Successfully reported this slideshow.
Upcoming SlideShare
×

# Slope deflection method for structure analysis in civil engineering

2,028 views

Published on

slope deflection method used in structure analysis in civil engineering

Published in: Engineering
• Full Name
Comment goes here.

Are you sure you want to Yes No
• Be the first to comment

### Slope deflection method for structure analysis in civil engineering

1. 1. Guided By:- Zalak P. Shah Subject:- Structural Analysis 2 Topic:- Slope Deflection Jurik Jariwala 130490106037 Prepared by…
2. 2. Using Slope – Deflection method determine the moments at points A, B, C, Support B settle 0.08 m in y direction EI=1000kN.m2 2
3. 3. BA AB BABA AB AB BAAB MF LL EI M MF LL EI M               3 2 2 3 2 2   )03.02(0 4 8.03 20 4 2 )03.0( 2 0 4 8.03 0 4 2              BBBA BBAB EI EI M EIEI M   For member AB 027.0015.0 1000 12 24 03.0224   B BBA EI M   kN.mM mkN EIM BA BAB 24 .3)03.0027.0(1000 )03.0(     3
4. 4. Using Slope – Deflection method determine the moments at points A, B, C, Support B settle 0.1 ft in y direction EI=302(10)3 K.ft2 4
5. 5.         72)( 68 245.1 020 24 2 72)( 128 245.1 00 24 2 2 2   BBBA BBAB EIEI M EIEI M   )015.02( 1020 )1.0(3 2 20 2 )015.02( 1020 )1.0(3 2 20 2             CBCBCB CBCBBC EIEI M EIEI M   5
6. 6. )02.0( 5.715 )1.0(3 0 15 2 )02.02( 5.715 )1.0(3 02 15 2                           CCDC CCCD EIEI M EIEI M   6
7. 7. 0 CDCB MM ( 2 0.015) (2 0.02) 0 10 7.5 2 2 0.0015 0.00267 0 10 10 7.5 35 0.001167 0 10 75 B C C CB C CB EI EI                                            0 BCBA MM 3 ( ) 72 (2 0.015) 0 6 10 72 0.0015 0 6 5 10 11 72 0.0015 0 11 3 0.00126 0 30 10 0 10 302(10) B B C CB B CB CB EI EI EI                                                7
8. 8. 00344.0 00438.0   C B   ftkM ftkM ftkM ftkM ftkM ftkM DC CD CB BC BA AB .667 .529 .529 .292 .292 .2.38       8
9. 9. 9
10. 10. Using Slope – Deflection method determine the moments at points A, B, C,D 10
11. 11.     2 0 0 0 ( ) 12 6 2 0 2 0 0 ( ) 12 3 AB B B BA B B EI EI M EI EI M                     2 2 2 5 2 0 (2 ) 80 8 96 4 2 5 2 0 ( 2 ) 80 8 96 4 BC B C B C CB B C B C EI wL EI M EI wL EI M                             2 2 0 0 0 ( ) 12 3 2 0 0 0 ( ) 12 6 CD C C DC C C EI EI M EI EI M                 For member AB For member BC For member CD 11
12. 12. 0 BCBA MM ( ) (2 ) 80 0 5 0 6 4 4 8 3 0 B B C B C EI E I I E E I                            0 CDCB MM 5 ( 2 ) 80 ( ) 4 3 80 0 4 6 0B C C B C EI I I EI E E                           1 2 137.1 B C EI     12
13. 13. 137.1 B C EI     22.9 . 45.7 . 45.7 . 45.7 . 45.7 . 22.9 . AB BA BC CB CD DC M kN m M kN m M kN m M kN m M kN m M kN m          13
14. 14. Using Slope – Deflection method determine the moments at points A, B, C,D 14
15. 15. 2 0 3 0 ( ) 12 12 6 4 2 0 2 3 0 (2 ) 12 12 6 4 AB B B BA B B EI EI M EI EI M                                 2 2 2 0 0 (2 ) 15 15 2 2 2 0 0 ( 2 ) 15 15 BC B C B C CB B C B C EI EI M EI EI M                       2 2 0 3 0 (2 ) 18 18 9 6 2 0 3 0 ( ) 18 18 9 6 CD C C DC C C EI EI M EI EI M                             For member AB For member BC For member CD 15
16. 16. 0 BCBA MM 0.34 0.0416 0 2 (2 0.607 0.134 0.0416 0 0.267 0.134 0 ) (2 ) 6 4 15 B B B C C B B C EI EI                                  0 CDCB MM 0.134 0.49 0.134 0.267 0.22 0.0 2 ( 2 ) (2 ) 1 0.0185 0 5 5 1 0 6 8 0 9 B B B C C C C C EI EI                                   1 2 16
17. 17. 40 12 18 40 CD DCAB BA A DV M V MM M      ( ) (2 ) ( ) (2 ) 6 4 6 4 9 6 9 6 40 12 18 3 3 0.009 4 960 0.444 0.21 7 162 6 0 2 B B C C B C C B EI EI EI EI EI E EI I EI                                  3 40 0A DV V  Q 17
18. 18. 438. From 81 1, 2, 136.18 6 54 3 7 .7 B C EI EI EI       208 . 135 . 135 . 94.8 . 94.8 . 110 . AB BA BC CB CD DC M k ft M k ft M k ft M k ft M k ft M k ft           18
19. 19. 19