Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.

Slope deflection method for structure analysis in civil engineering

1,610 views

Published on

slope deflection method used in structure analysis in civil engineering

Published in: Engineering
  • Be the first to comment

Slope deflection method for structure analysis in civil engineering

  1. 1. Guided By:- Zalak P. Shah Subject:- Structural Analysis 2 Topic:- Slope Deflection Jurik Jariwala 130490106037 Prepared by…
  2. 2. Using Slope – Deflection method determine the moments at points A, B, C, Support B settle 0.08 m in y direction EI=1000kN.m2 2
  3. 3. BA AB BABA AB AB BAAB MF LL EI M MF LL EI M               3 2 2 3 2 2   )03.02(0 4 8.03 20 4 2 )03.0( 2 0 4 8.03 0 4 2              BBBA BBAB EI EI M EIEI M   For member AB 027.0015.0 1000 12 24 03.0224   B BBA EI M   kN.mM mkN EIM BA BAB 24 .3)03.0027.0(1000 )03.0(     3
  4. 4. Using Slope – Deflection method determine the moments at points A, B, C, Support B settle 0.1 ft in y direction EI=302(10)3 K.ft2 4
  5. 5.         72)( 68 245.1 020 24 2 72)( 128 245.1 00 24 2 2 2   BBBA BBAB EIEI M EIEI M   )015.02( 1020 )1.0(3 2 20 2 )015.02( 1020 )1.0(3 2 20 2             CBCBCB CBCBBC EIEI M EIEI M   5
  6. 6. )02.0( 5.715 )1.0(3 0 15 2 )02.02( 5.715 )1.0(3 02 15 2                           CCDC CCCD EIEI M EIEI M   6
  7. 7. 0 CDCB MM ( 2 0.015) (2 0.02) 0 10 7.5 2 2 0.0015 0.00267 0 10 10 7.5 35 0.001167 0 10 75 B C C CB C CB EI EI                                            0 BCBA MM 3 ( ) 72 (2 0.015) 0 6 10 72 0.0015 0 6 5 10 11 72 0.0015 0 11 3 0.00126 0 30 10 0 10 302(10) B B C CB B CB CB EI EI EI                                                7
  8. 8. 00344.0 00438.0   C B   ftkM ftkM ftkM ftkM ftkM ftkM DC CD CB BC BA AB .667 .529 .529 .292 .292 .2.38       8
  9. 9. 9
  10. 10. Using Slope – Deflection method determine the moments at points A, B, C,D 10
  11. 11.     2 0 0 0 ( ) 12 6 2 0 2 0 0 ( ) 12 3 AB B B BA B B EI EI M EI EI M                     2 2 2 5 2 0 (2 ) 80 8 96 4 2 5 2 0 ( 2 ) 80 8 96 4 BC B C B C CB B C B C EI wL EI M EI wL EI M                             2 2 0 0 0 ( ) 12 3 2 0 0 0 ( ) 12 6 CD C C DC C C EI EI M EI EI M                 For member AB For member BC For member CD 11
  12. 12. 0 BCBA MM ( ) (2 ) 80 0 5 0 6 4 4 8 3 0 B B C B C EI E I I E E I                            0 CDCB MM 5 ( 2 ) 80 ( ) 4 3 80 0 4 6 0B C C B C EI I I EI E E                           1 2 137.1 B C EI     12
  13. 13. 137.1 B C EI     22.9 . 45.7 . 45.7 . 45.7 . 45.7 . 22.9 . AB BA BC CB CD DC M kN m M kN m M kN m M kN m M kN m M kN m          13
  14. 14. Using Slope – Deflection method determine the moments at points A, B, C,D 14
  15. 15. 2 0 3 0 ( ) 12 12 6 4 2 0 2 3 0 (2 ) 12 12 6 4 AB B B BA B B EI EI M EI EI M                                 2 2 2 0 0 (2 ) 15 15 2 2 2 0 0 ( 2 ) 15 15 BC B C B C CB B C B C EI EI M EI EI M                       2 2 0 3 0 (2 ) 18 18 9 6 2 0 3 0 ( ) 18 18 9 6 CD C C DC C C EI EI M EI EI M                             For member AB For member BC For member CD 15
  16. 16. 0 BCBA MM 0.34 0.0416 0 2 (2 0.607 0.134 0.0416 0 0.267 0.134 0 ) (2 ) 6 4 15 B B B C C B B C EI EI                                  0 CDCB MM 0.134 0.49 0.134 0.267 0.22 0.0 2 ( 2 ) (2 ) 1 0.0185 0 5 5 1 0 6 8 0 9 B B B C C C C C EI EI                                   1 2 16
  17. 17. 40 12 18 40 CD DCAB BA A DV M V MM M      ( ) (2 ) ( ) (2 ) 6 4 6 4 9 6 9 6 40 12 18 3 3 0.009 4 960 0.444 0.21 7 162 6 0 2 B B C C B C C B EI EI EI EI EI E EI I EI                                  3 40 0A DV V  Q 17
  18. 18. 438. From 81 1, 2, 136.18 6 54 3 7 .7 B C EI EI EI       208 . 135 . 135 . 94.8 . 94.8 . 110 . AB BA BC CB CD DC M k ft M k ft M k ft M k ft M k ft M k ft           18
  19. 19. 19

×