
56
Constant Specific Heats (Approximate Analysis)
57.
Variable Specific Heats(Exact Analysis)
When the temperature change during a process is large and the specific
heats of the ideal gas vary nonlinearly within the temperature range, the
assumption of constant specific heats may lead to considerable errors in
entropy-change calculations.
For those cases, the variation of specific heats with temperature should
be properly accounted for by utilizing accurate relations for the specific
heats as a function of temperature.
The entropy change during a process is then determined by substituting
the cv(T) or cp(T) relations into Eq. and performing the integrations. 57
58.
Instead of performingthese laborious integrals each time
we have a new process, it is convenient to perform these
integrals once and tabulate the results. For this purpose, we
choose absolute zero as the reference temperature and
define a function s° as
Obviously, s° is a function of temperature alone, and its
value is zero at absolute zero temperature. The values of s°
are calculated at various temperatures, and the results are
tabulated in the appendix as a function of temperature for
air.
58
Air is compressedfrom an initial state of 100 kPa and 17°C to a final
state of 600 kPa and 57°C. Determine the entropy change of air during
this compression process by using (a) property values from the air table
and (b) average specific heats.
60
Problem 7
(a) The properties of air are given in the air table (Table A 17). Reading
s° values at given temperatures and substituting, we find
Solution
61.
(b) The entropychange of air during this process can also be
determined approximately from Eq. by using a cp value at the
average temperature of 37°C (Table A–2b) and treating it as a
constant:
61
62.
Isentropic Processes ofIdeal Gases
Several relations for the isentropic processes of ideal gases can be obtained by
setting the entropy-change relations developed previously equal to zero.
62
Constant Specific Heats (Approximate Analysis)
When the constant-specific-heat assumption is valid, the isentropic relations for
ideal gases are obtained by setting following Eqs. equal to zero.
Therefore, we get
since R =cp -cv, k cp/cv, and thus R/cv =k - 1.
63.
63
The third isentropicrelation is obtained by substituting the above Eq. in previous Eq.
and after rearranging
64.
REVERSIBLE STEADY-FLOW WORK
Thework done during a process depends on the path followed as well
as on the properties at the end states. Recall that reversible (quasi-
equilibrium) moving boundary work associated with closed systems is
expressed in terms of the fluid properties as
The quasi-equilibrium work interactions lead to the maximum work
output for work-producing devices and the minimum work input for
work-consuming devices.
64
65.
65
Taking the positivedirection of work to be from the system (work output),
the energy balance for a steady-flow device undergoing an internally
reversible process can be expressed in differential form as
Substituting this into the relation above and cancelling dh yield
66.
When the changesin kinetic and potential energies are negligible, this
equation reduces to
66
When the working fluid is incompressible, the specific volume v remains
constant during the process and can be taken out of the integration.
67.
MINIMIZING THE COMPRESSORWORK
The work input to a compressor is minimized when the compression
process is executed in an internally reversible manner.
When the changes in kinetic and potential energies are negligible, the
compressor work is given by
67
Obviously one way of minimizing the compressor work is to
approximate an internally reversible process as much as possible by
minimizing the irreversibilities such as friction, turbulence, and
nonquasi-equilibrium compression.
68.
second (and morepractical) way of reducing the compressor work is to
keep the specific volume of the gas as small as possible during the
compression process.
This is done by maintaining the temperature of the gas as low as
possible during compression since the specific volume of a gas is
proportional to temperature.
Therefore, reducing the work input to a compressor requires that the
gas be cooled as it is compressed.
68
To have a better understanding of the effect of cooling during the
compression process, we compare the work input requirements for
three kinds of processes: an isentropic process (involves no cooling), a
polytropic process (involves some cooling), and an isothermal process
(involves maximum cooling).
69.
Assuming all threeprocesses are executed between the same
pressure levels (P1 and P2) in an internally reversible manner
and the gas behaves as an ideal gas (Pv =RT) with constant
specific heats.
The compression work is determined by performing the
integration
69
70.
70
The three processesare plotted on a P-v
diagram in Fig. for the same inlet state
and exit pressure.
On a P-v diagram, the area to the left of
the process curve is the integral of v dP.
Thus it is a measure of the steady flow
compression work.
It is interesting to observe from this
diagram that of the three internally
reversible cases considered, the adiabatic
compression (Pvk=constant) requires the
maximum work and the isothermal
compression(T=constant or Pv =constant)
requires the minimum.
One common way of
cooling the gas during
compression is to use
cooling jackets around the
casing of the
compressors.
71.
Multistage Compression withIntercooling
Cooling a gas as it is compressed is desirable since this
reduces the required work input to the compressor. However,
often it is not possible to have adequate cooling through the
casing of the compressor, and it becomes necessary to use
other techniques to achieve effective cooling.
One such technique is multistage compression with
intercooling, where the gas is compressed in stages and
cooled between each stage by passing it through a heat
exchanger called an intercooler. 71
72.
Ideally, the coolingprocess takes place at constant pressure,
and the gas is cooled to the initial temperature T1 at each
intercooler. Multistage compression with intercooling is
especially attractive when a gas is to be compressed to very
high pressures.
72
73.
The size ofthe colored area (the saved work input) varies with
the value of the intermediate pressure Px, and it is of practical
interest to determine the conditions under which this area is
maximized.
The total work input for a two-stage compressor is the sum of
the work inputs for each stage of compression, as determined
from Eq
73
74.
The only variablein this equation is Px. The Px value that
minimizes the total work is determined by differentiating this
expression with respect to Px and setting the resulting
expression equal to zero. It yields
74
That is, to minimize compression work during two-stage
compression, the pressure ratio across each stage of the
compressor must be the same.
When this condition is satisfied, the compression work at each
stage becomes identical, that is, wcomp I,in = wcomp II,in.
75.
ISENTROPIC EFFICIENCIES OF
STEADY-FLOWDEVICES
The more closely the actual process approximates the
idealized isentropic process, the better the device performs.
Thus, it would be desirable to have a parameter that
expresses quantitatively how efficiently an actual device
approximates an idealized one.
This parameter is the isentropic or adiabatic efficiency,
which is a measure of the deviation of actual processes
from the corresponding idealized ones.
75
76.
76
Isentropic Efficiency ofTurbines
The isentropic efficiency of a turbine is
defined as the ratio of the actual work output
of the turbine to the work output that would
be achieved if the process between the inlet
state and the exit pressure were isentropic:
77.
77
Isentropic Efficiencies ofCompressors and Pumps
The isentropic efficiency of a compressor is defined as the ratio of the work
input required to raise the pressure of a gas to a specified value in an isentropic
manner to the actual work input:
Compressors
Pumps
78.
Important points toremember
1: Does the temperature in the Clausius inequality relation have to
be absolute temperature? Why?
Yes. Because we used the relation (QH/TH) = (QL/TL) in the proof,
which is the defining relation of absolute temperature.
2: Does a cycle for which δQ > 0 violate the Clausius inequality?
Why?
No. The δQ represents the net heat transfer during a cycle, which
could be positive.
78
79.
3: Is aquantity whose cyclic integral is zero necessarily a
property?
Yes.
4:Does the cyclic integral of heat have to be zero (i.e., does a
system have to reject as much heat as it receives to complete a
cycle)? Explain.
No. A system may reject more (or less) heat than it receives during a
cycle. The steam in a steam power plant, for example, receives more
heat than it rejects during a cycle.
79
80.
5: Does thecyclic integral of work have to be zero (i.e.,does a
system have to produce as much work as it consumes to complete
a cycle)? Explain.
No. A system may produce more (or less) work than it receives
during a cycle. A steam power plant, for example, produces more
work than it receives during a cycle, the difference being the net
work output.
6: A system undergoes a process between two fixed states first in
a reversible manner and then in an irreversible manner. For which
case is the entropy change greater? Why?
The entropy change will be the same for both cases since entropy
is a property and it has a fixedvalue at a fixed state.
80
81.
7: Is thevalue of the integral 1
2 δ𝑄
𝑇
the same for all processes between
states 1 and 2? Explain.
No. In general, that integral will have a different value for different
processes. However, it will have the same value for all reversible
processes.
8: Is the value of the integral 1
2 δ𝑄
𝑇
the same for all reversible processes
between states 1 and 2? Why?
Yes. 81
82.
9: To determinethe entropy change for an irreversible process
between states 1 and 2, should the integral 1
2 δ𝑄
𝑇
be performed along
the actual process path or an imaginary reversible path? Explain.
That integral should be performed along a reversible path to determine
the entropy change.
10: Is an isothermal process necessarily internally reversible? Explain
your answer with an example.
No. An isothermal process can be irreversible. Example: A system that
involves paddle-wheel work while losing an equivalent amount of heat.
82
83.
11. How dothe values of the integral 1
2 δ𝑄
𝑇
compare for a reversible and
irreversible process between the same end states?
The value of this integral is always larger for reversible processes.
12. The entropy of a hot baked potato decreases as it cools. Is this a
violation of the increase of entropy principle? Explain.
No. Because the entropy of the surrounding air increases even more
during that process, making the total entropy change positive.
13. Is it possible to create entropy? Is it possible to destroy it?
It is possible to create entropy, but it is not possible to destroy it.
83
84.
14. Is aprocess that is internally reversible and adiabatic necessarily
isentropic? Explain.
Yes, because an internally reversible, adiabatic process involves no
irreversibilities or heat transfer.
15. Can the entropy of an ideal gas change during an isothermal
process?
The entropy of a gas can change during an isothermal process since
entropy of an ideal gas depends on the pressure as well as the
temperature.
84
85.
16. An idealgas undergoes a process between two specified
temperatures, first at constant pressure and then at constant
volume. For which case will the ideal gas experience a larger
entropy change? Explain.
The entropy change relations of an ideal gas simplify to
• Δs = cp ln(T2/T1) for a constant pressure process and
• Δs = cv ln(T2/T1) for a constant volume process.
Noting that cp > cv, the entropy change will be larger for a constant
pressure process
85
86.
17. A piston–cylinderdevice contains helium gas. During a reversible,
isothermal process, the entropy of the helium will (never, sometimes,
always) increase.
Sometimes.
18. A piston–cylinder device contains nitrogen gas. During a reversible,
adiabatic process, the entropy of the nitrogen will (never, sometimes,
always) increase.
Never.
19. A piston–cylinder device contains superheated steam. During an
actual adiabatic process, the entropy of the steam will (never,
sometimes, always) increase.
Always. 86
87.
20. The entropyof the working fluid of the ideal Carnot cycle
(increases, decreases, remains the same) during the isothermal heat
addition process.
Increases.
21. The entropy of the working fluid of the ideal Carnot cycle
(increases, decreases, remains the same) during the isothermal heat
rejection process.
Decreases
22. Is it possible for the entropy change of a closed system to be zero
during an irreversible process? Explain.
Yes. This will happen when the system is losing heat, and the decrease
in entropy as a result of this heat loss is equal to the increase in entropy
as a result of irreversibilities.
87
88.
A rigid tankcontains an ideal gas at 40°C that is being stirred by a
paddle wheel. The paddle wheel does 200 kJ of work on the ideal
gas. It is observed that the temperature of the ideal gas remains
constant during this process as a result of heat transfer between the
system and the surroundings at 30°C. Determine the entropy
change of the ideal gas.
88
Problem
The temperature and the specific volume of the gas remain constant
during this process. Therefore, the initial and the final states of the
gas are the same. Then s2 = s1 since entropy is a property.
Therefore,
Solution
89.
Refrigerant-134a enters thecoils of the evaporator of a refrigeration
system as a saturated liquid–vapor mixture at a pressure of 160
kPa. The refrigerant absorbs 180 kJ of heat from the cooled space,
which is maintained at -5°C, and leaves as saturated vapor at the
same pressure. Determine
(a) the entropy change of the refrigerant,
(b) the entropy change of the cooled space, and
c) the total entropy change for this process.
89
Problem
90.
Assumptions
Both the refrigerantand the cooled space involve no internal
irreversibilities such as friction.
Any temperature change occurs within the wall of the tube, and thus
both the refrigerant and the cooled space remain isothermal during this
process. Thus it is an isothermal, internally reversible process.
90
Solution
a) The pressure of the refrigerant is maintained constant. Therefore, the
temperature of the refrigerant also remains constant at the saturation
value,