SlideShare a Scribd company logo
1 of 177
Download to read offline
Structural Analysis
Superposition
II
Eng. Khaled El-Aswany
Structural Analysis
Superposition
II
Eng. Khaled El-Aswany
(1.Introduction)
12 t 12 t
12 t
4 t
4 t
12t
32mt
S.F.D
B.M.D
8t
2 t/m
4 m
A B
4 m
2 t/m
4 m
A B
4 m
8t
4 m
A B
4 m
8 t
8t 4t
8 t 8 t
16mt
4 t 4 t
4 t 4 t
4 t
𝒘𝑳𝟐
𝟖
𝑷𝑳
𝟒
=
𝟖𝒙𝟖
𝟒
=16
16mt
2x8=16
Structural Analysis
Superposition
II
Eng. Khaled El-Aswany
(2.Rules)
S.F.D.
𝑷
𝟐
𝑷
𝟐
𝑷
𝟐
𝑷
𝟐
𝑷𝒃
𝑳
𝑷𝒃
𝑳
𝑷𝒂
𝑳
𝑷𝒂
𝑳
𝒘𝑳
𝟐
𝒘𝑳
𝟐
A B
a b
L
𝑷𝑳
𝟒
L
A B
w t/m
𝒘𝑳𝟐
𝟖
B.M.D
P t
𝑷𝒂𝒃
𝑳
P t
L/2
A B
L/2
𝑷
𝟐
𝑷
𝟐
𝒘𝒍
𝟐
𝒘𝒍
𝟐
𝑷𝒃
𝑳
𝑷𝒂
𝑳
wL
𝑷𝒂
B.M.D
b a
P 𝑷
P t
A B
P t
a
𝑷𝒂
a
L
A B
𝑷𝒂
L
L/2
A B
M
L/2
𝑴
𝟐
𝑴
𝟐
P t
P t
𝑴
𝑳
𝑴
𝑳
Structural Analysis
Superposition
II
Eng. Khaled El-Aswany
(3.Examples)
2 t/m
4 t
3 m
A
3 m
2 t/m
3 m
A
3 m
A B
6m 2m
2m
4 t
𝟔
𝟖
A B
8 mt
6m 2m
2m
2 t/m
4 t
A B
8 mt
6m 2m
2m
A B
6m 2m
2m
2 t/m
𝟖 𝟒
𝟖
𝟏𝟐
𝟐 𝟏
𝟑
4 t
3 m
A
3 m
𝟏𝟐
36
36
𝟗
=
A B
4m 2m
2m
8 t 4 t
A B
4m 2m
2m
8 t
A B
4m 2m
2m
4 t
A B
4m 2m
2m
8 t 4 t
A B
4m 2m
2m
4 t 4 t
A B
4m 2m
2m
4 t
𝟏𝟐 𝟔
𝟔
𝟖 𝟖
𝟐
𝟒
𝟏𝟒
𝟏𝟎
𝟐
Structural Analysis
Superposition
II
Eng. Khaled El-Aswany
(4.Frames)
4t
A D
B C
2m 2m
1m
2m
2m
6t
2t/m
8t
2m 2m
0
2m 2m
0
2t/m
𝑷𝑳
𝟒
=8
𝒘𝑳𝟐
𝟖
=4
3t
6t 𝟔
2m 2m
1
0
4t
2m
2m
4t
𝟏𝟔
𝟖
𝟏𝟔
𝟏𝟔
𝟖
𝟖
𝟏𝟔
𝟖
2m
2m
3t
3t
𝟏𝟐
𝟏𝟐
𝟏𝟐
𝟏𝟐
8mt
A D
B C
8m
3m
3m
2t
4t
2m
8mt
2t
4t
0
𝟖
𝟖
𝟖
4t
𝟐𝟒
𝟐𝟒
0
𝟒
𝟒
𝟒
𝟒
𝟒
𝟒
Structural Analysis
Three Moment Equation
II
Eng. Khaled El-Aswany
Structural Analysis
Three Moment Equation
II
(Introduction)
Eng. Khaled El-Aswany
2 t/m
6m
A B
6t
2m
C
2m
I1 I2
MA (
𝐋𝟏
𝐈
) + 2 MB (
𝐋𝟏
𝐈
+
𝐋𝟐
𝐈
) + MC (
𝐋𝟐
𝐈
) = -6 (
𝐑𝐛𝟏
𝐈
+
𝐑𝐛𝟐
𝐈
)
MA = MB = MC =
MA (
𝐋𝟏
𝐈𝟏
) + 2 MB (
𝐋𝟏
𝐈𝟏
+
𝐋𝟐
𝐈𝟐
) + MC (
𝐋𝟐
𝐈𝟐
) = -6 (
𝐑𝐛𝟏
𝐈𝟏
+
𝐑𝐛𝟐
𝐈𝟐
)
0 ?? 0
IF ( I ) is constant: 2 t/m
6m
A B
6t
2m
C
2m
I I
MA (L1) + 2 MB (L1 + L2) + MC (L2) = -6 (𝐑𝐛𝟏 + 𝐑𝐛𝟐)
Structural Analysis
Three Moment Equation
II
(Elastic Reactions)
Eng. Khaled El-Aswany
2 t/m
6m
A B
6t
2m
C
2m
I1 I2
MA (
𝐋𝟏
𝐈
) + 2 MB (
𝐋𝟏
𝐈
+
𝐋𝟐
𝐈
) + MC (
𝐋𝟐
𝐈
) = -6 (
𝐑𝐛𝟏
𝐈
+
𝐑𝐛𝟐
𝐈
)
MA = MB = MC =
MA (
𝐋𝟏
𝐈𝟏
) + 2 MB (
𝐋𝟏
𝐈𝟏
+
𝐋𝟐
𝐈𝟐
) + MC (
𝐋𝟐
𝐈𝟐
) = -6 (
𝐑𝐛𝟏
𝐈𝟏
+
𝐑𝐛𝟐
𝐈𝟐
)
0 ?? 0
IF ( I ) is constant:
2 t/m
6m
A B
6t
2m
C
2m
I I
MA (L1) + 2 MB (L1 + L2) + MC (L2) = -6 (𝐑𝐛𝟏 + 𝐑𝐛𝟐)
𝑀
6
(2𝑥‫البعيدة‬ + ‫)القريبة‬
A B
a b
L
𝑷𝑳
𝟒
L
A B
w t/m
𝒘𝑳𝟐
𝟖
B.M.D
P t
P t
L/2
A B
L/2
Elastic
Reactions
𝐴 =
1
2
𝑴𝑳
A=
2
3
𝑴𝑳 𝐴2 =
1
2
𝑴𝑏
𝟐
𝟑
b
𝟏
𝟑
b
𝟐
𝟑
a
𝟏
𝟑
a
𝐴1 =
1
2
𝑴𝑎
Pa
B.M.D
Elastic
Reactions
P t
a
A B
b
P t
a
Pa
A B
a b
L
M
𝑀𝑏
𝐿
𝑀𝑎
𝐿
𝐴2𝑥
2
3
𝑏
1
2
𝐴
1
2
𝐴
1
2
𝐴
1
2
𝐴
1
2
𝐴
1
2
𝐴
+𝐴1𝑥(𝑏 +
1
3
𝑎)
L
𝑀
6
(2𝑥‫البعيدة‬ + ‫)القريبة‬
𝐴1𝑥
2
3
𝑎 +𝐴2𝑥(𝑎 +
1
3
𝑏)
L
𝑷𝒂𝒃
𝑳
A=(
𝑏+𝐿
2
)𝑴
𝑀
𝐿
𝑀
𝐿
𝐴1
𝐴2
𝟐
𝟑
a
𝟏
𝟑
a 𝟐
𝟑
b
𝟏
𝟑
b
A2x
2
3
b A1x(b +
1
3
a)
L
𝐴2 − 𝐴1 − 𝑅1
𝑶𝑹 𝑶𝑹
Structural Analysis
Three Moment Equation
II
(Example1)
Eng. Khaled El-Aswany
𝟐
𝟑
𝑴𝑳 = 𝟑𝟔
6t
2m 2m
B C
2 t/m
6m
A B
𝒘𝑳𝟐
𝟖
=9
𝑷𝑳
𝟒
= 𝟔
6t
18 t
18 t 1
2
𝑴𝑳 = 12
6t
MA = 0
I 2I
2 t/m
6m
A B
6t
2m
C
2m
MB = MC =
?? 0
6t
2m 2m
B C
2 t/m
6m
A B
MA (
𝐋𝟏
𝐈𝟏
) + 2 MB (
𝐋𝟏
𝐈𝟏
+
𝐋𝟐
𝐈𝟐
) + MC (
𝐋𝟐
𝐈𝟐
) = -6 (
𝐑𝐛𝟏
𝐈𝟏
+
𝐑𝐛𝟐
𝐈𝟐
)
0 + 2 MB (
𝟔
𝟏
+
𝟒
𝟐
) + 0 = -6 (
𝟏𝟖
𝟏
+
𝟔
𝟐
)
16 MB = -126
MB = -7.875 mt
2x6-7.3125
=4.6875
𝟐𝒙𝟔𝒙𝟑 + 𝟕. 𝟖𝟕𝟓
𝟔
𝟔𝒙𝟐 + 𝟕. 𝟖𝟕𝟓 6-4.97
=1.03
7.875
7.875
S.F.D
B.M.D
7.3125
4.6875
4.97
4.97
1.03 1.03
7.875
2.06
S.F.D
B.M.D
4.97
4.97
1.03 1.03
7.875
2.06
7.875
= 7.3125
𝟒
= 𝟒. 𝟗𝟕
2x6
3m
Structural Analysis
Three Moment Equation
II
(Example 2)
Eng. Khaled El-Aswany
MA = MB = MC =
0 ?? ?? MD = 0
2 t/m
A B
9t
C
6t 6t
9mt
2m 2m 4m
4m 2m 1.5 3m
D
6t 6t
2 t/m
A
2m 4m 2m
B B
9t
C
2m 4m
𝐰𝐋𝟐
𝟖
=16
2
3
𝑴𝑳=85.33
Pa=12 Pa=12
(
4+8
2
)𝑥12=72
𝟗𝒙𝟐𝒙𝟒
𝟔
=12 𝟑
𝟔 𝟗
2.25
2m
1m
0.5
1m
42.67 42.67
36
36
20 16
C
9mt
1.5 3m
D
−2.25 −4.5
𝟐
𝟐
1 2
0 + 2 MB (8 + 6) + MC (6) = -6 (42.67+36 + 20)
28 MB + 6 MC = - 592
MB (6) +2 MC (6 + 4.5) + 0 = -6 (16- 2.25)
6 MB + 21 MC = - 82.5
1
2
MB = -21.625 mt
MC = 2.25 mt
6t 6t
2 t/m
A
2m 4m 2m
B B
9t
C
2m 4m
C
9mt
1.5 3m
D
21.625
21.625
2.25
2.25
16.7
11.3 10 1 1.5 1.5
1
10 10
21.625
2.25
1.75
16.7
1.3
11.3
7.3
6.7
12.7
18.6
7.775
1.5 1.5
4.5
4.5
Structural Analysis
Three Moment Equation
II
(Symmetry)
Eng. Khaled El-Aswany
A
W t/m
B C
L L L
D
L
E A
W t/m
B C
L L L
D
𝑀𝑎=?? 𝑀𝑏=?? 𝑀𝑐=?? 𝑀𝑎=?? 𝑀𝑏=??
𝑀𝑒= 𝑀𝑎
𝑀𝑑= 𝑀𝑏
3 Unknowns 2 Unknowns
A
W t/m
B C
L L
𝑀𝑎=?? 𝑀𝑏=?? 𝑀𝑐= 𝑀𝑎
2 Unknowns
A
W t/m
B
L
𝑀𝑎=?? 𝑀𝑏= 𝑀𝑎
1 Unknown
𝑀𝑐= 𝑀𝑏 𝑀𝑑= 𝑀𝑎
A
W t/m
B
L L/2
F
𝑀𝑎=?? 𝑀𝑏=?? 𝑀𝐹=??
3 Unknowns
A
W t/m
B C
L L L
D
L
E
𝑀𝑎=?? 𝑀𝑏=?? 𝑀𝑐=?? 𝑀𝑒= 𝑀𝑎
𝑀𝑑= 𝑀𝑏
3 Unknowns
A
W t/m
B C
L L
𝑀𝑎=?? 𝑀𝑏=?? 𝑀𝑐= 𝑀𝑎
2 Unknowns
A
W t/m
B
L
𝑀𝑎=?? 𝑀𝑏= 𝑀𝑎
1 Unknown
A
W t/m
B
L
𝑀𝑎=?? 𝑀𝑏= 𝑀𝑎
L
0 0
𝒘𝑳𝟐
𝟖
𝒘𝑳𝟑
𝟏𝟐
𝒘𝑳𝟑
𝟐𝟒
𝒘𝑳𝟑
𝟐𝟒
W t/m
A B
A’ B’
A B
MA’ (L1) + 2 MA (L1 + L2) + MB (L2) = -6 (𝐑𝐚𝟏 + 𝐑𝐚𝟐)
0 + 2 MA (0 + L) + MA (L) = -6 ( 0 +
𝒘𝑳𝟑
𝟐𝟒
)
3 MA L = -
wL3
4
𝑀𝑎=?? 𝑀𝑏= 𝑀𝑎
MA = -
wL2
12
0
0
MB =MA
wL2
12
wL2
12
wL2
12
wL2
12
wL2
12
A
W t/m
B C
L L L
D
𝑀𝑎=?? 𝑀𝑏=??
2 Unknowns
𝑀𝑐= 𝑀𝑏 𝑀𝑑= 𝑀𝑎
A
W t/m
B
L L/2
F
𝑀𝑎=?? 𝑀𝑏=?? 𝑀𝐹=??
3 Unknowns
W t/m
𝑀𝑎=?? 𝑀𝑏=?? 𝑀𝑐= 𝑀𝑏 𝑀𝑑= 𝑀𝑎
0
A’
0
C D
L
B
L
D’
A
L
B C D
A
W t/m
W t/m
𝒘𝑳𝟐
𝟖
𝒘𝑳𝟑
𝟏𝟐
𝒘𝑳𝟑
𝟐𝟒
𝒘𝑳𝟑
𝟐𝟒
MA’ (L1) + 2 MA (L1 + L2) + MB (L2) = -6 (𝐑𝐚𝟏 + 𝐑𝐚𝟐)
0 + 2 MA (0 + L) + MB (L) = -6 ( 0 +
𝒘𝑳𝟑
𝟐𝟒
)
0
0
MC =MB
𝒘𝑳𝟐
𝟖
𝒘𝑳𝟑
𝟏𝟐
𝒘𝑳𝟑
𝟐𝟒
𝒘𝑳𝟑
𝟐𝟒
2 MA + MB = -
𝟏
4
wL2 → 𝟏
MA (L1) + 2 MB (L1 + L2) + MC (L2) = -6 (𝐑𝐚𝟏 + 𝐑𝐚𝟐)
MA (L) + 2 MB (L+ L) + MB (L) = -6 (
𝒘𝑳𝟑
𝟐𝟒
+
𝒘𝑳𝟑
𝟐𝟒
)
MA + 5 MB = -
𝟏
2
wL2 → 𝟐
MA = -
wL2
12
MB = -
wL2
12
wL2
12
wL2
12
wL2
12
wL2
12
𝑀𝑎′=0 𝑀𝑑′=0
Structural Analysis
Three Moment Equation
II
(Settlement)
Eng. Khaled El-Aswany
2 cm
2 cm
1 cm
𝑀𝑎= 0 𝑀𝑏=?? 𝑀𝑐= 0
A B C
𝑳𝟏 𝑳𝟐
𝑀𝑎=0 𝑀𝑏=?? 𝑀𝑐=?? 𝑀𝑑=0
A B C D
𝑳𝟏 𝑳𝟐 𝑳𝟑
MA (L1) + 2 MB (L1 + L2) + MC (L2) = 6EI (
∆𝐵−∆𝐴
L1
+
∆𝐵−∆𝐶
L2
)
MA (L1) + 2 MB (L1 + L2) + MC (L2) = 6EI (
∆𝐵−∆𝐴
L1
+
∆𝐵−∆𝐶
L2
)
MB (L2) + 2 MC (L2 + L3) + MD (L3) = 6EI (
∆𝐶−∆𝐵
L2
+
∆𝐶−∆𝐷
L3
)
If I constant:
EI : Given
I I
If I variable: MA (
L1
I1
) + 2 MB (
L1
I1
+
L2
I2
) + MC (
L2
I2
) = 6EI (
∆𝐵−∆𝐴
L1
+
∆𝐵−∆𝐶
L2
)
2 Equations
𝑀𝑎= 0 𝑀𝑏=?? 𝑀𝑐=?? 𝑀𝑑= 0
2 cm
𝟔𝒎 𝟒𝒎 𝟔𝒎
A B C D
2 t/m 2 t/m
A B C D
𝟔𝒎 𝟒𝒎 𝟔𝒎
MA (L1) + 2 MB (L1 + L2) + MC (L2) = 6EI (
∆𝐵−∆𝐴
L1
+
∆𝐵−∆𝐶
L2
)
MB (L2) + 2 MC (L2 + L3) + MD (L3) = 6EI (
∆𝐶−∆𝐵
L2
+
∆𝐶−∆𝐷
L3
)
EI = 5000 tm2
2 MB (6 + 4) + MC (4) = 6x5000 (
0.02
6
+
0.02
4
)
MB (4) + 2 MC (4 + 6) + MD (6) = 6x5000 (
0−0.02
4
+ 0)
20 MB + 4 MC = 250 → 1
4 MB + 20 MC = -150 → 2
MB = 14.58 mt
MC = -10.42 mt
𝑀𝑎= 0 𝑀𝑏=?? 𝑀𝑐= 𝑀𝑏 𝑀𝑑= 0
2 t/m
A B
𝟔𝒎
C
𝟒𝒎
B
𝒘𝑳𝟐
𝟖
= 𝟗
2
3
𝑴𝑳=36 18
18 0
MA (L1) + 2 MB (L1 + L2) + MC (L2) = -6 (𝑅𝑏1+𝑅𝑏2)
2 MB (6 + 4) + MC (4) = -6 (18 + 0)
2 MB (6 + 4) + MB (4) = -6 (18 + 0)
MB = Mc = - 4.5 mt
MB (tot) = - 4.5 +14.58 = 10.08 mt
Mc (tot) = - 4.5 -10.42 = -14.92 mt
2 t/m
A B
𝟔𝒎
C
𝟒𝒎
B
2 t/m
A B
𝟔𝒎
10.08 14.92 14.92
10.08
4.32
7.68 6.25
6.25 8.49 3.51
10.08
14.92
𝑀𝑎= 0 𝑀𝑏=?? 𝑀𝑐=?? 𝑀𝑑= 0
2 cm
𝟔𝒎 𝟒𝒎 𝟔𝒎
A B C D
2 t/m 2 t/m
A B C D
𝟔𝒎 𝟒𝒎 𝟔𝒎
MA (L1) + 2 MB (L1 + L2) + MC (L2) = 6EI (
∆𝐵−∆𝐴
L1
+
∆𝐵−∆𝐶
L2
)
MB (L2) + 2 MC (L2 + L3) + MD (L3) = 6EI (
∆𝐶−∆𝐵
L2
+
∆𝐶−∆𝐷
L3
)
EI = 5000 tm2
2 MB (6 + 4) + MC (4) = 6x5000 (
0.02
6
+
0.02
4
)
MB (4) + 2 MC (4 + 6) + MD (6) = 6x5000 (
0−0.02
4
+ 0)
20 MB + 4 MC = 250 → 1
4 MB + 20 MC = -150 → 2
MB = 14.58 mt
MC = -10.42 mt
𝑀𝑎= 0 𝑀𝑏=?? 𝑀𝑐= 𝑀𝑏 𝑀𝑑= 0
2 t/m
A B
𝟔𝒎
C
𝟒𝒎
B
𝒘𝑳𝟐
𝟖
= 𝟗
2
3
𝑴𝑳=36 18
18 0
MA (L1) + 2 MB (L1 + L2) + MC (L2) = -6 (𝑅𝑏1+𝑅𝑏2)
2 MB (6 + 4) + MC (4) = -6 (18 + 0)
2 MB (6 + 4) + MB (4) = -6 (18 + 0)
MB = Mc = - 4.5 mt
MB (tot) = - 4.5 +14.58 = 10.08 mt
Mc (tot) = - 4.5 -10.42 = -14.92 mt
A B C D
Structural Analysis
Consistent Deformations
II
Eng. Khaled El-Aswany
Structural Analysis
Consistent Deformations
II
Eng. Khaled El-Aswany
(Beams)
(Once)
A
2 t/m
B
6t
2m
6m
MA
XA
YA YB
A
2 t/m
B
6t
2m
6m
12 mt
9 mt
A
2 t/m
B
6t
2m
6m
M.S.
A B
1 mt
Mo
1 mt
M1
δ10 + X δ11 = 0 X =
−δ10
δ11
δ10 = ʃ
𝑴𝑶
𝑴𝟏
𝒅𝒍
𝑬𝑰
=
𝟏
𝑬𝑰
ʃ 𝑴𝑶𝑴𝟏𝒅𝒍
δ11 = ʃ
𝑴𝟏
𝑴𝟏
𝒅𝒍
𝑬𝑰
=
𝟏
𝑬𝑰
ʃ 𝑴𝟏𝑴𝟏𝒅𝒍
ʃ 𝑴𝑶𝑴𝟏𝒅𝒍
9 mt
6m
1 mt
= Area x Yc
=
2
3
𝑥6𝑥9 x 0.5
Area
Yc
0.5x1=0.5
(Linear)
-
‫مستقيم‬ ‫خط‬
‫منكسر‬ ‫غير‬
ʃ 𝑴𝑶𝑴𝟏𝒅𝒍 = Area x Yc
=
1
2
𝑥6𝑥8 x 3
Area
6m
6 mt
8 mt
Yc
0.5x6=3
(Linear)
-
ʃ 𝑴𝑶𝑴𝟏𝒅𝒍 = Area x Yc
=
1
2
𝑥6𝑥8
6 mt
6m
8 mt
x 4
Area
Yc
𝟐
𝟑
𝐱𝟔 = 𝟒
+
𝟐
𝟑
𝑳
ʃ 𝑴𝑶𝑴𝟏𝒅𝒍 = Area x Yc
=
1
2
𝑥3𝑥8
8 mt
6 mt
3m 3m
+
Area
Yc
𝟐
𝟑
𝑳
𝟏
𝟑
𝑳
𝟐
𝟑
𝐱𝟔 = 𝟒
x 4
ʃ 𝑴𝑶𝑴𝟏𝒅𝒍
x 2
=
L
3
(𝐚𝐜 + 𝐛𝐝+
bc
2
+
ad
2
)
8
4
2
6
8m
8x6
=
8
3 ( + 4x2 +
𝟒𝒙𝟔
𝟐
+
𝟖𝒙𝟐
𝟐
)
8 mt
6 mt
ʃ 𝑴𝑶𝑴𝟏𝒅𝒍 =
6
3
( 8x6 + 0 + 0 + 0 )
A
2 t/m
B
6t
2m
6m
MA
XA
YA YB
A
2 t/m
B
6t
2m
6m
12 mt
9 mt
A
2 t/m
B
6t
2m
6m
M.S.
A B
1 mt
Mo
1 mt
M1
δ10 + X δ11 = 0
X =
−δ10
δ11
δ10 = ʃ
𝑴𝑶
𝑴𝟏
𝒅𝒍
𝑬𝑰
=
𝟏
𝑬𝑰
ʃ 𝑴𝑶𝑴𝟏𝒅𝒍
δ11 = ʃ
𝑴𝟏
𝑴𝟏
𝒅𝒍
𝑬𝑰
=
𝟏
𝑬𝑰
ʃ 𝑴𝟏𝑴𝟏𝒅𝒍
=
𝟏
𝑬𝑰
[-
𝟐
𝟑
x 6 x 9 x0.5 +
𝟔
𝟑
(
𝟏𝟐𝒙𝟏
𝟐
)] =
−𝟔
𝑬𝑰
=
𝟏
𝑬𝑰
[ 𝟔
𝟑
(1x1)] =
𝟐
𝑬𝑰
=
−( ൗ
−𝟔
EI)
ൗ
𝟐
EI
= 𝟑
A
2 t/m
B
6t
2m
6m
3
0
4.5 13.5
A
2 t/m
B
6t
2m
6m
12 mt
9 mt
M.S.
A B
1 mt
Mo
1 mt
M1
δ10 + X δ11 = 0
X =
−δ10
δ11
δ10
δ11
=
𝟏
𝑬𝑰
[-
𝟐
𝟑
x 6 x 9 x0.5 +
𝟔
𝟑
(
𝟏𝟐𝒙𝟏
𝟐
)] =
−𝟔
𝑬𝑰
=
𝟏
𝑬𝑰
[ 𝟔
𝟑
(1x1)] =
𝟐
𝑬𝑰
=
−( ൗ
−𝟔
EI)
ൗ
𝟐
EI
= 𝟑
A B
3
12
Structural Analysis
Consistent Deformations
II
Eng. Khaled El-Aswany
(Beams)
(Twice)
A
4 t/m
D
4t
2m 4m
2m
2m
4m
2m
6t 6t
B C
I I 2I
M.S
4 t/m
4t
6t 6t
A D
B
2m 4m
2m
2m
4m
2m
C
I I 2I
𝑀𝑜
12 12 4 8
𝑀1
1
𝑀2
1
1mt
1mt
δ10 + 𝑿𝟏 δ11 + 𝑿𝟐 δ12 = 0
δ20 + 𝑿𝟏 δ21 + 𝑿𝟐 δ22 = 0
δ10 = ʃ
𝑴𝑶
𝑴𝟏
𝒅𝒍
𝑬𝑰
=
𝟏
𝑬𝑰
[-(
4+8
2
)𝒙𝟏𝟐 x0.5 - 𝟎. 𝟓𝒙𝟒𝒙𝟒 x0.5] = −𝟒𝟎
EI
δ11 = ʃ
𝑴𝟏
𝑴𝟏
𝒅𝒍
𝑬𝑰
=
𝟏
𝑬𝑰
[ 8
3
𝒙(𝟏𝒙𝟏) = 4
EI
+
4
3
𝒙(𝟏𝒙𝟏) ]
δ12 = ʃ
𝑴𝟏
𝑴𝟐
𝒅𝒍
𝑬𝑰
=
𝟏
𝑬𝑰
[4
3
x(
1X1
2
) ] =
൘
2
3
EI
δ02 = ʃ
𝑴𝑶
𝑴𝟐
𝒅𝒍
𝑬𝑰
=
𝟏
𝑬𝑰
[ - 𝟎. 𝟓𝒙𝟒𝒙𝟒 -
𝟏
𝟐
x0.5 𝒙
2
3
𝒙𝟒𝒙𝟖 x0.5 ]=
൘
−2𝟖
3
EI
δ22 = ʃ
𝑴𝟐
𝑴𝟐
𝒅𝒍
𝑬𝑰
=
𝟏
𝑬𝑰
[ 𝒙
4
3
𝒙(𝟏𝒙𝟏) ]
4
3
𝒙(𝟏𝒙𝟏) +
1
2 = 𝟐
EI
−40
EI
+
4
EI
𝑋1 +
൘
2
3
EI
𝑋2 = 0
−40+ 4 𝑋1 +
2
3 𝑋2 = 0
4 𝑋1 +
2
3
𝑋2 = 40
൘
−28
3
EI
+ 𝑋1
൘
2
3
EI
+ 𝑋2
2
EI
= 0
−28
3
+
2
3
𝑋1+2𝑋2 = 0
2
3
𝑋1 + 2 𝑋2 =
28
3
→ 1
→ 2
𝑿𝟏 = 9.76 mt
𝑿𝟐 = 𝟏. 𝟒𝟏 𝒎𝒕
A
4 t/m
D
4t
2m 4m
2m
2m
4m
2m
6t 6t
B C
I I 2I
M.S
4 t/m
4t
6t 6t
A D
B
2m 4m
2m
2m
4m
2m
C
I I 2I
𝑀𝑜
12 12 4 8
𝑀1
1
𝑀2
1
1mt
1mt
δ10 + 𝑿𝟏 δ11 + 𝑿𝟐 δ12 = 0
δ20 + 𝑿𝟏 δ21 + 𝑿𝟐 δ22 = 0
δ10 = ʃ
𝑴𝑶
𝑴𝟏
𝒅𝒍
𝑬𝑰
=
𝟏
𝑬𝑰
[-(
4+8
2
)𝒙𝟏𝟐 x0.5 - 𝟎. 𝟓𝒙𝟒𝒙𝟒 x0.5] = −𝟒𝟎
EI
δ11 = ʃ
𝑴𝟏
𝑴𝟏
𝒅𝒍
𝑬𝑰
=
𝟏
𝑬𝑰
[ 8
3
𝒙(𝟏𝒙𝟏) = 4
EI
+
4
3
𝒙(𝟏𝒙𝟏) ]
δ12 = ʃ
𝑴𝟏
𝑴𝟐
𝒅𝒍
𝑬𝑰
=
𝟏
𝑬𝑰
[4
3
x(
1X1
2
) ] =
൘
2
3
EI
δ02 = ʃ
𝑴𝑶
𝑴𝟐
𝒅𝒍
𝑬𝑰
=
𝟏
𝑬𝑰
[ - 𝟎. 𝟓𝒙𝟒𝒙𝟒 -
𝟏
𝟐
x0.5 𝒙
2
3
𝒙𝟒𝒙𝟖 x0.5 ]=
൘
−2𝟖
3
EI
δ22 = ʃ
𝑴𝟐
𝑴𝟐
𝒅𝒍
𝑬𝑰
=
𝟏
𝑬𝑰
[ 𝒙
4
3
𝒙(𝟏𝒙𝟏) ]
4
3
𝒙(𝟏𝒙𝟏) +
1
2 = 𝟐
EI
4 𝑋1 +
2
3
𝑋2 = 40
2
3
𝑋1 + 2 𝑋2 =
28
3
→ 1
→ 2
9.76
1.41 𝑤𝑙2
8
=8
D
A B C
9.76+1.41
2
=5.58
𝑃𝐿
4
=4
1.58
1
4
𝑋9.76=2.44
3
4
𝑋9.76=7.32
12
9.56
12
4.68
𝑿𝟏 = 9.76 mt
𝑿𝟐 = 𝟏. 𝟒𝟏 𝒎𝒕
Structural Analysis
Consistent Deformations
II
Eng. Khaled El-Aswany
(Beams)
(Support movement)
δ10
𝑋1
δ11
δ10 + X1 δ11 = 0
δ10
𝑋1
δ11
δ10 + X1 δ11 = ±∆
Δ
1 𝑡
2 𝑐𝑚
3
X1 δ11 = −𝟎. 𝟎𝟐
δ11 =
𝟏
𝑬𝑰
ʃ 𝑴𝟏𝑴𝟏𝒅𝒍 =
𝟏
𝑬𝑰
(
𝟔
𝟑
( 3x3)x 2 ) =
𝟑𝟔
𝑬𝑰
X1 δ11 = ±∆
2.5𝑡 1.25 𝑡
1.25 𝑡
7.5
B.M.D.
Reactions
X1
36
𝐸𝐼
= −0.02
X1
36
4500
= −0.02
X1 = −2.5 𝑡
EI = 4500 m2t
1 𝑡
2 𝑐𝑚
3
EI = 4500 m2t
δ11 =
𝟏
𝑬𝑰
ʃ 𝑴𝟏𝑴𝟏𝒅𝒍 =
𝟏
𝑬𝑰
(
𝟔
𝟑
( 3x3)x 2 ) =
𝟑𝟔
𝑬𝑰
δ10 + X1 δ11 = ±∆
Reactions
−𝟐𝟕𝟎𝟎
𝑬𝑰
+ X1
36
𝐸𝐼
= −0.02
X1 = 72.5 𝑡
180
M.S.
M0
M1
δ10 =
𝟏
𝑬𝑰
(
−𝟐
𝟑
𝒙𝟔𝒙𝟏𝟖𝟎 x(
𝟓
𝟖
𝒙𝟑) x 2 ) =
−𝟐𝟕𝟎𝟎
𝑬𝑰
5
8
𝐿
3
8
𝐿
5
8
𝑥3
−𝟐𝟕𝟎𝟎
𝟒𝟓𝟎𝟎
+ X1
36
4500
= −0.02
72.5 𝑡 23.75𝑡
23.75𝑡
1 𝑡
2 𝑐𝑚
3
EI = 4500 m2t
δ11 =
𝟏
𝑬𝑰
ʃ 𝑴𝟏𝑴𝟏𝒅𝒍 =
𝟏
𝑬𝑰
(
𝟔
𝟑
( 3x3)x 2 ) =
𝟑𝟔
𝑬𝑰
δ10 + X1 δ11 = ±∆
B.M.D.
−𝟐𝟕𝟎𝟎
𝑬𝑰
+ X1
36
𝐸𝐼
= −0.02
X1 = 72.5 𝑡
180
M.S.
M0
M1
δ10 =
𝟏
𝑬𝑰
(
−𝟐
𝟑
𝒙𝟔𝒙𝟏𝟖𝟎 x(
𝟓
𝟖
𝒙𝟑) x 2 ) =
−𝟐𝟕𝟎𝟎
𝑬𝑰
5
8
𝐿
3
8
𝐿
5
8
𝑥3
−𝟐𝟕𝟎𝟎
𝟒𝟓𝟎𝟎
+ X1
36
4500
= −0.02
37.5
Structural Analysis
Consistent Deformations
II
Eng. Khaled El-Aswany
(Beams)
(Extra 1)
A
2 t/m
B
6t
2m 2m 2m 2m
6t
2m 2m 2m
8mt
2m
6t
4t 4t 8mt
C
1m
3I 2I
M.S.
9
8
8
4
4
𝟗
2mt
2
Mo
𝟗
1mt
1
M1
1
M2
δ11 = 1
𝐸𝐼
(
1
3
*
6
3
(1*1)) =
2
3𝐸𝐼
δ22 = 1
𝐸𝐼
(
1
3
*
6
3
(1*1)) =
2
𝐸𝐼
*
8
3
(1*1))
+(
1
2
δ12 = 1
𝐸𝐼
(
1
3
*
6
3
(
1∗1
2
)) =
1
3𝐸𝐼
δ1o = 1
𝐸𝐼
(
1
3
(-
2
3
x6x9x0.5 =
−34
3𝐸𝐼
0.5
-
2+6
2
x8x0.5)
δ2o = 1
𝐸𝐼
(
1
3
(-
2
3
x6x9x0.5-
2+6
2
x8x0.5)
+(
1
2
(
8
3
X
1𝑋2
2
+
6
3
x9x0.75
0.75
+
2
3
x(9x0.75+
9𝑋1
2
)
0.5
+
4
3
x(4x0.5+
4𝑋1
2
)
-
4
3
x(4x0.5)
0.25
-
2
3
x(9x0.25)
-
6
3
x(9x0.25+
9𝑋1
2
)) =
−17
3𝐸𝐼
δ10 + 𝒙𝟏 δ11 + 𝒙𝟐 δ12= 0
−𝟑𝟒
𝟑
+
𝟐
𝟑
𝒙𝟏 +
𝟏
𝟑
𝒙𝟐 = 0
𝟐 𝒙𝟏 + 𝒙𝟐 = 34
𝒙𝟏 + 6𝒙𝟐 = 17
𝒙𝟏= 17 𝒙𝟐 = 0
δ20 + 𝒙𝟏 δ21 + 𝒙𝟐 δ22= 0
1mt
1mt
A
2 t/m
B
6t
2m 2m 2m 2m
6t
2m 2m 2m
8mt
2m
6t
4t 4t 8mt
C
1m
3I 2I
M.S.
9
8
8
4
4
𝟗
2mt
2
Mo
𝟗
1mt
1
M1
1
M2
0.5
0.75 0.5
0.25
0
A 3I B
6t
2m 2m 2m 2m
6t
2m 2m 2m
8mt
2m
6t
4t 4t 8mt
C
1m
2I
2 t/m
A 3I
2m 2m 2m
4t 4t
2 t/m
17
8mt
B
6t
2m 2m 2m 2m
6t
2m
6t
C
1m
2I
8mt
0
𝟏𝟐. 𝟖𝟑 𝟕. 𝟏𝟕 𝟒. 𝟐𝟓
𝟒. 𝟐𝟓
17
4.66 10.34
8
2
2
6.5
3
5
8.5
1mt
1mt
Structural Analysis
Consistent Deformations
II
Eng. Khaled El-Aswany
(Frames)
(Once)
4t
A
2 t/m
D
B C
I
I
2I
4m
3m
3m
1.19
8
= 4 – 3 = 1
R = U – E
1.19
8
4t
2 t/m
A D
B C
I
I
2I
4m
3m
3m
M.S.
9
6
Mo
1
1t
4
4
M1
δ10
δ11
=
𝟏
𝑬𝑰
ʃ 𝑴𝟎𝑴𝟏𝒅𝒍
=
𝟏
𝑬𝑰
ʃ 𝑴𝟏𝑴𝟏𝒅𝒍
=
𝟏
𝑬𝑰
[- x
𝟐
𝟑
x 6 x 9 x4
- =
−𝟏𝟎𝟖
𝑬𝑰
4 4
𝟏
𝟐
x
𝟏
𝟐
x 6 x 6 x4 ]
𝟏
𝟐
=
𝟏
𝑬𝑰
[
𝟒
𝟑
x (4x4)
+ =
𝟗𝟎.𝟔𝟕
𝑬𝑰
x 𝟒 x 6 x4 ]
𝟏
𝟐
x2
𝑿𝟏 =
− δ10
δ11
=
−( − 108/𝐸𝐼)
90.67/𝐸𝐼
= 1.19
𝑀𝑓 = 𝑀0 + 𝑋1 𝑀1
Mf
𝑀𝑓 = 0 + 1.19 x (-4) = -4.76
4.76 4.76
4.76
4.76
10.24
Structural Analysis
Consistent Deformations
II
Eng. Khaled El-Aswany
(Frames)
(Twice)
8t
A
2 t/m
D
B C
2I
3I
I
6m
3m
3m
2m
4t
3m
XA
YA
XD
YD
=5– 3 = 2
R = U – E
MA
8t
A
2 t/m
D
B C
2I
3I
I
6m
3m
3m
2m
4t
3m
M.S.
M0
12
9
16
12
M1
1t
1t
3
3
6
6
M2
1mt
0
δ10 =
𝟏
𝑬𝑰
[ x
3
3
x( 12 x 3)
+
=
𝟐𝟒𝟎
𝑬𝑰
𝟏
𝟐
6
3
x(16x6+12x3+
16x3
2
+
12x6
2
)
X4.5 ]
- 2
3
x6x9
δ11 =
𝟏
𝑬𝑰
[ x
3
3
x( 3 x 3)
+
=
𝟏𝟓𝟒.𝟓
𝑬𝑰
𝟏
𝟐
6
3
x(6x6+3x3+
6x3
2
𝐱𝟐)
+ x
6
3
x( 6 x 6) ]
𝟏
𝟑
δ12 =
𝟏
𝑬𝑰
[ x
1
2
x6x6
+ =
𝟐𝟏
𝑬𝑰
𝟏
𝟑
X 1
6
3
x(6x1+
3x1
2
) ]
1
1
1
δ20 =
𝟏
𝑬𝑰
[
=
𝟐𝟔
𝑬𝑰
6
3
x(16x1+12x0+
16x0
2
+
12x1
2
)
X0.5 ]
- 2
3
x6x9
δ22 =
𝟏
𝑬𝑰
[ x (𝟔𝒙𝟏)
=
𝟒
𝑬𝑰
𝟏
𝟑
+
6
3
x( 1x1) ]
x 𝟏
8t
A
2 t/m
D
B C
2I
3I
I
6m
3m
3m
2m
4t
3m
YA
XD
YD
=5– 3 = 2
R = U – E
8t
A
2 t/m
D
B C
2I
3I
I
6m
3m
3m
2m
4t
3m
M.S.
M0
12
9
16
12
M1
1t
1t
3
3
6
6
M2
1mt
0
δ10 =
𝟐𝟒𝟎
𝑬𝑰
δ11
=
𝟏𝟓𝟒.𝟓
𝑬𝑰
δ12
=
𝟐𝟏
𝑬𝑰
1
1
1
δ20 =
𝟐𝟔
𝑬𝑰
δ22
=
𝟒
𝑬𝑰
δ10 + 𝑿𝟏 δ11 + 𝑿𝟐 δ12 = 0
δ20 + 𝑿𝟏 δ21 + 𝑿𝟐 δ22 = 0
𝑿𝟏 = -2.34 mt
𝑿𝟐 = 𝟓. 𝟕𝟖 𝒎𝒕
154.5 𝑋1 + 21 𝑋2 = -240
21 𝑋1 + 4 𝑋2 = −26
→ 1
→ 2
MF
𝑀𝑓 = 𝑀0 + 𝑋1 𝑀1 + 𝑋2 𝑀2
𝑀𝑓 = 𝑀0 -2.34 𝑀1 + 5.78 𝑀2
𝑀𝑓 = (−16) -2.34 (−6) + 5.78 (−1) = -7.74
4.98
8.26
5.78
16
4.98
7.74
2.34
5.78
Structural Analysis
Consistent Deformations
II
Eng. Khaled El-Aswany
(Frames)
(Symmetry)
= 5 – 3 = 2
R = U – E
2 t/m
A
B
D
C
4m
4m
2 t/m
4m
0
8 8
8
= 6 – 3 = 3
R = U – E
2 t/m
A
B
D
C
8m
4m
= 5 – 3 = 2
R = U – E
2 t/m
A
B
4m
4m
2 t/m
A
B
4m
4m
M.S.
𝑀𝑜
16
4
16
16
𝑀1
1mt
1
1
1
1
𝑀2
1t
4
δ11 =
𝟏
𝑬𝑰
[4x1x1 + 4x1x1]=
𝟖
𝑬𝑰
δ22 =
𝟏
𝑬𝑰
[𝟒
𝟑
𝒙(𝟒𝒙𝟒)]=
𝟐𝟏.𝟑𝟑
𝑬𝑰
δ12 =
𝟏
𝑬𝑰
[−𝟏
𝟐
𝒙𝟒𝒙𝟒 𝒙𝟏]=
−𝟖
𝑬𝑰
δ20 =
𝟏
𝑬𝑰
[−𝟏
𝟐
𝒙𝟒𝒙𝟒 𝒙𝟏𝟔]=
−𝟏𝟐𝟖
𝑬𝑰
δ10 + 𝑿𝟏 δ11 + 𝑿𝟐 δ12 = 0
δ20 + 𝑿𝟏 δ21 + 𝑿𝟐 δ22 = 0
𝑿𝟏 = -7.47 mt
𝑿𝟐 = 𝟑. 𝟐 𝒎𝒕
8 𝑋1 - 8 𝑋2 = -85.33 → 1
-8 𝑋1 + 21.33 𝑋2 = 128 → 2
𝑀𝑓 = 𝑀0 + 𝑋1 𝑀1 + 𝑋2 𝑀2
𝑀𝑓2 = 16 -7.47 (1) + 3.2 (0) = 8.53
𝑀𝑓 = 𝑀0 -7.47 𝑀1 + 3.2 𝑀2
𝑀𝑓3 = 16 -7.47 (1) + 3.2 (-4) = -4.27
1
2
3 𝑀𝐹
δ10=
𝟏
𝑬𝑰
[(
1
2
x4 x 16) 𝐱𝟏 −
𝟐
𝟑
𝒙𝟒𝒙𝟒 𝒙𝟏 +𝟒𝒙𝟏𝟔 𝒙𝟏 ] =
𝟖𝟓.𝟑𝟑
𝑬𝑰
7.47
8.53
8.53
4.27
= 5 – 3 = 2
R = U – E
2 t/m
A
B
4m
4m
2 t/m
A
B
4m
4m
M.S.
𝑀𝑜
16
4
16
16
𝑀1
1mt
1
1
1
1
𝑀2
1t
4
δ11 =
𝟏
𝑬𝑰
[4x1x1 + 4x1x1]=
𝟖
𝑬𝑰
δ22 =
𝟏
𝑬𝑰
[𝟒
𝟑
𝒙(𝟒𝒙𝟒)]=
𝟐𝟏.𝟑𝟑
𝑬𝑰
δ12 =
𝟏
𝑬𝑰
[−𝟏
𝟐
𝒙𝟒𝒙𝟒 𝒙𝟏]=
−𝟖
𝑬𝑰
δ20 =
𝟏
𝑬𝑰
[−𝟏
𝟐
𝒙𝟒𝒙𝟒 𝒙𝟏𝟔]=
−𝟏𝟐𝟖
𝑬𝑰
δ10 + 𝑿𝟏 δ11 + 𝑿𝟐 δ12 = 0
δ20 + 𝑿𝟏 δ21 + 𝑿𝟐 δ22 = 0
𝑿𝟏 = -7.47 mt
𝑿𝟐 = 𝟑. 𝟐 𝒎𝒕
8 𝑋1 - 8 𝑋2 = -85.33 → 1
-8 𝑋1 + 21.33 𝑋2 = 128 → 2
𝑀𝐹
δ10=
𝟏
𝑬𝑰
[(
1
2
x4 x 16) 𝐱𝟏 −
𝟐
𝟑
𝒙𝟒𝒙𝟒 𝒙𝟏 +𝟒𝒙𝟏𝟔 𝒙𝟏 ] =
𝟖𝟓.𝟑𝟑
𝑬𝑰
7.47
8.53
8.53
4.27
8.53
8.53
4.27
1
Structural Fantasy
3
Using the consistent deformation method
Draw the B.M.D. for the shown frames.
2 t/m
A
B
D
C
3m 3m 3m 2m
2m
H
E
J
I
3m 3m 3m 2m
2m
4m
F G
8t 8t 4t
8t 8t
4t
6m
2 t/m
A
B
E
C D
4t 2t
2t
6m
3m 3m 3m
2m 3m 2m
4t
2 t/m
A
B
E
C
D
6t
6t
6m
3m 3m 3m
2m 3m 2m
3m
2
Exercise
Structural Analysis
Consistent Deformations
II
Eng. Khaled El-Aswany
(Frames)
(Support movement)
Draw B.M.D. due to the given loads
and right horizontal movement of
support A by 2 cm. EI = 20000 m2t.
6t
A
2 t/m
D
B C
4m
6m
0.92
YA
= 4 – 3 = 1
R = U – E
6.92
YD
6t
2 t/m
A D
B C
4m
6m
M.S.
Mo
24
24
9
M1
1t 1t
4
4
4
4
δ10 =
𝟏
𝑬𝑰
ʃ 𝑴𝟎𝑴𝟏𝒅𝒍
=
𝟏
𝑬𝑰
[
𝟒
𝟑
x (24x4) -
𝟐
𝟑
x 6 x 9 x4
+ =
𝟐𝟕𝟐
𝑬𝑰
𝟏
𝟐
x 6 x 24 x4 ]
δ11 =
𝟏
𝑬𝑰
ʃ 𝑴𝟏𝑴𝟏𝒅𝒍
=
𝟏
𝑬𝑰
[
𝟒
𝟑
x (4x4) + =
𝟏𝟑𝟖.𝟔𝟕
𝑬𝑰
𝟒 x 6 x4 ]
x2
δ10 + X1 δ11 = 0.02
𝟐𝟕𝟐
𝟐𝟎𝟎𝟎𝟎
+ X1
138.67
20000
= 0.02
X1 = 0.92 𝑡
Mf
3.68 27.68
27.68
3.68
15.68
Structural Analysis
Consistent Deformations
II
Eng. Khaled El-Aswany
(Trusses)
R = U - E
R = ( m + r ) - 2j
1 2 3 4
5 6 7 8 9 10 11
12 13
R = ( 13+ 3) - 2x8 = 0 (Determinate)
1 2 3 4
5 6 7 8 9 10 11
12 13
R = ( m + r ) - 2j
R = ( 13+ 4) - 2x8 = 1 (Once indeterminate)
(External)
1 2 3 4
5 6
7
8 9 10 11
12 13
R = ( m + r ) - 2j
R = ( 14+ 3) - 2x8 = 1 (Once indeterminate)
(Internal)
14
1 2 3 4
5 6
7
8 9 10 11
12 13
R = ( m + r ) - 2j
R = ( 14+ 4) - 2x8 = 2 (Twice indeterminate)
(External & Internal)
14
R = U - E
R = ( m + r ) - 2j
1 2 3 4
5 6 7 8 9 10 11
12 13
R = ( 13+ 3) - 2x8 = 0 (Determinate)
1 2 3 4
5 6 7 8 9 10 11
12 13
R = ( m + r ) - 2j
R = ( 13+ 4) - 2x8 = 1 (Once indeterminate)
(External)
1 2 3 4
5 6
7
8 9 10 11
12 13
R = ( m + r ) - 2j
R = ( 14+ 3) - 2x8 = 1 (Once indeterminate)
(Internal)
14
1 2 3 4
5 6
7
8 9 10 11
12 13
R = ( m + r ) - 2j
R = ( 14+ 4) - 2x8 = 2 (Twice indeterminate)
(External & Internal)
14
δ10 + 𝑿𝟏 δ11 = 0
A B
N0
6 6
A B
N1
1 1
δ10 =
𝟏
𝑬𝑨
ʃ 𝑵𝑶𝑵𝟏𝒅𝒍
4m
=
𝟏
𝑬𝑨
( -6 x 4 x 1
N0 N1
L
C D
C D
+ ……… + ...……)
N0 N1
L N0 N1
L
δ10 =
ΣNON1L
EA
δ11 =
ΣN1N1L
EA
Zero force members
2 members 3 members
P
Structural Analysis
Consistent Deformations
II
Eng. Khaled El-Aswany
(Trusses)
(Example 1)
R = ( m + r ) - 2j
R = ( 13+ 4) - 2x8 = 1 (Once indeterminate)
(External)
4t
4t 4t
4m 4m
4m 4m
6t
6t
𝜃
𝜃
𝜃
𝜃
𝜃
𝜃
𝜃
𝜃
3m
4t
4t 4t
4m 4m
4m 4m
1 2 3 4
5 6 7 8 9 10 11
12 13
3m
0
M.S.
R = ( m + r ) - 2j
R = ( 13+ 4) - 2x8 = 1 (Once indeterminate)
(External)
4t
4t 4t
4m 4m
4m 4m
6t
6t
0
M.S.
𝜃
𝜃
𝜃
𝜃
𝜃
𝜃
𝜃
𝜃
4𝑚
3𝑚
5𝑚
3m
4t
4t 4t
4m 4m
4m 4m
1 2 3 4
5 6 7 8 9 10 11
12 13
3m
𝜃
cos 𝜃 =
4
5
= 0.8
sin 𝜃 =
3
5
= 0.6
4
4
No
R = ( m + r ) - 2j
R = ( 13+ 4) - 2x8 = 1 (Once indeterminate)
(External)
4t
4t 4t
4m 4m
4m 4m
6t
6t
0
𝜃
𝜃
𝜃
𝜃
𝜃
𝜃
𝜃
𝜃
4𝑚
3𝑚
5𝑚
3m
4t
4t 4t
4m 4m
4m 4m
1 2 3 4
5 6 7 8 9 10 11
12 13
3m
𝜃
cos 𝜃 =
4
5
= 0.8
sin 𝜃 =
3
5
= 0.6
𝐹1
𝐹2
𝐹1sin 𝜃
𝐹1cos 𝜃
4
4
Σ𝐹𝑦 = 0
𝐹1sin 𝜃 + 6 = 0
𝐹1=
−6
sin θ
=
−6
0.6
= -10 t (𝐶𝑜𝑚𝑝𝑟𝑒𝑠𝑖𝑜𝑛)
No
Σ𝐹𝑥 = 0
𝐹1cos 𝜃 + 𝐹2 = 0
(𝑇𝑒𝑛𝑠𝑖𝑜𝑛)
−10 x0.8+ 𝐹2 = 0 𝐹2 = 8t
R = ( m + r ) - 2j
R = ( 13+ 4) - 2x8 = 1 (Once indeterminate)
(External)
4t
4t 4t
4m 4m
4m 4m
6t
6t
0
M.S.
𝜃
𝜃
𝜃
𝜃
𝜃
𝜃
𝜃
𝜃
4𝑚
3𝑚
5𝑚
3m
4t
4t 4t
4m 4m
4m 4m
1 2 3 4
5 6 7 8 9 10 11
12 13
3m
𝜃
cos 𝜃 =
4
5
= 0.8
sin 𝜃 =
3
5
= 0.6
4
4
No
10
8
8
R = ( m + r ) - 2j
R = ( 13+ 4) - 2x8 = 1 (Once indeterminate)
(External)
4t
4t 4t
4m 4m
4m 4m
6t
6t
0
M.S.
𝜃
𝜃
𝜃
𝜃
𝜃
𝜃
𝜃
𝜃
4𝑚
3𝑚
5𝑚
3m
4t
4t 4t
4m 4m
4m 4m
1 2 3 4
5 6 7 8 9 10 11
12 13
3m
𝜃
cos 𝜃 =
4
5
= 0.8
sin 𝜃 =
3
5
= 0.6
4
4
No
10
8
8
𝐹3
𝐹4 10cos𝜃
10sin𝜃
𝐹3 cos𝜃
𝐹3 sin𝜃
Σ𝐹𝑦 = 0
10sin 𝜃 - 4 - 𝐹3sin 𝜃 = 0
(𝑇𝑒𝑛𝑠𝑖𝑜𝑛)
Σ𝐹𝑥 = 0
𝐹3cos 𝜃 + 𝐹4 + 10cos 𝜃 = 0
(𝐶𝑜𝑚𝑝𝑒𝑟𝑠𝑖𝑜𝑛)
𝐹4 = -10.67t
𝐹3 = 3.33t
3.33cos 𝜃 + 𝐹4 + 10cos 𝜃 = 0
R = ( m + r ) - 2j
R = ( 13+ 4) - 2x8 = 1 (Once indeterminate)
(External)
4t
4t 4t
4m 4m
4m 4m
6t
6t
0
M.S.
𝜃
𝜃
𝜃
𝜃
𝜃
𝜃
𝜃
𝜃
4𝑚
3𝑚
5𝑚
3m
4t
4t 4t
4m 4m
4m 4m
1 2 3 4
5 6 7 8 9 10 11
12 13
3m
𝜃
cos 𝜃 =
4
5
= 0.8
sin 𝜃 =
3
5
= 0.6
4
4
No
10
8
8
3.33
10.67
R = ( m + r ) - 2j
R = ( 13+ 4) - 2x8 = 1 (Once indeterminate)
(External)
4t
4t 4t
4m 4m
4m 4m
6t
6t
0
M.S.
𝜃
𝜃
𝜃
𝜃
𝜃
𝜃
𝜃
𝜃
4𝑚
3𝑚
5𝑚
3m
4t
4t 4t
4m 4m
4m 4m
1 2 3 4
5 6 7 8 9 10 11
12 13
3m
𝜃
cos 𝜃 =
4
5
= 0.8
sin 𝜃 =
3
5
= 0.6
4
4
No
10
8
8
3.33
10.67
3.33
10.67
8
8
10
R = ( m + r ) - 2j
R = ( 13+ 4) - 2x8 = 1 (Once indeterminate)
(External)
4t
4t 4t
4m 4m
4m 4m
6t
6t
0
M.S.
𝜃
𝜃
𝜃
𝜃
𝜃
𝜃
𝜃
𝜃
4𝑚
3𝑚
5𝑚
3m
4t
4t 4t
4m 4m
4m 4m
1 2 3 4
5 6 7 8 9 10 11
12 13
3m
𝜃
cos 𝜃 =
4
5
= 0.8
sin 𝜃 =
3
5
= 0.6
4
4
No
8
8
3.33
3.33
8
8
4m 4m
4m 4m
3m
0
0
1t
1t
N1
10
10.67
10.67
10
1
1
1
1
R = ( m + r ) - 2j
R = ( 13+ 4) - 2x8 = 1 (Once indeterminate)
(External)
4t
4t 4t
4m 4m
4m 4m
6t
6t
0 𝜃
𝜃
𝜃
𝜃
𝜃
𝜃
𝜃
𝜃
4𝑚
3𝑚
5𝑚
3m
4t
4t 4t
4m 4m
4m 4m
1 2 3 4
5 6 7 8 9 10 11
12 13
3m
𝜃
cos 𝜃 =
4
5
= 0.8
sin 𝜃 =
3
5
= 0.6
4
4
No
-10
8
8
3.33
-10.67
3.33
−10.67
8
8
-10
4m 4m
4m 4m
3m
1t
1t
-1
-1
-1
-1
N1
Mem. L No N1 NoN1L N1N1L Nf
1 4 8 -1 -32 4 0
2 4 8 -1 -32 4 0
3 4 8 -1 -32 4 0
4 4 8 -1 -32 4 0
5 5 -10 0 0 0 -10
6 3 4 0 0 0 4
7 5 3.33 0 0 0 3.33
8 3 0 0 0 0 0
9 5 3.33 0 0 0 3.33
10 3 4 0 0 0 4
11 5 -10 0 0 0 -10
12 4 -10.67 0 0 0 -10.67
13 4 -10.67 0 0 0 -1067
-128 16
δ10 =
𝛴N
ON1L
EA
=
−128
EA
δ11 =
𝛴N1N1L
EA
=
16
EA
X1 =
−δ10
δ11
=
−(−128)/𝐸𝐴
16/EA
= 8t
Nf = N0 + X1 N1
Structural Analysis
Consistent Deformations
II
Eng. Khaled El-Aswany
(Trusses)
(Example 2)
R = ( m + r ) - 2j
R = ( 14+ 3) - 2x8 = 1 (Once indeterminate)
(Internal)
No 0
3m
4m 4m
4m
4t 6t 6t 4t
10t
10t
3m
4m 4m
4m
4t 6t 6t 4t
1 2 3
4 5 6
7 8
13
9 10 11
12 14
2A 2A 2A
𝜃
𝜃
𝜃
𝜃
𝜃
𝜃
𝜃
R = ( m + r ) - 2j
R = ( 14+ 3) - 2x8 = 1 (Once indeterminate)
(Internal)
No 0
3m
4m 4m
4m
4t 6t 6t 4t
10t
10t
3m
4m 4m
4m
4t 6t 6t 4t
1 2 3
4 5 6
7 8
13
9 10 11
12 14
2A 2A 2A
𝜃
𝜃
𝜃
𝜃
𝜃
𝜃
4
10 6
𝜃
4𝑚
3𝑚
5𝑚
cos 𝜃 =
4
5
= 0.8
sin 𝜃 =
3
5
= 0.6
R = ( m + r ) - 2j
R = ( 14+ 3) - 2x8 = 1 (Once indeterminate)
(Internal)
No
3m
4m 4m
4m
4t 6t 6t 4t
10t
10t
3m
4m 4m
4m
4t 6t 6t 4t
1 2 3
4 5 6
7 8
13
9 10 11
12 14
2A 2A 2A
𝜃
𝜃
𝜃
𝜃
𝜃
𝜃
10 6 4
𝜃
4𝑚
3𝑚
5𝑚
cos 𝜃 =
4
5
= 0.8
sin 𝜃 =
3
5
= 0.6
R = ( m + r ) - 2j
R = ( 14+ 3) - 2x8 = 1 (Once indeterminate)
(Internal)
No
3m
4m 4m
4m
4t 6t 6t 4t
10t
10t
3m
4m 4m
4m
4t 6t 6t 4t
1 2 3
4 5 6
7 8
13
9 10 11
12 14
2A 2A 2A
𝜃
𝜃
𝜃
𝜃
𝜃
𝜃
10 6
4
𝐹1
𝐹2
𝐹1sin 𝜃
𝐹1cos 𝜃
Σ𝐹𝑦 = 0
𝐹1sin 𝜃 -4 +10 = 0
𝐹1= -10 t (𝐶𝑜𝑚𝑝𝑟𝑒𝑠𝑖𝑜𝑛)
Σ𝐹𝑥 = 0
𝐹1cos 𝜃 + 𝐹2 = 0
(𝑇𝑒𝑛𝑠𝑖𝑜𝑛)
−10 x0.8+ 𝐹2 = 0 𝐹2 = 8t
𝜃
4𝑚
3𝑚
5𝑚
cos 𝜃 =
4
5
= 0.8
sin 𝜃 =
3
5
= 0.6
R = ( m + r ) - 2j
R = ( 14+ 3) - 2x8 = 1 (Once indeterminate)
(Internal)
No
3m
4m 4m
4m
4t 6t 6t 4t
10t
10t
3m
4m 4m
4m
4t 6t 6t 4t
1 2 3
4 5 6
7 8
13
9 10 11
12 14
2A 2A 2A
𝜃
𝜃
𝜃
𝜃
𝜃
𝜃
10 6 4
𝜃
4𝑚
3𝑚
5𝑚
cos 𝜃 =
4
5
= 0.8
sin 𝜃 =
3
5
= 0.6
10
8
R = ( m + r ) - 2j
R = ( 14+ 3) - 2x8 = 1 (Once indeterminate)
(Internal)
No
3m
4m 4m
4m
4t 6t 6t 4t
10t
10t
3m
4m 4m
4m
4t 6t 6t 4t
1 2 3
4 5 6
7 8
13
9 10 11
12 14
2A 2A 2A
𝜃
𝜃
𝜃
𝜃
𝜃
𝜃
10 6 4
𝜃
4𝑚
3𝑚
5𝑚
cos 𝜃 =
4
5
= 0.8
sin 𝜃 =
3
5
= 0.6
10
8
8
R = ( m + r ) - 2j
R = ( 14+ 3) - 2x8 = 1 (Once indeterminate)
(Internal)
No
3m
4m 4m
4m
4t 6t
6t
4t
10t
10t
3m
4m 4m
4m
4t 6t 6t 4t
1 2 3
4 5 6
7 8
13
9 10 11
12 14
2A 2A 2A
𝜃
𝜃
𝜃
𝜃
𝜃
𝜃
10 6 4
𝜃
4𝑚
3𝑚
5𝑚
cos 𝜃 =
4
5
= 0.8
sin 𝜃 =
3
5
= 0.6
10
8
8
𝐹3
𝐹4 10cos𝜃
10sin𝜃
𝐹3 cos𝜃
𝐹3 sin𝜃
Σ𝐹𝑦 = 0
10sin 𝜃 - 6 - 𝐹3sin 𝜃 = 0
Σ𝐹𝑥 = 0
𝐹3cos 𝜃 + 𝐹4 + 10cos 𝜃 = 0
(𝐶𝑜𝑚𝑝𝑒𝑟𝑠𝑖𝑜𝑛)
𝐹4 = - 8t
𝐹3 = 0
0 + 𝐹4 + 10cos 𝜃 = 0
R = ( m + r ) - 2j
R = ( 14+ 3) - 2x8 = 1 (Once indeterminate)
(Internal)
No
3m
4m 4m
4m
4t 6t 6t 4t
10t
10t
3m
4m 4m
4m
4t 6t 6t 4t
1 2 3
4 5 6
7 8
13
9 10 11
12 14
2A 2A 2A
𝜃
𝜃
𝜃
𝜃
𝜃
𝜃
10 6 4
𝜃
4𝑚
3𝑚
5𝑚
cos 𝜃 =
4
5
= 0.8
sin 𝜃 =
3
5
= 0.6
10
8
8
8
8
R = ( m + r ) - 2j
R = ( 14+ 3) - 2x8 = 1 (Once indeterminate)
(Internal)
No
3m
4m 4m
4m
4t 6t 6t 4t
10t
10t
3m
4m 4m
4m
4t 6t 6t 4t
1 2 3
4 5 6
7 8
13
9 10 11
12 14
2A 2A 2A
𝜃
𝜃
𝜃
𝜃
𝜃
𝜃
10 6 4
𝜃
4𝑚
3𝑚
5𝑚
cos 𝜃 =
4
5
= 0.8
sin 𝜃 =
3
5
= 0.6
10
8
8
8
8
R = ( m + r ) - 2j
R = ( 14+ 3) - 2x8 = 1 (Once indeterminate)
(Internal)
No
3m
4m 4m
4m
4t
6t 6t 4t
10t
10t
3m
4m 4m
4m
4t 6t 6t 4t
1 2 3
4 5 6
7 8
13
9 10 11
12 14
2A 2A 2A
𝜃
𝜃
𝜃
𝜃
𝜃
𝜃
10
6 4
𝜃
4𝑚
3𝑚
5𝑚
cos 𝜃 =
4
5
= 0.8
sin 𝜃 =
3
5
= 0.6
10
8
8
8
8
𝐹5
𝐹5 cos𝜃
𝐹5 sin𝜃
Σ𝐹𝑦 = 0
10 - 4 - 𝐹5sin 𝜃 = 0
Σ𝐹𝑥 = 0
𝐹5cos 𝜃 - 8 = 0
(𝑇𝑒𝑛𝑠𝑖𝑜𝑛)
𝐹5 = 10t
𝐹5 = 10t
R = ( m + r ) - 2j
R = ( 14+ 3) - 2x8 = 1 (Once indeterminate)
(Internal)
No
3m
4m 4m
4m
4t 6t 6t 4t
10t
10t
3m
4m 4m
4m
4t 6t 6t 4t
1 2 3
4 5 6
7 8
13
9 10 11
12 14
2A 2A 2A
𝜃
𝜃
𝜃
𝜃
𝜃
𝜃
-10 -6 -4
𝜃
4𝑚
3𝑚
5𝑚
cos 𝜃 =
4
5
= 0.8
sin 𝜃 =
3
5
= 0.6
-10
8
8
−8
−8
10
R = ( m + r ) - 2j
R = ( 14+ 3) - 2x8 = 1 (Once indeterminate)
(Internal)
No
3m
4m 4m
4m
4t 6t 6t 4t
10t
10t
3m
4m 4m
4m
4t 6t 6t 4t
1 2 3
4 5 6
7 8
13
9 10 11
12 14
2A 2A 2A
𝜃
𝜃
𝜃
𝜃
𝜃
𝜃
-10 -6 -4
𝜃
4𝑚
3𝑚
5𝑚
cos 𝜃 =
4
5
= 0.8
sin 𝜃 =
3
5
= 0.6
-10
8
8
−8
−8
10
3m
4m 4m
4m
0
N1
0
1t
1t
𝜃
-0.8
-0.6
𝜃
-0.8
-0.6
𝜃
1
R = ( m + r ) - 2j
R = ( 14+ 3) - 2x8 = 1 (Once indeterminate)
(Internal)
No
3m
4m 4m
4m
4t 6t 6t 4t
10t
10t
3m
4m 4m
4m
4t 6t 6t 4t
1 2 3
4 5 6
7 8
13
9 10 11
12 14
2A 2A 2A
𝜃
𝜃
𝜃
𝜃
𝜃
𝜃
-10 -6 -4
𝜃
4𝑚
3𝑚
5𝑚
cos 𝜃 =
4
5
= 0.8
sin 𝜃 =
3
5
= 0.6
-10
8
8
−8
−8
10
3m
4m 4m
4m
0
N1
0
𝜃
𝜃
𝜃
1
δ10 =
𝛴N
ON1L
EA
δ11 =
𝛴N
1N1L
EA
X1 =
−δ10
δ11
=
−(−2)/𝐸𝐴
16/EA
= 0.125t
δ10 + X1 δ11 = 0
=
1
EA
[
1t
1t
-0.8
-0.6
-0.8
-0.6
8x-0.8x4 -6x-0.6x3 +
1
2
x-8x-0.8x4]
=
−2
EA
=
1
EA
[ )0.8(2x4 +)0.6(2x3 x2+)1(2x5 x2
+
1
2
)0.8(2x4] =
16
EA
R = ( m + r ) - 2j
R = ( 14+ 3) - 2x8 = 1 (Once indeterminate)
(Internal)
No
3m
4m 4m
4m
4t 6t 6t 4t
10t
10t
3m
4m 4m
4m
4t 6t 6t 4t
1 2 3
4 5 6
7 8
13
9 10 11
12 14
2A 2A 2A
𝜃
𝜃
𝜃
𝜃
𝜃
𝜃
-10 -6 -4
𝜃
4𝑚
3𝑚
5𝑚
cos 𝜃 =
4
5
= 0.8
sin 𝜃 =
3
5
= 0.6
-10
8
8
−8
−8
10
3m
4m 4m
4m
0
N1
0
𝜃
𝜃
𝜃
1
1t
1t
-0.8
-0.6
-0.8
-0.6
Mem. L No N1 A
1 4 0 0 1
2 4 8 -0.8 1
3 4 8 0 1
4 3 -10 0 1
5 5 10 0 1
6 3 -6 -0.6 1
7 5 0 1 1
8 5 0 1 1
9 3 0 -0.6 1
10 5 -10 0 1
11 3 -4 0 1
12 4 -8 0 2
13 4 -8 -0.8 2
14 4 0 0 2
R = ( m + r ) - 2j
R = ( 14+ 3) - 2x8 = 1 (Once indeterminate)
(Internal)
No
3m
4m 4m
4m
4t 6t 6t 4t
10t
10t
3m
4m 4m
4m
4t 6t 6t 4t
1 2 3
4 5 6
7 8
13
9 10 11
12 14
2A 2A 2A
𝜃
𝜃
𝜃
𝜃
𝜃
𝜃
-10 -6 -4
𝜃
4𝑚
3𝑚
5𝑚
cos 𝜃 =
4
5
= 0.8
sin 𝜃 =
3
5
= 0.6
-10
8
8
−8
−8
10
3m
4m 4m
4m
0
N1
0
𝜃
𝜃
𝜃
1
1t
1t
-0.8
-0.6
-0.8
-0.6
Mem. L No N1 A
𝑁𝑜𝑁1𝐿
𝑨
𝑁𝟏𝑁1𝐿
𝑨
Nf
1 4 0 0 1 0 0 0
2 4 8 -0.8 1 -25.6 2.56 7.9
3 4 8 0 1 0 0 8
4 3 -10 0 1 0 0 -10
5 5 10 0 1 0 0 10
6 3 -6 -0.6 1 10.8 1.08 -6.075
7 5 0 1 1 0 5 0.125
8 5 0 1 1 0 5 0.125
9 3 0 -0.6 1 0 1.08 -0.075
10 5 -10 0 1 0 0 -10
11 3 -4 0 1 0 0 -4
12 4 -8 0 2 0 0 -8
13 4 -8 -0.8 2 12.8 1.28 -8.1
14 4 0 0 2 0 0 0
-2 16
δ10 =
−2
EA
δ11 =
16
EA
X1 = 0.125t
Structural Analysis
Consistent Deformations
II
Eng. Khaled El-Aswany
(Trusses)
(Example 3)
B
3m
4t 6t 4t
1 2
3 4 5
6 7
10
R = ( m + r ) - 2j
R = ( 10+ 4) - 2x6 = 2
(Twice indeterminate)
8
9
3m
3m
A A
3m
3m
3m
4t 6t 4t
B
7𝑡
7𝑡
0
No
-7
-7 -6 45°
-3
-3
A
3m
3m
3m
B
N1
1𝑡
0
0
1𝑡
-1
-1 A
3m
3m
3m
B
N2
1𝑡
1𝑡
0 0
0
−1
2
−1
2
−1
2
−1
2
1𝑡
δ10 + X1 δ11 + X2 δ12 = 0
δ20 + X1 δ21 + X2 δ22 = 0
δ10 = 0
δ20 =
51.94
EA
δ11 =
6
EA
δ22 =
14.49
EA
δ12 =
2.12
EA
X1 = 1.34 𝑡
X2 = −3.78 𝑡
Nf = N0 + X1 N1 + X2 N2
Nf = N0 + 1.34 N1 -3.78 N2
6 X1 + 2.12 X2 = 0 → 1
2.12 X1 + 14.49 X2 = -51.94 → 2
Mem. L No N1 N2 NoN1L NoN2L N1N1L N2N2L N1N2L Nf
1 3 0 -1 0 0 0 3 0 0 -1.34
2 3 0 -1 −1
/ 2
0 0 3 1.5 𝟑/ 𝟐 1.34
3 3 -7 0 0 0 0 0 0 0 -7
4 3 2 3 2 0 0 0 0 0 0 0 4.24
5 3 -6 0 −1
/ 2
0 𝟏𝟖/ 𝟐 0 1.5 0 -3.33
6 3 2 0 0 1 0 0 0 𝟑 𝟐 0 -3.78
7 3 2 3 2 0 1 0 𝟏𝟖 0 𝟑 𝟐 0 0.46
8 3 -7 0 −1
/ 2
0 𝟐𝟏/ 𝟐 0 1.5 0 -4.33
9 3 -3 0 0 0 0 0 0 0 -3
51.94
0 6 14.49 2.12
1
Structural Fantasy
3
2
8t
6m
A
B
𝑭𝟏 𝑭𝟐
𝑭𝟖 𝑭𝟗
𝑭𝟑 𝑭𝟒 𝑭𝟓 𝑭𝟔 𝑭𝟕
6m
6m
8t
[𝒀𝑨 = 𝟖𝒕, 𝑭𝟖 = 𝟏𝟔 𝒕]
[𝑭𝟏 = −𝟒. 𝟖𝟏𝒕, 𝑭𝟏𝟎 = 𝟑. 𝟗𝟖 𝒕]
3t
4m
A
B
𝑭𝟏 𝑭𝟐
𝑭𝟖 𝑭𝟗
𝑭𝟑 𝑭𝟒 𝑭𝟓 𝑭𝟔 𝑭𝟕
4m
3m
3m
𝑭𝟏𝟎
C
[𝑿𝑨 = 𝟒. 𝟐𝟓𝒕, 𝑭𝟔 = −𝟒. 𝟓 𝒕]
A
𝑭𝟏
𝑭𝟖
𝑭𝟏𝟔 𝑭𝟏𝟕
𝑭𝟐
𝑭𝟓
𝑭𝟗
𝑭𝟔
3m 3m
8t
4A
𝑭𝟏𝟖 𝑭𝟏𝟗
B
𝑭𝟑 𝑭𝟒
𝑭𝟕
𝑭𝟏𝟎 𝑭𝟏𝟏 𝑭𝟏𝟐 𝑭𝟏𝟑 𝑭𝟏𝟒 𝑭𝟏𝟓
3m
3m
8t
4t 4t 4t
3m 3m
[𝑭𝟏 = 𝟒. 𝟖𝟓𝒕, 𝑭𝟔 = −𝟓. 𝟎𝟓 𝒕]
2m
A B
𝑭𝟏
𝑭𝟐
𝑭𝟖
𝑭𝟔 𝑭𝟕
4m
10t
𝑭𝟑 𝑭𝟒 𝑭𝟓
1.5m
1.5m
4
Using the consistent deformation method
Find the forces in all members.
Exercise
Structural Analysis
Consistent Deformations
II
Eng. Khaled El-Aswany
(Trusses)
(Support
movement)
No load Effect
Support movements
Temperature Effects
Fabrication Errors
Support movements
A
w t/m
B
No movement:
w t/m
A
B
A B
δ10
1t
δ11
δ10 + X δ11 = 0
A
w t/m
B
Movement:
A
w t/m
B
A B
δ10
X
δ11
δ10 + X δ11 = ±∆
∆
Determine the internal forces in members for the shown truss
due to the external loads and settlement of 2 cm at support B.
3m
4m 4m
4t
A B C
3m
4m 4m
A B C
3m
4m 4m
4t
A B C
M.S.
δ10 + X δ11 = 𝟎. 𝟎𝟐
𝑬𝑨
+ X
𝑬𝑨
= 𝟎. 𝟎𝟐
EA = 10000 t
Answer
X
4t
4t 4t
4m 4m
4m 4m
6t
6t
0 𝜃
𝜃
𝜃
𝜃
𝜃
𝜃
𝜃
𝜃
3m
4
4
No -10
8
8
3.33
-10.67
3.33
−10.67
8
8
-10
4m 4m
4m 4m
3m
1t
1t
-1
-1
-1
-1
N1
Mem. L No N1 NoN1L N1N1L
1 4 8 -1 -32 4
2 4 8 -1 -32 4
3 4 8 -1 -32 4
4 4 8 -1 -32 4
5 5 -10 0 0 0
6 3 4 0 0 0
7 5 3.33 0 0 0
8 3 0 0 0 0
9 5 3.33 0 0 0
10 3 4 0 0 0
11 5 -10 0 0 0
12 4 -10.67 0 0 0
13 4 -10.67 0 0 0
-128 16
δ10 =
𝛴N
ON1L
EA
=
−128
EA
δ11 =
𝛴N1N1L
=
16
X1 =
−δ10
δ11
=
−(−128)/𝐸𝐴
16/EA
= 8t
Nf = N0 + X1 N1
Determine the internal forces in members for the shown truss due to
the external loads and right horizontal movement of 2 cm at support B.
EA = 10000 t
3m
A B
4t
4t 4t
4m 4m
4m 4m
Structural Analysis
Consistent Deformations
II
Eng. Khaled El-Aswany
(Trusses)
(Temperature)
Loads
δ10 + X1 δ11 = 0
Temperature
Temperature Effects
No load Effect
Loads & Temperature
8t
δ1t + X1 δ11 = 0 δ1t + δ10 + X1 δ11 = 0
Loads: δ10 + X1 δ11 = 0
Temp.: δ1t + 𝑿𝟏
′
δ11 = 0
Total: Xtot = X1 +𝑿𝟏
′
δ1t = Σ𝜶. ∆𝒕. 𝑵𝟏. 𝑳
δ1t = 𝜶. ∆𝒕. Σ𝑵𝟏. 𝑳
OR
δ10 + X1 δ11 + X2 δ12 = 0
δ20 + X1 δ21 + X2 δ22 = 0
δ1t + X1 δ11 + X2 δ12 = 0
δ2t + X1 δ21 + X2 δ22 = 0
δ1t + δ10 +X1 δ11 + X2 δ12 = 0
δ2t + δ20 +X1 δ21 + X2 δ22 = 0
8t
10t 10t
δ1t = Σ𝜶. ∆𝒕. 𝑵𝟏. 𝑳
δ2t = Σ𝜶. ∆𝒕. 𝑵𝟐. 𝑳
10−5
Rise (+)
Drop (−)
Tension (+)
compression (−)
ONCE
TWICE
𝜃
-1.67
Determine the internal forces in
members for the shown truss
due to the external loads and
rise of temperature 100oC.
𝛼 = 1𝑥10−5
/𝑜𝐶
8m
B
6t
6t
6m
A
Example 1
EA = 45000 t
R = ( m + r ) - 2j
R = ( 5+ 4) - 2x4= 1
(Once indeterminate)
6𝑥8 − 𝑌𝑏𝑥6 = 0
𝑌𝑏 = 8𝑡
Ʃ𝑀𝐴 = 0
𝜃
𝑆𝑖𝑛𝜃 =
8
10
𝑐𝑜𝑠𝜃 =
6
10
6m
8m
10m
8m
B
6t
6t
6m
A
6t
8t
2t
𝜃
𝜃
𝜃 𝜃
-8
-6
-6
10
No
8m
6m
N1
B
A
0
0
1t
1t
𝜃
𝜃
1.33
-1.67
1.33
1
𝜃
𝐹1 𝐹2 𝐹3
𝐹4
𝐹5
Mem. L No N1 NoN1L N1N1L N1L Nf
1 8 -6 1.333 -64 14.22 10.67 3.21
2 10 10 -1.667 -166.7 27.78 -16.67 -1.52
3 10 0 -1.667 0 27.78 -16.67 -11.52
4 8 -8 1.333 -85.33 14.22 10.67 1.21
5 6 -6 1 -36 6 6 0.91
-352 90 -6
Due to loads
δ10 + X1 δ11 = 0
δ1t + X1
’ δ11 = 0
X1 = 3.91 t
δ1t = 𝛼. ∆𝑡. 𝛴𝑁1. 𝐿
Due to temperature
δ1t = 1𝑥10−5
𝑥100𝑥 − 6 = −0.006
X1
’ = 3t
-0.006 + X1
’ 𝟗𝟎
𝟒𝟓𝟎𝟎𝟎
= 0
Xtot = X1 +𝑿𝟏
′
= 𝟔. 𝟗𝟏𝒕
Total
Nf = N0 + Xtot N1
B
3m
4t 6t 4t
1 2
3 4 5
6 7
10
R = ( m + r ) - 2j
R = ( 10+ 4) - 2x6 = 2
(Twice indeterminate)
8
9
3m
3m
A
A
3m
3m
3m
4t 6t 4t
B
7𝑡
7𝑡
0
No
-7
-7 -6 45°
-3
-3
1𝑡
A
3m
3m
3m
B
N1 0
0
1𝑡
-1
-1 A
3m
3m
3m
B
N2
1𝑡
1𝑡
0 0
0
−1
2
−1
2
−1
2
−1
2
1𝑡
δ1t + 𝑋1
′
δ11 + 𝑋2
′
δ12 = 0
δ2t + 𝑋1
′
δ21 + 𝑋2
′
δ22 = 0
δ10 = 0
δ20 =
51.94
EA
δ11 =
6
EA
δ22 =
14.49
EA
δ12 =
2.12
EA
X1 = 1.34 𝑡
X2 = −3.78 𝑡
Nf = N0 + X1t N1 + X2t N2
Nf = N0 + 1.34 N1 -3.78 N2
6
45000
𝑋1
′
+
2.12
45000
𝑋2
′
= 0.003
2.12 𝑋2
′
+ 14.49 𝑋2
′
= 0
Determine the internal forces in
members for the shown truss due
to the external loads and rise of
temperature 50oC.
𝛼 = 1𝑥10−5
/𝑜𝐶
Example 2
EA = 45000 t
Due to loads
Due to temperature
X1t = X1 +𝑿𝟏
′
= 𝟐𝟓. 𝟎𝟒𝒕
Total
δ1t = 𝛼. ∆𝑡. 𝛴𝑁1. 𝐿
δ1t = 1𝑥10−5𝑥50𝑥(−1𝑥3𝑥2) = −0.003
δ2t = 1𝑥10−5
𝑥50𝑥
−1
2
𝑥3𝑥4 + 1𝑥3 2𝑥2 = 0
X2t = X2 +𝑿𝟐
′
= −𝟕. 𝟐𝟓𝒕
𝑋1
′
= 23.7 𝑡
𝑋2
′
= −3.47𝑡
Mem. Nf
1 -25.04
2 -19.9
3 -7
4 4.24
5 -0.87
6 -7.25
7 -3
8 -1.87
9 -3
10 2.12
Structural Analysis
Consistent Deformations
II
Eng. Khaled El-Aswany
(Trusses)
(Fabrication error)
Loads
δ10 + X1 δ11 = 0
Fabricated
Fabrication errors
No load Effect
Loads & fabrication
8t
δ1f + X1 δ11 = 0 δ1f + δ10 + X1 δ11 = 0
Loads: δ10 + X1 δ11 = 0
fabrication: δ1f + 𝑿𝟏
′
δ11 = 0
Total: Xtot = X1 +𝑿𝟏
′
δ1f = Σ∆. 𝑵𝟏
OR
δ10 + X1 δ11 + X2 δ12 = 0
δ20 + X1 δ21 + X2 δ22 = 0
δ1f + X1 δ11 + X2 δ12 = 0
δ2f + X1 δ21 + X2 δ22 = 0
δ1f + δ10 +X1 δ11 + X2 δ12 = 0
δ2f + δ20 +X1 δ21 + X2 δ22 = 0
10t
Long (+)
short (−)
Tension (+)
compression (−)
ONCE
TWICE
δ1f = Σ∆. 𝑵𝟏
δ2f = Σ∆. 𝑵𝟐
8t
10t
Determine the internal forces
in members for the shown
truss due to the external loads
and fabrication error in
members F3 by (+0.5cm) and
F5 by (-1cm)..
8m
B
6t
6t
6m
A
Example 1
EA = 45000 t
R = ( m + r ) - 2j
R = ( 5+ 4) - 2x4= 1
(Once indeterminate)
𝐹1 𝐹2 𝐹3
𝐹4
𝐹5
8m
B
6t
6t
6m
A
6t
8t
2t
𝜃
𝜃
𝜃 𝜃
-8
-6
-6
10
No
𝜃
-1.67
8m
6m
N1
B
A
0
0
1t
1t
𝜃
𝜃
1.33
-1.67
1.33
1
𝜃
-352 90
Due to loads
δ10 + X1 δ11 = 0
X1 = 3.91 t
Due to Fabrication
δ1f + X1
’ δ11 = 0
X1
’ = 9.2t
-0.018 + X1
’ 𝟗𝟎
𝟒𝟓𝟎𝟎𝟎
= 0
Xtot = X1 +𝑿𝟏
′
= 𝟏𝟑. 𝟏𝒕
Total
Nf = N0 + Xtot N1
Mem. L No N1 NoN1L N1N1L Δ ΔN1 Nf
1 8 -6 1.333 -64 14.22 0 0 11.47
2 10 10 -1.667 -166.7 27.78 0 0 -11.8
3 10 0 -1.667 0 27.78 0.005 -0.008 -21.8
4 8 -8 1.333 -85.33 14.22 0 0 9.47
5 6 -6 1 -36 6 -0.01 -0.01 7.1
-0.018
Structural Analysis
Slope deflection Method
II
Eng. Khaled El-Aswany
Structural Analysis
Slope deflection Method
II
Eng. Khaled El-Aswany
(Introduction)
C
3 t/m
2I I
6m
A B
6t
2m 2m
Degree of Freedom
C
A B
Rotation (𝛼) OR (𝜃) Translation (∆)
𝛼 = 0
𝛼 ≠ 0
𝛼 = 0
∆𝑥 = 0
∆𝑦 = 0
𝛼 = 
∆𝑥 = 0
∆𝑦 = 0
𝛼 = 
∆𝑥 = 
∆𝑦 = 0
∆= 0
Beams:
[ Except settlement cases]
C
3 t/m
2I I
6m
A B
6t
2m 2m
3 t/m
6m
A B C
6t
2m 2m
B
Fixed End Moment
Rotation Moment
Sway Moment
L
A B C
L
B
L
A B C
L
B
4EI
L
αA +
2EI
L
αB
4EI
L
αB +
2EI
L
αA
𝑀𝐴𝐵
𝐹
−
6EI
L2
∆
𝑀𝐵𝐴
𝐹
MAB = MAB
F +
2EI
L
(2αA+ αB -3
∆
L
)
MAB = MAB
F +
4EI
L
αA +
2EI
L
αB −
6EI
L2 ∆
αA
αB
−
6EI
L2
∆
‫الساعة‬ ‫عقارب‬ ‫مع‬
𝑀𝐵𝐶
𝐹
𝑀𝐶𝐵
𝐹
αB
αC
4EI
L
αB +
2EI
L
αC
4EI
L
αC +
2EI
L
αB
∆
−
6EI
L2
∆ −
6EI
L2
∆
∆
Ψ
𝐾
Slope Deflection Equations:
MAB = MAB
F +
2EI
L
(2αA+ αB -3 Ψ )
MBA = MBA
F +
2EI
L
(2αB+ αA -3 Ψ )
MBC = MBC
F +
2EI
L
(2αB+ αC -3 Ψ )
MCB = MCB
F +
2EI
L
(2αC+ αB -3 Ψ )
Structural Analysis
Slope deflection Method
II
Eng. Khaled El-Aswany
(Fixed End Moment)
w t/m
L
A B
B
Pt
L/2 L/2
A
−
𝑤𝐿2
12
𝑤𝐿2
12
𝑤𝐿2
12
𝑤𝐿2
12
𝑃𝐿
8
𝑃𝐿
8
−
𝑃𝐿
8
𝑃𝐿
8
−
Pa(L−a)
L
Pa(L−a)
L
Pa(L−a)
L
Pa(L−a)
L
L
A B
Pt Pt
a
a b
−
2
9
PL
2
9
PL
2
9
PL 2
9
PL
L
A B
Pt Pt
a a a
−
Pa𝑏2
𝐿2
Pb𝑎2
𝐿2
Pa𝑏2
𝐿2
P𝑏𝑎2
𝐿2
L
A B
Pt
a b
−
𝑤𝑙2
20
𝑤𝑙2
30
𝑤𝑙2
30
L
A B
w t/m
w𝑙2
20
Mb(2a−b)
L2
Ma(2b−a)
L2
L
A B
M
a b
−
Mb(2a−b)
L2
−
Ma(2b−a)
L2
L
A B
M
a b
6x4(2x1−4)
52
6x1(2x4−1)
52
5m
A B
6mt
1m 4m
Structural Analysis
Slope deflection Method
II
Eng. Khaled El-Aswany
(Example 1)
C
3 t/m
2I I
6m
A B
6t
2m 2m
3 t/m
6m
A B C
6t
2m 2m
B
𝛼𝐴 = 0 𝛼𝐵 = ?? 𝛼𝐶 = 0
−9 9 −3 3
𝑀𝐴𝐵
𝐹
= -9 mt, 𝑀𝐵𝐴
𝐹
= 9 mt
𝑀𝐵𝐶
𝐹
= -3 mt, 𝑀𝐶𝐵
𝐹
= 3 mt
1) Unknowns
𝛼𝐵
2) Fixed End Moment
3) Relative Stiffness
𝐾𝐴𝐵 ∶ 𝐾𝐵𝐶
2𝑥2𝐸𝐼
6
:
2𝑥𝐸𝐼
4
2 ∶ 1.5
2𝐸𝐼
𝐿 𝐴𝐵
:
2𝐸𝐼
𝐿 𝐵𝐶
2
6
∶
1
4
× 6
× 2
4 ∶ 3
4) Slope deflection equations
MAB = MAB
F +
2EI
L
(2αA+ αB -3 Ψ )
MBA = MBA
F +
2EI
L
(2αB+ αA -3 Ψ )
MBC = MBC
F +
2EI
L
(2αB+ αC -3 Ψ )
MCB = MCB
F +
2EI
L
(2αC+ αB -3 Ψ )
= −9 + 4 ( 0 + αB - 0 )
= 9 + 4 ( 2αB + 0 - 0 )
= −3 + 3 ( 2αB + 0 - 0 )
= 3 + 3 ( 0 + αB - 0 )
= −9 + 4αB
= 9 + 8αB
= −3 + 6αB
= 3 + 3αB
5) Compatibility eq.
ΣMb = 0
𝑀𝐵𝐴 + 𝑀𝐵𝐶 = 0
9 + 8αB +−3 + 6αB = 0
αB = −0.4286
𝑀𝐴𝐵 = -10.71
𝑀𝐵𝐴 = 5.57
𝑀𝐵𝐶 = -5.57
𝑀𝐶𝐵 = 1.71
6) Moment values
3 t/m
6m
A B C
6t
2m 2m
B
10.71 5.57 5.57 1.71
Reactions
8.16
9.86 3.96 2.04
F.E.M.
10.71
5.57
1.71
5.57+1.71
2
= 3.64
2.36
B.M.D. 𝑤𝐿2
8
𝑃𝐿
4
=6
Structural Analysis
Slope deflection Method
II
Eng. Khaled El-Aswany
(Example 2)
3 t/m
6m
A B C
6t
2m 2m
B
𝛼𝐴 = 0 𝛼𝐵 = ??
−9 9 −3 3
𝑀𝐴𝐵
𝐹
= -9 mt, 𝑀𝐵𝐴
𝐹
= 9 mt
𝑀𝐵𝐶
𝐹
= -3 mt, 𝑀𝐶𝐵
𝐹
= 3 mt
1) Unknowns
2) Fixed End Moment
3) Relative Stiffness
𝐾𝐴𝐵 ∶ 𝐾𝐵𝐶
2𝑥2𝐸𝐼
6
:
2𝑥𝐸𝐼
4
2 ∶ 1.5
2𝐸𝐼
𝐿 𝐴𝐵
:
2𝐸𝐼
𝐿 𝐵𝐶
2
6
∶
1
4
× 6
× 2
4 ∶ 3
4) Slope deflection equations
MAB = MAB
F +
2EI
L
(2αA+ αB -3 Ψ )
MBA = MBA
F +
2EI
L
(2αB+ αA -3 Ψ )
MBC = MBC
F +
2EI
L
(2αB+ αC -3 Ψ )
MCB = MCB
F +
2EI
L
(2αC+ αB -3 Ψ )
= −9 + 4 ( 0 + αB - 0 )
= 9 + 4 ( 2αB + 0 - 0 )
= −3 + 3 ( 2αB + 0 - 0 )
= 3 + 3 ( 0 + αB - 0 )
= −9 + 4αB
= 9 + 8αB
= −3 + 6αB + 3αC
= 3 + 3αB + 6αC
5) Compatibility eq.
ΣMb = 0
𝑀𝐵𝐴 + 𝑀𝐵𝐶 = 0
9 + 8αB −3 + 6αB+3αC = 0
αB = −0.36
αC = −0.32
𝑀𝐴𝐵 = -10.44
𝑀𝐵𝐴 = 6.12
𝑀𝐵𝐶 = -6.12
𝑀𝐶𝐵 = 0
6) Moment values
3 t/m
6m
A B
10.44 6.12 6.12
Reactions
F.E.M.
𝛼𝐶 = ??
C
3 t/m
2I I
6m
A B
6t
2m 2m
𝛼𝐵 , 𝛼𝐶
𝑀𝐶𝐵 = 0
3 + 3αB+6αC = 0
3αB+6αC = -3 → 2
14αB +3αC = -6 → 1
C
6t
2m 2m
B
8.28
9.72 4.53 1.47
10.44
6.12
6.12
2
=
3.06
2.94
B.M.D. 𝑃𝐿
4
=6
𝑤𝐿2
8
Structural Analysis
Slope deflection Method
II
Eng. Khaled El-Aswany
(Modified)
3 t/m
6m
A B
Fixed End Moment
Rotation Moment
Sway Moment
L
A B
L
A B C
L
B
4EI
L
αA +
2EI
L
αB
4EI
L
αB +
2EI
L
αA
𝑀𝐴𝐵
𝐹
−
6EI
L2
∆
𝑀𝐵𝐴
𝐹
MBC =𝑀𝐵𝐶
𝐹′
+
3EI
L
(αB −
∆
L
)
MBC = 𝑀𝐵𝐶
𝐹′
+
3EI
L
αB −
3EI
L2 ∆
αA
αB
−
6EI
L2
∆
‫الساعة‬ ‫عقارب‬ ‫مع‬
𝑀𝐵𝐶
𝐹′
3EI
L
αB
∆
−
3EI
L2
∆
∆
Ψ
𝐾
Slope Deflection Equations:
MAB =𝑀𝐴𝐵
𝐹
+
2EI
L
(2αA+ αB -3 Ψ )
MBA = 𝑀𝐵𝐴
𝐹
+
2EI
L
(2αB+ αA -3 Ψ )
MBC = 𝑀𝐵𝐶
𝐹′
+
3EI
L
(αB - Ψ )
C
3 t/m
2I I
6m
A B
6t
2m 2m
C
6t
2m 2m
B
αB
C
L
B
𝑀𝐴 = ?? 𝑀𝐶 = 0
𝑀𝐵 = ??
w t/m
L
A B
−
𝑤𝐿2
12
𝑤𝐿2
12
L
A B
𝑀𝐴𝐵
𝐹
𝑀𝐵𝐴
𝐹
𝑀𝐴𝐵
𝐹′
L
A B
𝑀𝐴𝐵
𝐹 𝑀𝐵𝐴
𝐹
= − 0.5
𝑀𝐴𝐵
𝐹′
L
A B
w t/m
= −1.5
wL2
12
B
Pt
L/2 L/2
A
−
𝑃𝐿
8
𝑃𝐿
8
𝑀𝐴𝐵
𝐹′
−
𝑃𝐿
8
= 𝑥 1.5
B
Pt
L/2 L/2
A
−
Pa𝑏2
𝐿2
Pb𝑎2
𝐿2
L
A B
Pt
a b
L
A B
Pt
a b
𝑀𝐴𝐵
𝐹′
−
Pa𝑏2
𝐿2
Pb𝑎2
𝐿2
= − 0.5
𝑀𝐴𝐵
𝐹′
=
L
A B
4EI
L
αA +
2EI
L
αB
4EI
L
αB +
2EI
L
αA
αA
αB
3EI
L
αA
𝑀𝐴𝐵
𝐹′
= − 0.5
L
A B
−
6EI
L2
∆ (−
6EI
L2 ∆)
−
6EI
L2
∆ −
6EI
L2
∆
∆
L
A B
L
A B
w t/m
L
A B
−
𝑤𝐿2
12
𝑤𝐿2
12
L
A B
𝑀𝐴𝐵
𝐹
𝑀𝐵𝐴
𝐹
𝑀𝐴𝐵
𝐹′
L
A B
𝑀𝐴𝐵
𝐹 𝑀𝐵𝐴
𝐹
= − 0.5
𝑀𝐴𝐵
𝐹′
L
A B
w t/m
= −1.5
wL2
12
B
Pt
L/2 L/2
A
−
𝑃𝐿
8
𝑃𝐿
8
𝑀𝐴𝐵
𝐹′
−
𝑃𝐿
8
= 𝑥 1.5
B
Pt
L/2 L/2
A
−
Pa𝑏2
𝐿2
Pb𝑎2
𝐿2
L
A B
Pt
a b
L
A B
Pt
a b
𝑀𝐴𝐵
𝐹′
−
Pa𝑏2
𝐿2
Pb𝑎2
𝐿2
= − 0.5
6m
A B
2 t/m 6t
2m
12
−6 6 -12
6m
A B
2 t/m 6t
2m
𝑀𝐴𝐵
𝐹′
= −6 6 -12
− 0.5 ( + ) = -3
B
Structural Analysis
Slope deflection Method
II
Eng. Khaled El-Aswany
(Modified)
(Redo Example 2)
𝑀𝐴𝐵
𝐹
= -9 mt, 𝑀𝐵𝐴
𝐹
= 9 mt
𝑀𝐵𝐶
𝐹
= -4.5 mt
1) Unknowns
2) Fixed End Moment
3) Relative Stiffness
𝐾𝐴𝐵 ∶ 𝐾𝐵𝐶
4 ∶
9
2
2𝐸𝐼
𝐿 𝐴𝐵
:
3𝐸𝐼
𝐿 𝐵𝐶
2𝑥2
6
∶
3𝑥1
4
𝛼𝐵
3 t/m
6m
A B C
6t
2m 2m
B
𝛼𝐴 = 0 𝛼𝐵 = ?? 𝛼𝐶 = ??
−9 9 −4.5
F.E.M.
C
3 t/m
2I I
6m
A B
6t
2m 2m
𝑀𝐶 = 0
𝑀𝐴 = ?? 𝑀𝐵 = ??
:
8 ∶ 9
4) Slope deflection equations
= −9 + 8 ( 0 + αB - 0 )
= 9 + 8 ( 2αB + 0 - 0 )
= −4.5 + 9 ( αB - 0)
MAB = MAB
F +
2EI
L
(2αA+ αB -3 Ψ )
MBA = MBA
F +
2EI
L
(2αB+ αA -3 Ψ )
MBC = 𝑀𝐵𝐶
𝐹′
+
3EI
L
(αB - Ψ )
= −9 + 8αB
= 9 + 16αB
= −4.5 + 9αB
5) Compatibility eq.
ΣMb = 0
𝑀𝐵𝐴 + 𝑀𝐵𝐶 = 0
9 + 16αB −4.5 + 9αB = 0
αB = −0.18
𝑀𝐴𝐵 = -10.44
𝑀𝐵𝐴 = 6.12
𝑀𝐵𝐶 = -6.12
6) Moment values
6.12
3 t/m
6m
A B
10.44 6.12
Reactions C
6t
2m 2m
B
8.28
9.72 4.53 1.47
10.44
6.12
6.12
2 =
3.06
2.94
B.M.D. 𝑃𝐿
4
=6
𝑤𝐿2
8
𝑀𝐴𝐵
𝐹
= -9 mt, 𝑀𝐵𝐴
𝐹
= 9 mt
𝑀𝐵𝐶
𝐹
= -4.5 mt
1) Unknowns
2) Fixed End Moment
3) Relative Stiffness
𝐾𝐴𝐵 ∶ 𝐾𝐵𝐶
4 ∶
9
2
2𝐸𝐼
𝐿 𝐴𝐵
:
3𝐸𝐼
𝐿 𝐵𝐶
2𝑥2
6
∶
3𝑥1
4
𝛼𝐵
3 t/m
6m
A B C
6t
2m 2m
B
𝛼𝐴 = 0 𝛼𝐵 = ?? 𝛼𝐶 = ??
−9 9 −4.5
F.E.M.
C
3 t/m
2I I
6m
A B
6t
2m 2m
𝑀𝐶 = 0
𝑀𝐴 = ?? 𝑀𝐵 = ??
:
8 ∶ 9
4) Slope deflection equations
= −9 + 8 ( 0 + αB - 0 )
= 9 + 8 ( 2αB + 0 - 0 )
= −4.5 + 9 ( αB - 0)
MAB = MAB
F +
2EI
L
(2αA+ αB -3 Ψ )
MBA = MBA
F +
2EI
L
(2αB+ αA -3 Ψ )
MBC = 𝑀𝐵𝐶
𝐹′
+
3EI
L
(αB - Ψ )
= −9 + 8αB
= 9 + 16αB
= −4.5 + 9αB
5) Compatibility eq.
ΣMb = 0
𝑀𝐵𝐴 + 𝑀𝐵𝐶 = 0
9 + 16αB −4.5 + 9αB = 0
αB = −0.18
𝑀𝐴𝐵 = -10.44
𝑀𝐵𝐴 = 6.12
𝑀𝐵𝐶 = -6.12
6) Moment values
6.12
3 t/m
6m
A B
10.44 6.12
Reactions C
6t
2m 2m
B
8.28
9.72 4.53 1.47
10.44
6.12
6.12
2 =
3.06
2.94
B.M.D. 𝑃𝐿
4
=6
𝑤𝐿2
8
Type
Equation
D.O.F αA, αB , Ψ αA, Ψ
Stiffness 2EI
L
3EI
L
F.E.M.
𝑀𝐴𝐵
𝐹′
= 𝑀𝐴𝐵
𝐹
-
1
2
𝑀𝐵𝐴
𝐹
Summary
MAB = MAB
F +
2EI
L
(2αA+ αB -3 Ψ )
MBA = MBA
F +
2EI
L
(2αB+ αA -3 Ψ )
MAB = 𝑀𝐴𝐵
𝐹′
+
3EI
L
(αA - Ψ )
A B B
A
B
A
𝑀𝐴𝐵
𝐹′
A B
𝑀𝐴𝐵
𝐹
𝑀𝐵𝐴
𝐹
Structural Analysis
Slope deflection Method
II
Eng. Khaled El-Aswany
(Example 3)
𝑀𝐴𝐵
𝐹
= -9 mt, 𝑀𝐵𝐴
𝐹
= 9 mt
𝑀𝐵𝐶
𝐹
= -3 mt, 𝑀𝐶𝐵
𝐹
= 3 mt
1) Unknowns
2) Fixed End Moment
3) Relative Stiffness
𝐾𝐴𝐵 ∶ 𝐾𝐵𝐶
2𝑥2𝐸𝐼
6
:
2𝑥𝐸𝐼
4
2 ∶ 1.5
2𝐸𝐼
𝐿 𝐴𝐵
:
2𝐸𝐼
𝐿 𝐵𝐶
2
6
∶
1
4
× 6
× 2
4 ∶ 3
4) Slope deflection equations
MAB = MAB
F +
2EI
L
(2αA+ αB -3 Ψ )
MBA = MBA
F +
2EI
L
(2αB+ αA -3 Ψ )
MBC = MBC
F +
2EI
L
(2αB+ αC -3 Ψ )
MCB = MCB
F +
2EI
L
(2αC+ αB -3 Ψ )
= −9 + 4 ( 0 + αB - 0 )
= 9 + 4 ( 2αB + 0 - 0 )
= −3 + 3 ( 2αB + 0 - 0 )
= 3 + 3 ( 0 + αB - 0 )
= −9 + 4αB
= 9 + 8αB
= −3 + 6αB + 3αC
= 3 + 3αB + 6αC
5) Compatibility eq.
ΣMb = 0
𝑀𝐵𝐴 + 𝑀𝐵𝐶 = 0
9 + 8αB −3 + 6αB+3αC = 0
αB = −0.84
αC = 1.92
𝑀𝐴𝐵 = -12.36
𝑀𝐵𝐴 = 2.28
𝑀𝐵𝐶 = -2.28
𝑀𝐶𝐵 = 12
6) Moment values
12.36 2.28 2.28
Reactions
𝛼𝐵 , 𝛼𝐶
𝑀𝐶𝐵 + 𝑀𝐶𝐷 = 0
3 + 3αB+6αC −12 = 0
3αB+6αC = 9 → 2
14αB +3αC = -6 → 1
𝛼𝐴 = 0 𝛼𝐵 = ?? 𝛼𝐶 = ??
C
3 t/m
2I I
6m
A B
6t
2m 2m
6t
2m
D
3 t/m
6m
A B C
6t
2m 2m
B
−9 9 −3 3
12
−12
F.E.M.
ΣMc = 0
3 t/m
6m
A B C
6t
2m 2m
B
12 6t
2m
C D
12
6t
2m
C D
7.32
10.68 0.57 5.43
12.36
2.28
1.14
B.M.D. 𝑤𝐿2
8
6
12
Structural Analysis
Slope deflection Method
II
Eng. Khaled El-Aswany
(Example 4)
A
9t
2m
4m
2m
6t
B
1) Unknowns
𝛼𝐵 , 𝛼𝐶
2) Fixed End Moment 𝛼𝐴 = ?? 𝛼𝐵 = ?? 𝛼𝐶 = ??
C
3 t/m
B
8m
D
3I 2I
2m
2m
2m
6t
6t
2m
4m
A I
9t
2m
6t
I
3 t/m
D
C
8m
𝛼𝑑 = ??
𝑀𝐴 = 12 𝑀𝐵 = ?? 𝑀𝐶 = ?? 𝑀𝑑 = 0
−24
4 6t
6t
C
B
2m
2m
2m
3 t/m
17
−17
𝑀𝐵𝐴
𝐹′
= 4 mt
𝑀𝐵𝐶
𝐹
= -17 mt, 𝑀𝐶𝐵
𝐹
= 17 mt
𝑀𝐶𝐷
𝐹′
= -24 mt
3) Relative Stiffness
𝐾𝐴𝐵 ∶ 𝐾𝐵𝐶 ∶ 𝐾𝐶𝐷
3𝐸𝐼
𝐿 𝐴𝐵
:
2𝐸𝐼
𝐿 𝐵𝐶
:
3𝐸𝐼
𝐿 𝐶𝐷
× 4
:
:
3𝑥1
6
2𝑥3
6
3𝑥2
8
:
:
1
2
1
3
4
:
:
2 4 3
:
:
4) Slope deflection equations
= 4 + 2 ( αB - 0 )
= −17 + 4 ( 2αB + αC - 0) )
= 17 + 4 ( 2αC + αB - 0)
= −24 + 3 (αC - 0 )
MBC = 𝑀𝐵𝐶
𝐹
+
2EI
L
(2αB+ αC -3 Ψ )
MCB = 𝑀𝐶𝐵
𝐹
+
2EI
L
(2αC+ αB -3 Ψ )
MCD = 𝑀𝐶𝐷
𝐹′
+
3EI
L
(αC - Ψ)
MBA = 𝑀𝐵𝐴
𝐹′
+
3EI
L
(αB - Ψ)
= 4 + 2αB
= −17 + 8αB + 4αC
= 17 + 4αB + 8αC
= −24 + 3αC
5) Compatibility eq.
ΣMb = 0
𝑀𝐵𝐴 + 𝑀𝐵𝐶 = 0
αB = 1.2234
αC = 0.1915
𝑀𝐶𝐵 + 𝑀𝐶𝐷 = 0
4αB+11αC = 7 → 2
10αB +4αC = 13 → 1
ΣMc = 0
6) Moment Values
MBC = −6.45 𝑚𝑡
MCB = 23.43 𝑚𝑡
MCD = −23.43 𝑚𝑡
MBA = 6.45 𝑚𝑡
A
9t
2m
4m
2m
6t
B
3 t/m
D
C
8m
6.45 6t
6t
C
B
2m
2m
2m
3 t/m
23.43
6.45 23.43
Reactions
17.83
12.17
5.075
9.925 14.93 9.07
12.28
6.23
11.89
3.7
6.45
23.43
12
B.M.D.
Structural Analysis
Slope deflection Method
II
Eng. Khaled El-Aswany
(Frames)
(Sway or without sway)
Delete
✓
Can translate ?
X
Symmetry ?
Ψ
Ψ
Frame
Without Sway
Symmetry No translation
With Sway
Δ Δ
Without Sway With Sway
Delete
Structural Analysis
Slope deflection Method
II
Eng. Khaled El-Aswany
(Frames)
(Without Sway)
Delete
C
1.5 t/m
6I
I
A B
6t
3m
2m
4I
1.5I 4t
6t
F
E
D
3m
4m
1) Unknowns
𝛼𝐵 , 𝛼𝐶
12m 8m
Delete
1) Unknowns
𝛼𝐵 , 𝛼𝐶
2) Fixed End Moment I
3m
1.5I 4t
6t
E
D
3m
4m
12m 8m 2m
C
1.5 t/m
6I
A B
6t
4I F
C
B
1.5 t/m
-12
8
18
-18 -8
2m
-4.5
B C
-5.33
2.67
𝑀𝐴𝐵
𝐹
= -18 mt, 𝑀𝐵𝐴
𝐹
= 18 mt
𝑀𝐵𝐶
𝐹
= -8 mt, 𝑀𝐶𝐵
𝐹
= 8 mt
𝑀𝐵𝐷
𝐹
= -5.33 mt, 𝑀𝐷𝐵
𝐹
= 2.67 mt
ഥ
𝑀𝐶𝐸
𝐹
= -4.5 mt
Delete
I
3m
1.5I 4t
6t
E
D
3m
4m
12m 8m 2m
C
1.5 t/m
6I
A B
6t
4I F
C
B
1.5 t/m
-12
8
18
-18 -8
2m
-4.5
B C
-5.33
2.67
1) Unknowns
𝛼𝐵 , 𝛼𝐶
2) Fixed End Moment
𝑀𝐴𝐵
𝐹
= -18 mt, 𝑀𝐵𝐴
𝐹
= 18 mt
𝑀𝐵𝐶
𝐹
= -8 mt, 𝑀𝐶𝐵
𝐹
= 8 mt
𝑀𝐵𝐷
𝐹
= -5.33 mt, 𝑀𝐷𝐵
𝐹
= 2.67 mt
ഥ
𝑀𝐶𝐸
𝐹
= -4.5 mt
3) Relative Stiffness
𝐾𝐴𝐵 ∶ 𝐾𝐵𝐶 ∶ 𝐾𝐵𝐷 ∶ 𝐾𝐶𝐸
2𝑋6
12
:
2𝑋4
8
:
2𝑋1.5
6
:
3𝑋1
6
1 ∶ 1 ∶
1
2
:
1
2
2 ∶ 2 ∶ 1 : 1
Delete
I
3m
1.5I 4t
6t
E
D
3m
4m
12m 8m 2m
C
1.5 t/m
6I
A B
6t
4I F
C
B
1.5 t/m
-12
8
18
-18 -8
2m
-4.5
B C
-5.33
2.67
1) Unknowns
𝛼𝐵 , 𝛼𝐶
2) Fixed End Moment
𝑀𝐴𝐵
𝐹
= -18 mt, 𝑀𝐵𝐴
𝐹
= 18 mt
𝑀𝐵𝐶
𝐹
= -8 mt, 𝑀𝐶𝐵
𝐹
= 8 mt
𝑀𝐵𝐷
𝐹
= -5.33 mt, 𝑀𝐷𝐵
𝐹
= 2.67 mt
ഥ
𝑀𝐶𝐸
𝐹
= -4.5 mt
3) Relative Stiffness
𝐾𝐴𝐵 ∶ 𝐾𝐵𝐶 ∶ 𝐾𝐵𝐷 ∶ 𝐾𝐶𝐸
2𝑋6
12
:
2𝑋4
8
:
2𝑋1.5
6
:
3𝑋1
6
1 ∶ 1 ∶
1
2
:
1
2
2 ∶ 2 ∶ 1 : 1
4) Slope Deflection Equation
𝑀𝐴𝐵 = -18 + 2 (2𝛼𝐴 + 𝛼𝐵)
𝑀𝐵𝐴 = 18 + 2 (2𝛼𝐵 + 𝛼𝐴)
𝑀𝐵𝐶 = -8 + 2 (2𝛼𝐵 + 𝛼𝐶)
𝑀𝐶𝐵 = 8 + 2 (2𝛼𝐶 + 𝛼𝐵)
𝑀𝐵𝐷 = -5.33 + (2𝛼𝐵 + 𝛼𝐷)
𝑀𝐷𝐵 = 2.67 + (2𝛼𝐷 + 𝛼𝐵)
𝑀𝐶𝐸 = -4.5 + (𝛼𝐶)
= -18 + 2 𝛼𝐵
= 18 + 4𝛼𝐵
= -8 + 4𝛼𝐵 + 2𝛼𝐶
= 8 + 4𝛼𝐶 + 2𝛼𝐵
= -5.33 + 2𝛼𝐵
= 2.67 + 𝛼𝐵
= -4.5 + 𝛼𝐶
Delete
1) Unknowns
𝛼𝐵 , 𝛼𝐶
2) Fixed End Moment
𝑀𝐴𝐵
𝐹
= -18 mt, 𝑀𝐵𝐴
𝐹
= 18 mt
𝑀𝐵𝐶
𝐹
= -8 mt, 𝑀𝐶𝐵
𝐹
= 8 mt
𝑀𝐵𝐷
𝐹
= -5.33 mt, 𝑀𝐷𝐵
𝐹
= 2.67 mt
ഥ
𝑀𝐶𝐸
𝐹
= -4.5 mt
3) Relative Stiffness
𝐾𝐴𝐵 ∶ 𝐾𝐵𝐶 ∶ 𝐾𝐵𝐷 ∶ 𝐾𝐶𝐸
2𝑋6
12
:
2𝑋4
8
:
2𝑋1.5
6
:
3𝑋1
6
1 ∶ 1 ∶
1
2
:
1
2
2 ∶ 2 ∶ 1 : 1
4) Slope Deflection Equation
𝑀𝐴𝐵 = -18 + 2 (2𝛼𝐴 + 𝛼𝐵)
𝑀𝐵𝐴 = 18 + 2 (2𝛼𝐵 + 𝛼𝐴)
𝑀𝐵𝐶 = -8 + 2 (2𝛼𝐵 + 𝛼𝐶)
𝑀𝐶𝐵 = 8 + 2 (2𝛼𝐶 + 𝛼𝐵)
𝑀𝐵𝐷 = -5.33 + (2𝛼𝐵 + 𝛼𝐷)
𝑀𝐷𝐵 = 2.67 + (2𝛼𝐷 + 𝛼𝐵)
𝑀𝐶𝐸 = -4.5 + (𝛼𝐶)
= -18 + 2 𝛼𝐵
= 18 + 4𝛼𝐵
= -8 + 4𝛼𝐵 + 2𝛼𝐶
= 8 + 4𝛼𝐶 + 2𝛼𝐵
= -5.33 + 2𝛼𝐵
= 2.67 + 𝛼𝐵
= -4.5 + 𝛼𝐶
I
3m
1.5I 4t
6t
E
D
3m
4m
12m 8m 2m
C
1.5 t/m
6I
A B
6t
4I F
C
B
1.5 t/m
-12
8
18
-18 -8
2m
-4.5
B C
-5.33
2.67
5) Comp. equations
ΣMb = 0
𝑀𝐵𝐴 + 𝑀𝐵𝐶 + 𝑀𝐵𝐷 = 0
ΣMc = 0
𝑀𝐶𝐵 + 𝑀𝐶𝐸 + 𝑀𝐶𝐹 = 0
10𝛼𝐵 + 2𝛼𝐶 = -4.67
2𝛼𝐵 + 5𝛼𝐶 = 8.5
𝛼𝐵 = -0.87717
𝛼𝐶 = 2.05087
𝑀𝐴𝐵 = -19.75
𝑀𝐵𝐴 = 14.49
𝑀𝐵𝐶 = -7.4
𝑀𝐶𝐵 = 14.45
𝑀𝐵𝐷 = -7.09
𝑀𝐷𝐵 = 1.80
𝑀𝐶𝐸 = -2.45
6) Moments
-12
12
14.45
14.49
19.75 7.4
2.45
7.09
1.80
3m
4t
6t
E
D
3m
4m
12m 8m 2m
C
1.5 t/m
A B
6t
F
C
B
1.5 t/m
2mB C
9.44 8.56 5.12 6.88 6
1.12
4.88 2.4
1.6
19.75
14.49
7.4
14.4512
1.8
7.09
2.7
2.45
4.8
Structural Analysis
Slope deflection Method
II
Eng. Khaled El-Aswany
(Frames)
(Without Sway)
(Symmetry)
Delete 1) Unknowns
𝛼𝐵 , 𝛼𝐶 , 𝛼𝐷 , 𝛼𝐸
2) Fixed End Moment
𝛼𝐷 = - 𝛼𝐶 𝛼𝐸 = - 𝛼𝐵
3) Relative Stiffness
𝐾𝐴𝐵 ∶ 𝐾𝐵𝐶 ∶ 𝐾𝐵𝐸 ∶ 𝐾𝐶𝐷
6 ∶ 2 ∶ 2.5 : 3.75
C
3 t/m
A
B
5m
8m
2I
2I
F
E
D
5m
6 t/m
2I
I I
3I
B E
B E
C D
8m
5m
32
16
-32
-16
5m
4) Slope Deflection Equations
𝑀𝐵𝐴 = 0 + 6 (𝛼𝐵)
𝑀𝐵𝐶 = 0 + 2 (2𝛼𝐵 + 𝛼𝐶)
𝑀𝐶𝐵 = 0 + 2 (2𝛼𝐶 + 𝛼𝐵)
𝑀𝐵𝐸 = -16 + 2.5(2𝛼𝐵 + 𝛼𝐸)
𝑀𝐶𝐷 = -32 + 3.75(2𝛼𝑐 + 𝛼𝐷)
= 6𝛼𝐵
= 4𝛼𝐵 + 2𝛼𝐶
= 4𝛼𝐶 + 2𝛼𝐵
= -16 + 2.5(2𝛼𝐵 - 𝛼𝐵)
= -32 + 3.75(2𝛼𝑐 - 𝛼𝑐)
= -16 + 2.5𝛼𝐵
= -32 + 3.75𝛼𝑐
5) Compatibility Equations
ΣMb = 0 𝑀𝐵𝐴 + 𝑀𝐵𝐶 + 𝑀𝐵𝐸 = 0
ΣMc = 0 𝑀𝐶𝐵 + 𝑀𝐶𝐷 = 0
12.5𝛼𝐵 + 2𝛼𝐶 = 16
2𝛼𝐵 + 7.75𝛼𝐶 = 32
𝛼𝐵 = 0.664603
𝛼𝐶 = 3.962315
6) Moment values
𝑀𝐵𝐴 = 3.88
𝑀𝐵𝐶 = 10.51
𝑀𝐶𝐵 = 17.14
𝑀𝐵𝐸 = -14.38
𝑀𝐶𝐷 = -17.14
C
3 t/m
A
B
5m
8m
2I
2I
F
E
D
5m
𝜶𝑩 =??
𝜶𝑪 =??
6 t/m
2I
I I
3I
𝜶𝑬 =??
𝜶𝑫 =??
C
A
B
F
E
D
Structural Analysis
Slope deflection Method
II
Eng. Khaled El-Aswany
(Frames)
(With Sway)
Structural Analysis
Moment Distribution
II
Eng. Khaled El-Aswany
Structural Analysis
Moment Distribution
II
Eng. Khaled El-Aswany
(Introduction)
Introduction
1- Fixed End Moment
2- Distribution Moment
(Distribution Factor)
3- Carry over
C
3 t/m
6m
A B
6t
2m 2m
B
6t
2m 2m
C
A
6m
3 t/m
B
3
9 -3
-6
-9
Carry
over
Carry
over
D.M.
D.M.
Fixed end moment
Distribution Factor Carry over
w t/m
L
𝑤𝐿2
12
−
𝑤𝐿2
12
𝑃𝐿
8
−
𝑃𝐿
8
−
𝑃𝑎𝑏2
𝐿2
𝑃𝑏𝑎2
𝐿2
L/2
Pt
L/2
𝑤𝐿2
30
−
𝑤𝐿2
20
𝑃𝑎(𝐿 − 𝑎)
𝐿
−
𝑃𝑎(𝐿 − 𝑎)
𝐿
L
𝑀𝑎(2𝑏 − 𝑎)
𝐿2
𝑀𝑏(2𝑎 − 𝑏)
𝐿2
w t/m
L
−
𝑤𝐿2
12
𝒙𝟏. 𝟓
−
𝑃𝐿
8
𝒙𝟏. 𝟓
−
𝑃𝑎𝑏2
𝐿2
L/2
Pt
L/2
a
Pt
b
L
L
Pt Pt
a a
b
M
a b
L
Pt
a b
L
− 𝟎. 𝟓 𝐱
𝑷𝒃𝒂𝟐
𝑳𝟐
Fixed end moment
Distribution Factor
Carry over
D.F. for Joint B
KBA : KBC
C
3 t/m
6m
A B
6t
2m 2m
6t
4m
2m
D
3I 2I I
3 t/m
6m
A 3I B C
B
6t
2m 2m
2I
6t
4m
2m
D
I
C
D.F. for Joint C
KCB : KCD
KBA + KBC KBA + KBC KCB + KCD KCB + KCD
Fixed end moment
Distribution Factor
Carry over
Joint B
KBA : KBC
C
3 t/m
6m
A B
6t
2m 2m
6t
4m
2m
D
3I 2I I
3 t/m
6m
A 3I B C
B
6t
2m 2m
2I
6t
4m
2m
D
I
C
Joint C
KCB : KCD
4𝑥𝐸𝑥3
6
:
4𝑥𝐸𝑥2
4
4𝑥𝐸𝑥2
4
:
4𝑥𝐸𝑥1
6
1
2
:
1
2
1
2
:
1
6
6 : 2
𝟑
𝟒
:
𝟏
𝟒
3 : 1
1
2
1
2
+
1
2
:
1
2
1
2
+
1
2
𝟏
𝟐
:
𝟏
𝟐
L
L
K =
𝑰
𝑳
K =
𝑰
𝑳
𝒙
𝟑
𝟒
C
3 t/m
6m
A B
6t
2m 2m
3 t/m
6m
D
3I 2I 3I
K =
𝑰
𝑳
𝒙
𝟏
𝟐
L
𝑲𝑨𝑩=
𝑰
𝑳
𝑲𝑩𝑪=
𝑰
𝑳
𝒙
𝟏
𝟐
Example for Symmetry Beam:
(Symmetry)
Fixed end moment Distribution Factor
Carry over
L
A B
L
B C
D.M. D.M.
𝟏
𝟐
D.M. 𝟎
x
𝟏
𝟐
Structural Analysis
Moment Distribution
II
Eng. Khaled El-Aswany
(Beams)
(Example 1)
C
3 t/m
6m
A B
6t
2m 2m
B
6t
2m 2m
C
A
6m
3 t/m
B
3
9 -3
-9
FEM
1- Fixed End Moment
−
𝑤𝐿2
12
=
𝑤𝐿2
12
=
PL
8
=
-
PL
8
=
C
3 t/m
6m
A B
6t
2m 2m
B
6t
2m 2m
C
A
6m
3 t/m
B
3
9 -3
-9
3
9 -3
-9
FEM
A B C
𝟐/𝟓 𝟑/𝟓
D.M.
-6
-2.4
D.F.
FEM
1
-
‫نجمع‬
2
-
‫االشارة‬ ‫نغير‬
3
-
‫في‬ ‫نضرب‬
‫التوزيع‬ ‫نسب‬
Joint B
KBA : KBC
1
6
:
1
4
4 : 6
2 : 3
2
5
:
3
5
I
L
:
I
L
Distribution factors:
2- Distribution Moment
C
3 t/m
6m
A B
6t
2m 2m
B
6t
2m 2m
C
A
6m
3 t/m
B
3
9 -3
-9
3
9 -3
-9
FEM
A B C
𝟐/𝟓 𝟑/𝟓
D.M.
-6
-2.4 -3.6
D.F.
1
-
‫نجمع‬
2
-
‫االشارة‬ ‫نغير‬
3
-
‫في‬ ‫نضرب‬
‫التوزيع‬ ‫نسب‬
FEM
Joint B
KBA : KBC
1
6
:
1
4
4 : 6
2 : 3
2
5
:
3
5
I
L
:
I
L
Distribution factors:
2- Distribution Moment
C
3 t/m
6m
A B
6t
2m 2m
B
6t
2m 2m
C
A
6m
3 t/m
B
3
9 -3
-9
3
9 -3
-9
FEM
A B C
𝟐/𝟓 𝟑/𝟓
D.M. -2.4 -3.6
C.O. -1.2 -1.8
D.F.
Joint B
KBA : KBC
1
6
:
1
4
4 : 6
2 : 3
2
5
:
3
5
I
L
:
I
L
Distribution factors:
FEM
3- Carry Over
C
3 t/m
6m
A B
6t
2m 2m
B
6t
2m 2m
C
A
6m
3 t/m
B
3
9 -3
-9
3
9 -3
-9
FEM
A B C
𝟐/𝟓 𝟑/𝟓
D.M. -2.4 -3.6
C.O. -1.2 -1.8
F.M. -10.2 6.6 -6.6 1.2
D.F.
A 6m
3 t/m
B B
6t
2m 2m
C
10.2 6.6 6.6 1.2
‫سالب‬
(
‫الساعة‬ ‫عقارب‬ ‫عكس‬
)
‫موجب‬
(
‫الساعة‬ ‫عقارب‬ ‫مع‬
)
Joint B
KBA : KBC
1
6
:
1
4
4 : 6
2 : 3
2
5
:
3
5
I
L
:
I
L
Distribution factors:
C
3 t/m
6m
A B
6t
2m 2m
B
6t
2m 2m
C
A
6m
3 t/m
B
3
9 -3
-9
3
9 -3
-9
FEM
A B C
𝟐/𝟓 𝟑/𝟓
D.M. -2.4 -3.6
C.O. -1.2 -1.8
F.M. -10.2 6.6 -6.6 1.2
D.F.
A 6m
3 t/m
B B
6t
2m 2m
C
10.2 6.6 6.6 1.2
= 8.4
9.6
=4.35
1.65
C
A B
10.2
6.6
1.2
2.1
3x6x3 + 6.6 -10.2
6
6x2+6.6-1.2
4
FEM
Joint B
KBA : KBC
1
6
:
1
4
4 : 6
2 : 3
2
5
:
3
5
I
L
:
I
L
Distribution factors:
B.M.D.
Structural Analysis
Moment Distribution
II
Eng. Khaled El-Aswany
(Beams)
(Example 2)
A
6m
3 t/m
B
9 -4.5
-9
C
3 t/m
6m
A B
6t
2m 2m
B
6t
2m 2m
C
0
9 -4.5
-9
FEM
𝟖/𝟏𝟕 9/𝟏𝟕
D.F.
A B C
Joint B
KBA : KBC
1
6
:
3
16
16 : 18
8 : 9
8
17
:
9
17
1
6
:
1
4
𝑥
3
4
D.M. -2.12 -2.38
C.O. -1.06
F.M. -10.06 6.88 -6.88 0
A 6m
3 t/m
B
10.06 6.88 6.88
B
6t
2m 2m
C
9.53 8.47 1.28
4.72
C
A B
10.06
6.88
2.56
B.M.D.
Distribution factors:
I
L
:
I
L
𝑥
3
4
Structural Analysis
Moment Distribution
II
Eng. Khaled El-Aswany
(Beams)
(Example 3)
C
2 t/m
A B
8t 1t
6m
2m 2m 2m
I 2I
A
8t
2m 2m
I B C
2 t/m
B
1t
6m 2m
2I
−4 4
1t
2m
C
2 t/m
B
6m
6
−6 −2
−0.5 ( )= -8
FEM
−6 −2
6
C
2 t/m
A B
8t 1t
6m
2m 2m 2m
I 2I
A
8t
2m 2m
I B C
2 t/m
B
1t
6m 2m
2I
−4 4
C
2 t/m
B
6m 2m
C
B
1t
6m 2m
−9
2
1
1
−8
FEM
C
2 t/m
A B
8t 1t
6m
2m 2m 2m
I 2I
A
8t
2m 2m
I B C
2 t/m
B
1t
6m 2m
2I
−4 4 −8
4 -8
-4
FEM
𝟎. 𝟓 0.5
D.M.
D.F.
A B C
Joint B
KBA : KBC
1
4
:
1
4
1 : 1
1
2
:
1
2
1
4
:
2
6 𝑥
3
4
I
L
:
I
L
𝑥
3
4
2 2
C.O. 1
F.M. -3 6 -6
3 6 6
3.25 4.75 6.33
6.67
B.M.D.
A
8t
2m 2m
B C
2 t/m
B
1t
6m 2m
3.5
C
A B
3
6
2
Distribution factors:
FEM
Structural Analysis
Moment Distribution
II
Eng. Khaled El-Aswany
(Beams)
(Example 4)
C
3 t/m
10m
A B
8t
7.5m 7.5m 10m
D
I 2I I
3 t/m
10m
A I B C
B
8t
7.5m 7.5m
2I D
I
C
10m
25
−25 −15 15 0 0
Joint B
KBA : KBC
Joint C
KCB : KCD
𝐼
𝐿
:
𝐼
𝐿
1
10
:
2
15
15 : 20
𝟑
𝟕
:
𝟒
𝟕 25 −15 15 0 0
−25
15
35
:
20
35
𝐼
𝐿
:
𝐼
𝐿
2
15
:
1
10
20 : 15
𝟒
𝟕
:
𝟑
𝟕
20
35
:
15
35
3/7 4/7 4/7 3/7
−5.714 −8.55 −6.45
A B C D
FEM
D.M.1
D.F.
C.O.1
−4.286
D.M.2 2.443 1.629 1.229
1.832
-2.143 -4.275 -2.857 -3.225
C.O.2 0.916 0.814 1.221 0.614
D.M.3 −0.465
−0.349 −0.525
−0.696
C.O.3 -0.174 -0.348 -0.233 -0.263
D.M.4 0.199
0.149 0.133
C.O.4 0.075 0.066 0.099 0.05
0.1
D.M.5 −0.038
−0.028 -0.057 -0.043
F.M. -26.33 -22.32 5.69 -2.82
-5.69
22.32
22.32
26.33 5.69 2.82
3 t/m
10m
A B
8t
7.5m
B C
7.5m 10m
C D
5.69
22.32
0.851 0.851
5.11 2.89
15.4 14.6
C
A B
B.M.D.
26.33
22.32
5.69
2.82
𝑤𝑙2
8
26.33 + 22.32
2
13.175
=37.5
=24.32
𝑃𝐿
4
22.32 + 5.69
2
16
=30
=14
Distribution factors:
Reactions
Structural Analysis
Moment Distribution
II
Eng. Khaled El-Aswany
(Beams)
(Example 5 - Symmetry)
C
1 t/m
4m
A B
12m
D
9 mt
2m 4m
2m
9 mt
A B
9 mt
4m 2m
C
B
12m
1 t/m
C D
9 mt
4m
2m
−3 0
FEM
−12 12 0 3
0 -12
-3
FEM
0.8 0.2
D.F.
A B C
D.M. 9.6 2.4
Joint B
KBA : KBC
1
6
:
1
24
24 : 6
4
5
:
1
5
1
6
:
1
12
𝑥
1
2
I
L
:
I
L
𝑥
1
2
4 : 1
C.O. 4.8
F.M. 1.8 9.6 -9.6
A B
9 mt
4m 2m
C
B
12m
1 t/m
1.8 9.6 9.6 9.6
0.4
0.4 6 6
8.8
0.2
1.8
8.8
0.2
1.8
C
A B
9.6
9.6
8.4
B.M.D.
Structural Analysis
Moment Distribution
II
Eng. Khaled El-Aswany
(Beams)
(Example 6)
3 t/m
D
C
8m
-16 16
C
3 t/m
B
8m
D
3I 2I
2m
2m
2m
6t
6t
3m
3m
A I
8t
2m
6t
I
3
3m
3m
A
8t
2m
6t
B
FEM
𝑃𝐿
8
𝑥1.5 = 9
3m
3m
A
8t
2m
B
6t
6t
C
B
2m
2m
2m
−6
3m
3m
A
2m
6t
B
12
6
6t
6t
C
B
−17 17
2m
2m
2m
3 t/m
C
B
2m
2m
2m
3 t/m
𝑤𝐿2
12
= 9
−
𝑤𝐿2
12
= -9
−
𝑃𝑎(𝐿−𝑎)
𝐿
= -8
𝑃𝑎(𝐿−𝑎)
𝐿
= 8
3 t/m
6t
6t
C
3 t/m
B
8m
D
3I 2I
C
B 3I D
2I
C
8m
3 −17 17 -16 16
Joint B Joint C
KCB : KCD
𝐼
𝐿
𝑥
3
4
:
𝐼
𝐿
3 -17 17 -16 16
𝐼
𝐿
:
𝐼
𝐿
1
2
:
1
4
2
𝟎. 𝟐 𝟎. 𝟖 2/𝟑 1/𝟑
11.2 -0.667 -0.333
A B C D
FEM
D.M.1
D.F.
C.O.1
2.8
D.M.2 0.267 -3.733 -1.867
0.667
-0.333 5.6 -0.167
C.O.2 -1.867 0.133 -0.933
D.M.3 1.493
0.373 -0.044
-0.089
C.O.3 -0.044 -0.747 -0.022
D.M.4 0.036
0.009 -0.498
C.O.4 -0.249 0.018 -0.124
-0.249
D.M.5 0.199
0.05 -0.012 -0.006
F.M. -6.3 18.499 14.75
-18.499
6.3
C
A B
B.M.D.
12
6.3
18.5
14.75
2.85
13.64
Distribution factors:
2m
2m
2m
6t
6t
3m
3m
A I
8t
2m
6t
I
2m
2m
2m
3 t/m
3m
3m
A I
8t
2m
6t
I B
3
6
:
2
8
:
4
1
:
2
𝟏
𝟑
:
𝟐
𝟑
KBA : KBC
1
6
𝑥
3
4
:
3
6
1
8
:
1
2
8
:
2
4
:
1
𝟒
𝟓
:
𝟏
𝟓
6.3 18.5 14.75
18.5
6.3
12.47 11.53
12.97 17.03
3.05
8m
C D
3 t/m
6t
B C
2m
3 t/m
6t
2m
2m
3m
8t
A B
3m
2m
6t
9.56
7.375
Reactions
D
FEM
10.95
Structural Analysis
Moment Distribution
II
Eng. Khaled El-Aswany
(Beams)
(Settlement)
D
I
C
10m
1 cm
Determinate structures
Indeterminate structures
−12 −12
−3𝐸𝐼∆
𝐿2
∆
∆
∆
C
3 t/m
10m
A B
8t
7.5m 7.5m 10m
D
I 2I I
2 cm 1 cm
EI = 10000 m2t
3 t/m
10m
A I B
2 cm
C
B
8t
7.5m 7.5m
2I
2 cm 1 cm
10m
A B
2 cm
I
−6𝐸𝐼∆
𝐿2
−6𝐸𝐼∆
𝐿2 3 t/m
10m
A I B
25
−25
13
−37
C
B
8t
7.5m 7.5m
2I
C
B
15m
2I
2 cm
1 cm
Δ
5.33
15
−15
5.33
20.33
−9.67 3
36.18
14.93
5.79
19.64
11.95
D
I
C
10m
1 cm
C
3 t/m
10m
A B
8t
7.5m 7.5m 10m
D
I 2I I
2 cm 1 cm
EI = 10000 m2t
3 t/m
10m
A I B
2 cm
C
B
8t
7.5m 7.5m
2I
2 cm 1 cm
13
−37 20.33
−9.67 3
Joint B
KBA : KBC
Joint C
KCB : KCD
𝐼
𝐿
:
𝐼
𝐿
1
10
:
2
15
15 : 20
𝟑
𝟕
:
𝟒
𝟕
15
35
:
20
35
𝐼
𝐿
:
𝐼
𝐿
𝑥
3
4
2
15
:
1
10
𝑥
3
4
80 : 45
𝟎. 𝟔𝟒 : 𝟎. 𝟑𝟔
80
125
:
45
125
13 −9.67 20.33 3 0
−37
3/7 4/7 𝟎. 𝟔𝟒 𝟎. 𝟑𝟔
−1.903 −14.93 −8.399
A B C D
FEM
D.M.1
D.F.
C.O.1
−1.428
D.M.2 4.266 0.609 0.342
3.199
-0.714 -7.466 -0.951
C.O.2 1.6 0.304 2.133
D.M.3 −0.174
−0.13 −0.768
−1.365
C.O.3 -0.065 -0.682 -0.087
D.M.4 0.39
0.292 0.056 0.031
F.M. -36.18 -14.93 5.79 0
-5.79
14.93
C
A B D
B.M.D.
Structural Analysis
Moment Distribution
II
Eng. Khaled El-Aswany
(Frames)
(Example 1)
5t
1.5 t/m
B C
2I 4m
4m
5t
A
1.5 t/m
D
B C
I
I
2I
5m
4m
4m
−13 13
A D
I
I C
B
5m
0
0
5m
0 0
0 -13
0
FEM
8/13 5/13
D.F.
A B C D
D.M.
Joint B
KBA : KBC
1
5
:
1
8
8 : 5
8
13
:
5
13
1
5
:
2
8
𝑥
1
2
I
L
:
I
L 𝑥
1
2
Distribution Factors
8 5
C.O. 4
F.M. 4 8 -8
5t
1.5 t/m
B C
4m
4m
8
4 4
8
8
8
2.4
A
B
5
m
2.4
8.5 8.5
2.4
C
D
5
m
2.4
8
4 4
8
8
8
B.M.D.
14
𝑤𝑙2
8
+
𝑃𝐿
4
= 22
Structural Analysis
Moment Distribution
II
Eng. Khaled El-Aswany
(Frames)
(Example 2)
4t
A
3 t/m
B C
8m
−16 16
4t
A
3 t/m
B
C
3m
8m
3m
B
−4.5
3m 3m
16 -4.5
-16
FEM
0.5 0.5
D.F.
A B C
D.M. -5.75 -5.75
C.O. -2.875
F.M. -18.875 10.25 -10.25
Joint B
KBA : KBC
1
8
:
1
8
1 : 1
𝟎. 𝟓 : 𝟎. 𝟓
1
8
:
1
6 𝑥
3
4
I
L
:
I
L
𝑥
3
4
Distribution Factors
:
A
3 t/m
B
8m
18.875 10.25
10.25
13.08 10.92
B
4t
C
3m
3m
3.71 A B
C
10.25
10.25
18.875
0.29
0.875
Structural Analysis
Moment Distribution
II
Eng. Khaled El-Aswany
(Frames)
(Example 3)
A
3 t/m
B
8m
−16 16
4t
C
B
−4.5
3t
B
−6
3m 3m
16 -4.5
-16
FEM
0.5 0.5
D.F.
A B C
D.M.
Joint B
KBA : KBC
1
8
:
1
8
1 : 1
𝟎. 𝟓 : 𝟎. 𝟓
1
8
:
1
6 𝑥
3
4
I
L
:
I
L
𝑥
3
4
:
-6
4t
A
3 t/m
B
C
3m
8m 2m
3m
3t
0
-2.75 -2.75
C.O. -1.375
F.M. -17.375 13.25 -6 -7.25 0
A
3 t/m
B
8m
17.375 13.25
7.25
B
4t
C
3m
3m
A B
C
7.25
13.25
17.375
2.375
3t
2m
B
6
6
𝑝𝑙
4
B.M.D.
Structural Analysis
Moment Distribution
II
Eng. Khaled El-Aswany
(Frames)
(Example 4)
I
3m
4t
E
DB
3m
12m
2m
1.5 t/m
6I
A B
C
-12
-4.5
BD
C
-5.33
2.67
A B
-18 18
C
-5.33 -8 8
8m
C
4I
B
1.5 t/m
-8 8
E
-12 -4.5 0
D
18
-18
6t
2.67
C
1.5 t/m
6I
I
A B
6t
3m
12m 8m 2m
4I
1.5I 4t
6t
F
E
D
3m
4m
FEM
D.F.
Joint B
KBA : KBD : KBC
I
L
:
Distribution Factors
: :
I
L
I
L
:
6
12
: 1.5
6
4
8
:
6 : 3 6
:
0.4 : 0.2 0.4
:
Joint C
KCB : KCE
:
I
L
: I
L x
3
4
4
8
: 1
6
x
3
4
4
8
: 1
8
4 : 1
0.8 : 0.2
0.4 0.2 0.4 0.8 0.2
I
3m
4t
E
DB
3m
12m
2m
1.5 t/m
6I
A B
C
-12
-4.5
BD
C
-5.33
2.67
A B
-18 18
C
-5.33 -8 8
8m
C
4I
B
1.5 t/m
-8 8
E
-12 -4.5 0
D
18
-18
6t
2.67
FEM
D.F.
Joint B
KBA : KBD : KBC
I
L
:
Distribution Factors
: :
I
L
I
L
:
6
12
: 1.5
6
4
8
:
6 : 3 6
:
0.4 : 0.2 0.4
:
Joint C
KCB : KCE
:
I
L
: I
L x
3
4
4
8
: 1
6
x
3
4
4
8
: 1
8
4 : 1
0.8 : 0.2
0.4 0.2 0.4 0.8 0.2
C
1.5 t/m
6I
I
A B
6t
3m
12m 8m 2m
4I
1.5I
4t
6t
F
E
D
3m
4m
D.M.1 -1.867 -0.933 6.8 1.7
C.O.1 -0.933 -0.467
3.4 -0.933
D.M.2
C.O.2
-1.36 -0.68 -1.36 0.747 0.187
0.373 -0.68
-0.68 -0.34
D.M.3
C.O.3
-0.149 -0.075 -0.149
0.272
0.544
-0.075
0.136
-0.075 -0.037
D.M.4 -0.109 -0.054 -0.109 0.06 0.015
F.M. -19.69 14.52 -7.08 -7.44 14.46 -12 -2.46 0 1.82
12m
1.5 t/m
A B
19.69 14.52
8m
1.5 t/m
B C
7.44 14.46
6t
D
4m
2m B
1.82
7.08 2.46
6t
E
C
3m
3m
2m
C
6t
12 14.52
19.69
7.44
14.46
12
1.82
7.08
2.7
2.46
4.8
B.M.D.
-1.867

More Related Content

Similar to structural analysis 2.pdf

[Paul lorrain] solutions_manual_for_electromagneti(bookos.org)
[Paul lorrain] solutions_manual_for_electromagneti(bookos.org)[Paul lorrain] solutions_manual_for_electromagneti(bookos.org)
[Paul lorrain] solutions_manual_for_electromagneti(bookos.org)Harrisson David Assis Santos
 
NXP_LLC converter design.pdf
NXP_LLC converter design.pdfNXP_LLC converter design.pdf
NXP_LLC converter design.pdfssuser1be9ce
 
Laplace transforms and problems
Laplace transforms and problemsLaplace transforms and problems
Laplace transforms and problemsVishnu V
 
U4_Fórmulas para vigas.pdf
U4_Fórmulas para vigas.pdfU4_Fórmulas para vigas.pdf
U4_Fórmulas para vigas.pdfEricEspinosa21
 
Soluções dos exercícios de cinética química digitados
Soluções dos exercícios de cinética química digitadosSoluções dos exercícios de cinética química digitados
Soluções dos exercícios de cinética química digitadosMárcio Martins
 
On Repetitive Right Application of B-terms (for PPL 2019)
On Repetitive Right Application of B-terms (for PPL 2019)On Repetitive Right Application of B-terms (for PPL 2019)
On Repetitive Right Application of B-terms (for PPL 2019)ksknac
 
ANALISA STRUKTUR 2 RISA.pptx
ANALISA STRUKTUR 2 RISA.pptxANALISA STRUKTUR 2 RISA.pptx
ANALISA STRUKTUR 2 RISA.pptxRedyWantalangie1
 
Hyperon and charmed baryon masses and axial charges from Lattice QCD
Hyperon and charmed baryon masses and axial charges from Lattice QCDHyperon and charmed baryon masses and axial charges from Lattice QCD
Hyperon and charmed baryon masses and axial charges from Lattice QCDChristos Kallidonis
 
Hermite integrators and 2-parameter subgroup of Riordan group
Hermite integrators and 2-parameter subgroup of Riordan groupHermite integrators and 2-parameter subgroup of Riordan group
Hermite integrators and 2-parameter subgroup of Riordan groupKeigo Nitadori
 
MEKANIKA REKAYASA 3 (METODE DALIL 3 MOMEN DAN METODE CROSS)
MEKANIKA REKAYASA 3 (METODE DALIL 3 MOMEN DAN METODE CROSS)MEKANIKA REKAYASA 3 (METODE DALIL 3 MOMEN DAN METODE CROSS)
MEKANIKA REKAYASA 3 (METODE DALIL 3 MOMEN DAN METODE CROSS)Sumarno Feriyal
 
solucionario mecanica vectorial para ingenieros - beer & johnston (dinamica...
 solucionario mecanica vectorial para ingenieros - beer  & johnston (dinamica... solucionario mecanica vectorial para ingenieros - beer  & johnston (dinamica...
solucionario mecanica vectorial para ingenieros - beer & johnston (dinamica...Sohar Carr
 
Using blurred images to assess damage in bridge structures?
Using blurred images to assess damage in bridge structures?Using blurred images to assess damage in bridge structures?
Using blurred images to assess damage in bridge structures? Alessandro Palmeri
 
Introduction to Bayesian Inference
Introduction to Bayesian InferenceIntroduction to Bayesian Inference
Introduction to Bayesian InferencePeter Chapman
 

Similar to structural analysis 2.pdf (16)

[Paul lorrain] solutions_manual_for_electromagneti(bookos.org)
[Paul lorrain] solutions_manual_for_electromagneti(bookos.org)[Paul lorrain] solutions_manual_for_electromagneti(bookos.org)
[Paul lorrain] solutions_manual_for_electromagneti(bookos.org)
 
Calculo de-reacciones
Calculo de-reaccionesCalculo de-reacciones
Calculo de-reacciones
 
NXP_LLC converter design.pdf
NXP_LLC converter design.pdfNXP_LLC converter design.pdf
NXP_LLC converter design.pdf
 
Laplace transforms and problems
Laplace transforms and problemsLaplace transforms and problems
Laplace transforms and problems
 
U4_Fórmulas para vigas.pdf
U4_Fórmulas para vigas.pdfU4_Fórmulas para vigas.pdf
U4_Fórmulas para vigas.pdf
 
Soluções dos exercícios de cinética química digitados
Soluções dos exercícios de cinética química digitadosSoluções dos exercícios de cinética química digitados
Soluções dos exercícios de cinética química digitados
 
On Repetitive Right Application of B-terms (for PPL 2019)
On Repetitive Right Application of B-terms (for PPL 2019)On Repetitive Right Application of B-terms (for PPL 2019)
On Repetitive Right Application of B-terms (for PPL 2019)
 
H c verma part 1 solution
H c verma part 1 solutionH c verma part 1 solution
H c verma part 1 solution
 
ANALISA STRUKTUR 2 RISA.pptx
ANALISA STRUKTUR 2 RISA.pptxANALISA STRUKTUR 2 RISA.pptx
ANALISA STRUKTUR 2 RISA.pptx
 
Hyperon and charmed baryon masses and axial charges from Lattice QCD
Hyperon and charmed baryon masses and axial charges from Lattice QCDHyperon and charmed baryon masses and axial charges from Lattice QCD
Hyperon and charmed baryon masses and axial charges from Lattice QCD
 
ЗНО-2021 (математика)
ЗНО-2021 (математика)ЗНО-2021 (математика)
ЗНО-2021 (математика)
 
Hermite integrators and 2-parameter subgroup of Riordan group
Hermite integrators and 2-parameter subgroup of Riordan groupHermite integrators and 2-parameter subgroup of Riordan group
Hermite integrators and 2-parameter subgroup of Riordan group
 
MEKANIKA REKAYASA 3 (METODE DALIL 3 MOMEN DAN METODE CROSS)
MEKANIKA REKAYASA 3 (METODE DALIL 3 MOMEN DAN METODE CROSS)MEKANIKA REKAYASA 3 (METODE DALIL 3 MOMEN DAN METODE CROSS)
MEKANIKA REKAYASA 3 (METODE DALIL 3 MOMEN DAN METODE CROSS)
 
solucionario mecanica vectorial para ingenieros - beer & johnston (dinamica...
 solucionario mecanica vectorial para ingenieros - beer  & johnston (dinamica... solucionario mecanica vectorial para ingenieros - beer  & johnston (dinamica...
solucionario mecanica vectorial para ingenieros - beer & johnston (dinamica...
 
Using blurred images to assess damage in bridge structures?
Using blurred images to assess damage in bridge structures?Using blurred images to assess damage in bridge structures?
Using blurred images to assess damage in bridge structures?
 
Introduction to Bayesian Inference
Introduction to Bayesian InferenceIntroduction to Bayesian Inference
Introduction to Bayesian Inference
 

More from AuRevoir4

formation_rsa2011_partie_0_introduction_.pdf
formation_rsa2011_partie_0_introduction_.pdfformation_rsa2011_partie_0_introduction_.pdf
formation_rsa2011_partie_0_introduction_.pdfAuRevoir4
 
SPDDL Equations de mouvement béton armé.pdf
SPDDL Equations de mouvement béton armé.pdfSPDDL Equations de mouvement béton armé.pdf
SPDDL Equations de mouvement béton armé.pdfAuRevoir4
 
Découvrir les activités de tarl document.pdf
Découvrir les activités de tarl document.pdfDécouvrir les activités de tarl document.pdf
Découvrir les activités de tarl document.pdfAuRevoir4
 
Transp_2-1.pdf
Transp_2-1.pdfTransp_2-1.pdf
Transp_2-1.pdfAuRevoir4
 
Transp_6_NEW.pdf
Transp_6_NEW.pdfTransp_6_NEW.pdf
Transp_6_NEW.pdfAuRevoir4
 
Transp_3.pdf
Transp_3.pdfTransp_3.pdf
Transp_3.pdfAuRevoir4
 
Transp_1-1.pdf
Transp_1-1.pdfTransp_1-1.pdf
Transp_1-1.pdfAuRevoir4
 
04_Transp_4_NEWNEWNEW.pdf
04_Transp_4_NEWNEWNEW.pdf04_Transp_4_NEWNEWNEW.pdf
04_Transp_4_NEWNEWNEW.pdfAuRevoir4
 
05_Transp_5_NEWNEW.pdf
05_Transp_5_NEWNEW.pdf05_Transp_5_NEWNEW.pdf
05_Transp_5_NEWNEW.pdfAuRevoir4
 
07_Transp_7.pdf
07_Transp_7.pdf07_Transp_7.pdf
07_Transp_7.pdfAuRevoir4
 
Transp_2-1.pdf
Transp_2-1.pdfTransp_2-1.pdf
Transp_2-1.pdfAuRevoir4
 
Cours Cercle de Mohr[Compatibility Mode].pdf
Cours Cercle de Mohr[Compatibility Mode].pdfCours Cercle de Mohr[Compatibility Mode].pdf
Cours Cercle de Mohr[Compatibility Mode].pdfAuRevoir4
 
Chapitre 3 Réponse à une charge quelconque _8DEC_3e4c340a058ddc0c59907d7722...
Chapitre 3 Réponse à une charge quelconque _8DEC_3e4c340a058ddc0c59907d7722...Chapitre 3 Réponse à une charge quelconque _8DEC_3e4c340a058ddc0c59907d7722...
Chapitre 3 Réponse à une charge quelconque _8DEC_3e4c340a058ddc0c59907d7722...AuRevoir4
 
cours dynam.pdf
cours dynam.pdfcours dynam.pdf
cours dynam.pdfAuRevoir4
 
Beton armé exercice-02
Beton armé exercice-02Beton armé exercice-02
Beton armé exercice-02AuRevoir4
 

More from AuRevoir4 (17)

formation_rsa2011_partie_0_introduction_.pdf
formation_rsa2011_partie_0_introduction_.pdfformation_rsa2011_partie_0_introduction_.pdf
formation_rsa2011_partie_0_introduction_.pdf
 
SPDDL Equations de mouvement béton armé.pdf
SPDDL Equations de mouvement béton armé.pdfSPDDL Equations de mouvement béton armé.pdf
SPDDL Equations de mouvement béton armé.pdf
 
Découvrir les activités de tarl document.pdf
Découvrir les activités de tarl document.pdfDécouvrir les activités de tarl document.pdf
Découvrir les activités de tarl document.pdf
 
Transp_2-1.pdf
Transp_2-1.pdfTransp_2-1.pdf
Transp_2-1.pdf
 
Transp_6_NEW.pdf
Transp_6_NEW.pdfTransp_6_NEW.pdf
Transp_6_NEW.pdf
 
Transp_3.pdf
Transp_3.pdfTransp_3.pdf
Transp_3.pdf
 
Transp_1-1.pdf
Transp_1-1.pdfTransp_1-1.pdf
Transp_1-1.pdf
 
04_Transp_4_NEWNEWNEW.pdf
04_Transp_4_NEWNEWNEW.pdf04_Transp_4_NEWNEWNEW.pdf
04_Transp_4_NEWNEWNEW.pdf
 
05_Transp_5_NEWNEW.pdf
05_Transp_5_NEWNEW.pdf05_Transp_5_NEWNEW.pdf
05_Transp_5_NEWNEW.pdf
 
07_Transp_7.pdf
07_Transp_7.pdf07_Transp_7.pdf
07_Transp_7.pdf
 
rs.pdf
rs.pdfrs.pdf
rs.pdf
 
null.pdf
null.pdfnull.pdf
null.pdf
 
Transp_2-1.pdf
Transp_2-1.pdfTransp_2-1.pdf
Transp_2-1.pdf
 
Cours Cercle de Mohr[Compatibility Mode].pdf
Cours Cercle de Mohr[Compatibility Mode].pdfCours Cercle de Mohr[Compatibility Mode].pdf
Cours Cercle de Mohr[Compatibility Mode].pdf
 
Chapitre 3 Réponse à une charge quelconque _8DEC_3e4c340a058ddc0c59907d7722...
Chapitre 3 Réponse à une charge quelconque _8DEC_3e4c340a058ddc0c59907d7722...Chapitre 3 Réponse à une charge quelconque _8DEC_3e4c340a058ddc0c59907d7722...
Chapitre 3 Réponse à une charge quelconque _8DEC_3e4c340a058ddc0c59907d7722...
 
cours dynam.pdf
cours dynam.pdfcours dynam.pdf
cours dynam.pdf
 
Beton armé exercice-02
Beton armé exercice-02Beton armé exercice-02
Beton armé exercice-02
 

Recently uploaded

Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptxDecoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptxJoão Esperancinha
 
Current Transformer Drawing and GTP for MSETCL
Current Transformer Drawing and GTP for MSETCLCurrent Transformer Drawing and GTP for MSETCL
Current Transformer Drawing and GTP for MSETCLDeelipZope
 
Heart Disease Prediction using machine learning.pptx
Heart Disease Prediction using machine learning.pptxHeart Disease Prediction using machine learning.pptx
Heart Disease Prediction using machine learning.pptxPoojaBan
 
Sachpazis Costas: Geotechnical Engineering: A student's Perspective Introduction
Sachpazis Costas: Geotechnical Engineering: A student's Perspective IntroductionSachpazis Costas: Geotechnical Engineering: A student's Perspective Introduction
Sachpazis Costas: Geotechnical Engineering: A student's Perspective IntroductionDr.Costas Sachpazis
 
Internship report on mechanical engineering
Internship report on mechanical engineeringInternship report on mechanical engineering
Internship report on mechanical engineeringmalavadedarshan25
 
Introduction-To-Agricultural-Surveillance-Rover.pptx
Introduction-To-Agricultural-Surveillance-Rover.pptxIntroduction-To-Agricultural-Surveillance-Rover.pptx
Introduction-To-Agricultural-Surveillance-Rover.pptxk795866
 
Call Girls Narol 7397865700 Independent Call Girls
Call Girls Narol 7397865700 Independent Call GirlsCall Girls Narol 7397865700 Independent Call Girls
Call Girls Narol 7397865700 Independent Call Girlsssuser7cb4ff
 
SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )Tsuyoshi Horigome
 
Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...
Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...
Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...srsj9000
 
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube Exchanger
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube ExchangerStudy on Air-Water & Water-Water Heat Exchange in a Finned Tube Exchanger
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube ExchangerAnamika Sarkar
 
Artificial-Intelligence-in-Electronics (K).pptx
Artificial-Intelligence-in-Electronics (K).pptxArtificial-Intelligence-in-Electronics (K).pptx
Artificial-Intelligence-in-Electronics (K).pptxbritheesh05
 
Concrete Mix Design - IS 10262-2019 - .pptx
Concrete Mix Design - IS 10262-2019 - .pptxConcrete Mix Design - IS 10262-2019 - .pptx
Concrete Mix Design - IS 10262-2019 - .pptxKartikeyaDwivedi3
 
CCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdf
CCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdfCCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdf
CCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdfAsst.prof M.Gokilavani
 
HARMONY IN THE NATURE AND EXISTENCE - Unit-IV
HARMONY IN THE NATURE AND EXISTENCE - Unit-IVHARMONY IN THE NATURE AND EXISTENCE - Unit-IV
HARMONY IN THE NATURE AND EXISTENCE - Unit-IVRajaP95
 
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130Suhani Kapoor
 
INFLUENCE OF NANOSILICA ON THE PROPERTIES OF CONCRETE
INFLUENCE OF NANOSILICA ON THE PROPERTIES OF CONCRETEINFLUENCE OF NANOSILICA ON THE PROPERTIES OF CONCRETE
INFLUENCE OF NANOSILICA ON THE PROPERTIES OF CONCRETEroselinkalist12
 
Microscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptxMicroscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptxpurnimasatapathy1234
 
GDSC ASEB Gen AI study jams presentation
GDSC ASEB Gen AI study jams presentationGDSC ASEB Gen AI study jams presentation
GDSC ASEB Gen AI study jams presentationGDSCAESB
 

Recently uploaded (20)

9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf
9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf
9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf
 
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptxDecoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
 
Current Transformer Drawing and GTP for MSETCL
Current Transformer Drawing and GTP for MSETCLCurrent Transformer Drawing and GTP for MSETCL
Current Transformer Drawing and GTP for MSETCL
 
Heart Disease Prediction using machine learning.pptx
Heart Disease Prediction using machine learning.pptxHeart Disease Prediction using machine learning.pptx
Heart Disease Prediction using machine learning.pptx
 
Sachpazis Costas: Geotechnical Engineering: A student's Perspective Introduction
Sachpazis Costas: Geotechnical Engineering: A student's Perspective IntroductionSachpazis Costas: Geotechnical Engineering: A student's Perspective Introduction
Sachpazis Costas: Geotechnical Engineering: A student's Perspective Introduction
 
Internship report on mechanical engineering
Internship report on mechanical engineeringInternship report on mechanical engineering
Internship report on mechanical engineering
 
Introduction-To-Agricultural-Surveillance-Rover.pptx
Introduction-To-Agricultural-Surveillance-Rover.pptxIntroduction-To-Agricultural-Surveillance-Rover.pptx
Introduction-To-Agricultural-Surveillance-Rover.pptx
 
Call Girls Narol 7397865700 Independent Call Girls
Call Girls Narol 7397865700 Independent Call GirlsCall Girls Narol 7397865700 Independent Call Girls
Call Girls Narol 7397865700 Independent Call Girls
 
SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )
 
Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...
Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...
Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...
 
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube Exchanger
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube ExchangerStudy on Air-Water & Water-Water Heat Exchange in a Finned Tube Exchanger
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube Exchanger
 
Artificial-Intelligence-in-Electronics (K).pptx
Artificial-Intelligence-in-Electronics (K).pptxArtificial-Intelligence-in-Electronics (K).pptx
Artificial-Intelligence-in-Electronics (K).pptx
 
Concrete Mix Design - IS 10262-2019 - .pptx
Concrete Mix Design - IS 10262-2019 - .pptxConcrete Mix Design - IS 10262-2019 - .pptx
Concrete Mix Design - IS 10262-2019 - .pptx
 
CCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdf
CCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdfCCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdf
CCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdf
 
HARMONY IN THE NATURE AND EXISTENCE - Unit-IV
HARMONY IN THE NATURE AND EXISTENCE - Unit-IVHARMONY IN THE NATURE AND EXISTENCE - Unit-IV
HARMONY IN THE NATURE AND EXISTENCE - Unit-IV
 
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
 
INFLUENCE OF NANOSILICA ON THE PROPERTIES OF CONCRETE
INFLUENCE OF NANOSILICA ON THE PROPERTIES OF CONCRETEINFLUENCE OF NANOSILICA ON THE PROPERTIES OF CONCRETE
INFLUENCE OF NANOSILICA ON THE PROPERTIES OF CONCRETE
 
POWER SYSTEMS-1 Complete notes examples
POWER SYSTEMS-1 Complete notes  examplesPOWER SYSTEMS-1 Complete notes  examples
POWER SYSTEMS-1 Complete notes examples
 
Microscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptxMicroscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptx
 
GDSC ASEB Gen AI study jams presentation
GDSC ASEB Gen AI study jams presentationGDSC ASEB Gen AI study jams presentation
GDSC ASEB Gen AI study jams presentation
 

structural analysis 2.pdf

  • 3. 12 t 12 t 12 t 4 t 4 t 12t 32mt S.F.D B.M.D 8t 2 t/m 4 m A B 4 m 2 t/m 4 m A B 4 m 8t 4 m A B 4 m 8 t 8t 4t 8 t 8 t 16mt 4 t 4 t 4 t 4 t 4 t 𝒘𝑳𝟐 𝟖 𝑷𝑳 𝟒 = 𝟖𝒙𝟖 𝟒 =16 16mt 2x8=16
  • 5. S.F.D. 𝑷 𝟐 𝑷 𝟐 𝑷 𝟐 𝑷 𝟐 𝑷𝒃 𝑳 𝑷𝒃 𝑳 𝑷𝒂 𝑳 𝑷𝒂 𝑳 𝒘𝑳 𝟐 𝒘𝑳 𝟐 A B a b L 𝑷𝑳 𝟒 L A B w t/m 𝒘𝑳𝟐 𝟖 B.M.D P t 𝑷𝒂𝒃 𝑳 P t L/2 A B L/2 𝑷 𝟐 𝑷 𝟐 𝒘𝒍 𝟐 𝒘𝒍 𝟐 𝑷𝒃 𝑳 𝑷𝒂 𝑳 wL 𝑷𝒂 B.M.D b a P 𝑷 P t A B P t a 𝑷𝒂 a L A B 𝑷𝒂 L L/2 A B M L/2 𝑴 𝟐 𝑴 𝟐 P t P t 𝑴 𝑳 𝑴 𝑳
  • 7. 2 t/m 4 t 3 m A 3 m 2 t/m 3 m A 3 m A B 6m 2m 2m 4 t 𝟔 𝟖 A B 8 mt 6m 2m 2m 2 t/m 4 t A B 8 mt 6m 2m 2m A B 6m 2m 2m 2 t/m 𝟖 𝟒 𝟖 𝟏𝟐 𝟐 𝟏 𝟑 4 t 3 m A 3 m 𝟏𝟐 36 36 𝟗 =
  • 8. A B 4m 2m 2m 8 t 4 t A B 4m 2m 2m 8 t A B 4m 2m 2m 4 t A B 4m 2m 2m 8 t 4 t A B 4m 2m 2m 4 t 4 t A B 4m 2m 2m 4 t 𝟏𝟐 𝟔 𝟔 𝟖 𝟖 𝟐 𝟒 𝟏𝟒 𝟏𝟎 𝟐
  • 10. 4t A D B C 2m 2m 1m 2m 2m 6t 2t/m 8t 2m 2m 0 2m 2m 0 2t/m 𝑷𝑳 𝟒 =8 𝒘𝑳𝟐 𝟖 =4 3t 6t 𝟔 2m 2m 1 0 4t 2m 2m 4t 𝟏𝟔 𝟖 𝟏𝟔 𝟏𝟔 𝟖 𝟖 𝟏𝟔 𝟖 2m 2m 3t 3t 𝟏𝟐 𝟏𝟐 𝟏𝟐 𝟏𝟐
  • 12. Structural Analysis Three Moment Equation II Eng. Khaled El-Aswany
  • 13. Structural Analysis Three Moment Equation II (Introduction) Eng. Khaled El-Aswany
  • 14. 2 t/m 6m A B 6t 2m C 2m I1 I2 MA ( 𝐋𝟏 𝐈 ) + 2 MB ( 𝐋𝟏 𝐈 + 𝐋𝟐 𝐈 ) + MC ( 𝐋𝟐 𝐈 ) = -6 ( 𝐑𝐛𝟏 𝐈 + 𝐑𝐛𝟐 𝐈 ) MA = MB = MC = MA ( 𝐋𝟏 𝐈𝟏 ) + 2 MB ( 𝐋𝟏 𝐈𝟏 + 𝐋𝟐 𝐈𝟐 ) + MC ( 𝐋𝟐 𝐈𝟐 ) = -6 ( 𝐑𝐛𝟏 𝐈𝟏 + 𝐑𝐛𝟐 𝐈𝟐 ) 0 ?? 0 IF ( I ) is constant: 2 t/m 6m A B 6t 2m C 2m I I MA (L1) + 2 MB (L1 + L2) + MC (L2) = -6 (𝐑𝐛𝟏 + 𝐑𝐛𝟐)
  • 15. Structural Analysis Three Moment Equation II (Elastic Reactions) Eng. Khaled El-Aswany
  • 16. 2 t/m 6m A B 6t 2m C 2m I1 I2 MA ( 𝐋𝟏 𝐈 ) + 2 MB ( 𝐋𝟏 𝐈 + 𝐋𝟐 𝐈 ) + MC ( 𝐋𝟐 𝐈 ) = -6 ( 𝐑𝐛𝟏 𝐈 + 𝐑𝐛𝟐 𝐈 ) MA = MB = MC = MA ( 𝐋𝟏 𝐈𝟏 ) + 2 MB ( 𝐋𝟏 𝐈𝟏 + 𝐋𝟐 𝐈𝟐 ) + MC ( 𝐋𝟐 𝐈𝟐 ) = -6 ( 𝐑𝐛𝟏 𝐈𝟏 + 𝐑𝐛𝟐 𝐈𝟐 ) 0 ?? 0 IF ( I ) is constant: 2 t/m 6m A B 6t 2m C 2m I I MA (L1) + 2 MB (L1 + L2) + MC (L2) = -6 (𝐑𝐛𝟏 + 𝐑𝐛𝟐) 𝑀 6 (2𝑥‫البعيدة‬ + ‫)القريبة‬ A B a b L 𝑷𝑳 𝟒 L A B w t/m 𝒘𝑳𝟐 𝟖 B.M.D P t P t L/2 A B L/2 Elastic Reactions 𝐴 = 1 2 𝑴𝑳 A= 2 3 𝑴𝑳 𝐴2 = 1 2 𝑴𝑏 𝟐 𝟑 b 𝟏 𝟑 b 𝟐 𝟑 a 𝟏 𝟑 a 𝐴1 = 1 2 𝑴𝑎 Pa B.M.D Elastic Reactions P t a A B b P t a Pa A B a b L M 𝑀𝑏 𝐿 𝑀𝑎 𝐿 𝐴2𝑥 2 3 𝑏 1 2 𝐴 1 2 𝐴 1 2 𝐴 1 2 𝐴 1 2 𝐴 1 2 𝐴 +𝐴1𝑥(𝑏 + 1 3 𝑎) L 𝑀 6 (2𝑥‫البعيدة‬ + ‫)القريبة‬ 𝐴1𝑥 2 3 𝑎 +𝐴2𝑥(𝑎 + 1 3 𝑏) L 𝑷𝒂𝒃 𝑳 A=( 𝑏+𝐿 2 )𝑴 𝑀 𝐿 𝑀 𝐿 𝐴1 𝐴2 𝟐 𝟑 a 𝟏 𝟑 a 𝟐 𝟑 b 𝟏 𝟑 b A2x 2 3 b A1x(b + 1 3 a) L 𝐴2 − 𝐴1 − 𝑅1 𝑶𝑹 𝑶𝑹
  • 17. Structural Analysis Three Moment Equation II (Example1) Eng. Khaled El-Aswany
  • 18. 𝟐 𝟑 𝑴𝑳 = 𝟑𝟔 6t 2m 2m B C 2 t/m 6m A B 𝒘𝑳𝟐 𝟖 =9 𝑷𝑳 𝟒 = 𝟔 6t 18 t 18 t 1 2 𝑴𝑳 = 12 6t MA = 0 I 2I 2 t/m 6m A B 6t 2m C 2m MB = MC = ?? 0 6t 2m 2m B C 2 t/m 6m A B MA ( 𝐋𝟏 𝐈𝟏 ) + 2 MB ( 𝐋𝟏 𝐈𝟏 + 𝐋𝟐 𝐈𝟐 ) + MC ( 𝐋𝟐 𝐈𝟐 ) = -6 ( 𝐑𝐛𝟏 𝐈𝟏 + 𝐑𝐛𝟐 𝐈𝟐 ) 0 + 2 MB ( 𝟔 𝟏 + 𝟒 𝟐 ) + 0 = -6 ( 𝟏𝟖 𝟏 + 𝟔 𝟐 ) 16 MB = -126 MB = -7.875 mt 2x6-7.3125 =4.6875 𝟐𝒙𝟔𝒙𝟑 + 𝟕. 𝟖𝟕𝟓 𝟔 𝟔𝒙𝟐 + 𝟕. 𝟖𝟕𝟓 6-4.97 =1.03 7.875 7.875 S.F.D B.M.D 7.3125 4.6875 4.97 4.97 1.03 1.03 7.875 2.06 S.F.D B.M.D 4.97 4.97 1.03 1.03 7.875 2.06 7.875 = 7.3125 𝟒 = 𝟒. 𝟗𝟕 2x6 3m
  • 19. Structural Analysis Three Moment Equation II (Example 2) Eng. Khaled El-Aswany
  • 20. MA = MB = MC = 0 ?? ?? MD = 0 2 t/m A B 9t C 6t 6t 9mt 2m 2m 4m 4m 2m 1.5 3m D 6t 6t 2 t/m A 2m 4m 2m B B 9t C 2m 4m 𝐰𝐋𝟐 𝟖 =16 2 3 𝑴𝑳=85.33 Pa=12 Pa=12 ( 4+8 2 )𝑥12=72 𝟗𝒙𝟐𝒙𝟒 𝟔 =12 𝟑 𝟔 𝟗 2.25 2m 1m 0.5 1m 42.67 42.67 36 36 20 16 C 9mt 1.5 3m D −2.25 −4.5 𝟐 𝟐 1 2 0 + 2 MB (8 + 6) + MC (6) = -6 (42.67+36 + 20) 28 MB + 6 MC = - 592 MB (6) +2 MC (6 + 4.5) + 0 = -6 (16- 2.25) 6 MB + 21 MC = - 82.5 1 2 MB = -21.625 mt MC = 2.25 mt 6t 6t 2 t/m A 2m 4m 2m B B 9t C 2m 4m C 9mt 1.5 3m D 21.625 21.625 2.25 2.25 16.7 11.3 10 1 1.5 1.5 1 10 10 21.625 2.25 1.75 16.7 1.3 11.3 7.3 6.7 12.7 18.6 7.775 1.5 1.5 4.5 4.5
  • 21. Structural Analysis Three Moment Equation II (Symmetry) Eng. Khaled El-Aswany
  • 22. A W t/m B C L L L D L E A W t/m B C L L L D 𝑀𝑎=?? 𝑀𝑏=?? 𝑀𝑐=?? 𝑀𝑎=?? 𝑀𝑏=?? 𝑀𝑒= 𝑀𝑎 𝑀𝑑= 𝑀𝑏 3 Unknowns 2 Unknowns A W t/m B C L L 𝑀𝑎=?? 𝑀𝑏=?? 𝑀𝑐= 𝑀𝑎 2 Unknowns A W t/m B L 𝑀𝑎=?? 𝑀𝑏= 𝑀𝑎 1 Unknown 𝑀𝑐= 𝑀𝑏 𝑀𝑑= 𝑀𝑎 A W t/m B L L/2 F 𝑀𝑎=?? 𝑀𝑏=?? 𝑀𝐹=?? 3 Unknowns
  • 23. A W t/m B C L L L D L E 𝑀𝑎=?? 𝑀𝑏=?? 𝑀𝑐=?? 𝑀𝑒= 𝑀𝑎 𝑀𝑑= 𝑀𝑏 3 Unknowns A W t/m B C L L 𝑀𝑎=?? 𝑀𝑏=?? 𝑀𝑐= 𝑀𝑎 2 Unknowns A W t/m B L 𝑀𝑎=?? 𝑀𝑏= 𝑀𝑎 1 Unknown A W t/m B L 𝑀𝑎=?? 𝑀𝑏= 𝑀𝑎 L 0 0 𝒘𝑳𝟐 𝟖 𝒘𝑳𝟑 𝟏𝟐 𝒘𝑳𝟑 𝟐𝟒 𝒘𝑳𝟑 𝟐𝟒 W t/m A B A’ B’ A B MA’ (L1) + 2 MA (L1 + L2) + MB (L2) = -6 (𝐑𝐚𝟏 + 𝐑𝐚𝟐) 0 + 2 MA (0 + L) + MA (L) = -6 ( 0 + 𝒘𝑳𝟑 𝟐𝟒 ) 3 MA L = - wL3 4 𝑀𝑎=?? 𝑀𝑏= 𝑀𝑎 MA = - wL2 12 0 0 MB =MA wL2 12 wL2 12 wL2 12 wL2 12 wL2 12
  • 24. A W t/m B C L L L D 𝑀𝑎=?? 𝑀𝑏=?? 2 Unknowns 𝑀𝑐= 𝑀𝑏 𝑀𝑑= 𝑀𝑎 A W t/m B L L/2 F 𝑀𝑎=?? 𝑀𝑏=?? 𝑀𝐹=?? 3 Unknowns W t/m 𝑀𝑎=?? 𝑀𝑏=?? 𝑀𝑐= 𝑀𝑏 𝑀𝑑= 𝑀𝑎 0 A’ 0 C D L B L D’ A L B C D A W t/m W t/m 𝒘𝑳𝟐 𝟖 𝒘𝑳𝟑 𝟏𝟐 𝒘𝑳𝟑 𝟐𝟒 𝒘𝑳𝟑 𝟐𝟒 MA’ (L1) + 2 MA (L1 + L2) + MB (L2) = -6 (𝐑𝐚𝟏 + 𝐑𝐚𝟐) 0 + 2 MA (0 + L) + MB (L) = -6 ( 0 + 𝒘𝑳𝟑 𝟐𝟒 ) 0 0 MC =MB 𝒘𝑳𝟐 𝟖 𝒘𝑳𝟑 𝟏𝟐 𝒘𝑳𝟑 𝟐𝟒 𝒘𝑳𝟑 𝟐𝟒 2 MA + MB = - 𝟏 4 wL2 → 𝟏 MA (L1) + 2 MB (L1 + L2) + MC (L2) = -6 (𝐑𝐚𝟏 + 𝐑𝐚𝟐) MA (L) + 2 MB (L+ L) + MB (L) = -6 ( 𝒘𝑳𝟑 𝟐𝟒 + 𝒘𝑳𝟑 𝟐𝟒 ) MA + 5 MB = - 𝟏 2 wL2 → 𝟐 MA = - wL2 12 MB = - wL2 12 wL2 12 wL2 12 wL2 12 wL2 12 𝑀𝑎′=0 𝑀𝑑′=0
  • 25. Structural Analysis Three Moment Equation II (Settlement) Eng. Khaled El-Aswany
  • 26. 2 cm 2 cm 1 cm 𝑀𝑎= 0 𝑀𝑏=?? 𝑀𝑐= 0 A B C 𝑳𝟏 𝑳𝟐 𝑀𝑎=0 𝑀𝑏=?? 𝑀𝑐=?? 𝑀𝑑=0 A B C D 𝑳𝟏 𝑳𝟐 𝑳𝟑 MA (L1) + 2 MB (L1 + L2) + MC (L2) = 6EI ( ∆𝐵−∆𝐴 L1 + ∆𝐵−∆𝐶 L2 ) MA (L1) + 2 MB (L1 + L2) + MC (L2) = 6EI ( ∆𝐵−∆𝐴 L1 + ∆𝐵−∆𝐶 L2 ) MB (L2) + 2 MC (L2 + L3) + MD (L3) = 6EI ( ∆𝐶−∆𝐵 L2 + ∆𝐶−∆𝐷 L3 ) If I constant: EI : Given I I If I variable: MA ( L1 I1 ) + 2 MB ( L1 I1 + L2 I2 ) + MC ( L2 I2 ) = 6EI ( ∆𝐵−∆𝐴 L1 + ∆𝐵−∆𝐶 L2 ) 2 Equations
  • 27. 𝑀𝑎= 0 𝑀𝑏=?? 𝑀𝑐=?? 𝑀𝑑= 0 2 cm 𝟔𝒎 𝟒𝒎 𝟔𝒎 A B C D 2 t/m 2 t/m A B C D 𝟔𝒎 𝟒𝒎 𝟔𝒎 MA (L1) + 2 MB (L1 + L2) + MC (L2) = 6EI ( ∆𝐵−∆𝐴 L1 + ∆𝐵−∆𝐶 L2 ) MB (L2) + 2 MC (L2 + L3) + MD (L3) = 6EI ( ∆𝐶−∆𝐵 L2 + ∆𝐶−∆𝐷 L3 ) EI = 5000 tm2 2 MB (6 + 4) + MC (4) = 6x5000 ( 0.02 6 + 0.02 4 ) MB (4) + 2 MC (4 + 6) + MD (6) = 6x5000 ( 0−0.02 4 + 0) 20 MB + 4 MC = 250 → 1 4 MB + 20 MC = -150 → 2 MB = 14.58 mt MC = -10.42 mt 𝑀𝑎= 0 𝑀𝑏=?? 𝑀𝑐= 𝑀𝑏 𝑀𝑑= 0 2 t/m A B 𝟔𝒎 C 𝟒𝒎 B 𝒘𝑳𝟐 𝟖 = 𝟗 2 3 𝑴𝑳=36 18 18 0 MA (L1) + 2 MB (L1 + L2) + MC (L2) = -6 (𝑅𝑏1+𝑅𝑏2) 2 MB (6 + 4) + MC (4) = -6 (18 + 0) 2 MB (6 + 4) + MB (4) = -6 (18 + 0) MB = Mc = - 4.5 mt MB (tot) = - 4.5 +14.58 = 10.08 mt Mc (tot) = - 4.5 -10.42 = -14.92 mt 2 t/m A B 𝟔𝒎 C 𝟒𝒎 B 2 t/m A B 𝟔𝒎 10.08 14.92 14.92 10.08 4.32 7.68 6.25 6.25 8.49 3.51
  • 28. 10.08 14.92 𝑀𝑎= 0 𝑀𝑏=?? 𝑀𝑐=?? 𝑀𝑑= 0 2 cm 𝟔𝒎 𝟒𝒎 𝟔𝒎 A B C D 2 t/m 2 t/m A B C D 𝟔𝒎 𝟒𝒎 𝟔𝒎 MA (L1) + 2 MB (L1 + L2) + MC (L2) = 6EI ( ∆𝐵−∆𝐴 L1 + ∆𝐵−∆𝐶 L2 ) MB (L2) + 2 MC (L2 + L3) + MD (L3) = 6EI ( ∆𝐶−∆𝐵 L2 + ∆𝐶−∆𝐷 L3 ) EI = 5000 tm2 2 MB (6 + 4) + MC (4) = 6x5000 ( 0.02 6 + 0.02 4 ) MB (4) + 2 MC (4 + 6) + MD (6) = 6x5000 ( 0−0.02 4 + 0) 20 MB + 4 MC = 250 → 1 4 MB + 20 MC = -150 → 2 MB = 14.58 mt MC = -10.42 mt 𝑀𝑎= 0 𝑀𝑏=?? 𝑀𝑐= 𝑀𝑏 𝑀𝑑= 0 2 t/m A B 𝟔𝒎 C 𝟒𝒎 B 𝒘𝑳𝟐 𝟖 = 𝟗 2 3 𝑴𝑳=36 18 18 0 MA (L1) + 2 MB (L1 + L2) + MC (L2) = -6 (𝑅𝑏1+𝑅𝑏2) 2 MB (6 + 4) + MC (4) = -6 (18 + 0) 2 MB (6 + 4) + MB (4) = -6 (18 + 0) MB = Mc = - 4.5 mt MB (tot) = - 4.5 +14.58 = 10.08 mt Mc (tot) = - 4.5 -10.42 = -14.92 mt A B C D
  • 30. Structural Analysis Consistent Deformations II Eng. Khaled El-Aswany (Beams) (Once)
  • 31. A 2 t/m B 6t 2m 6m MA XA YA YB A 2 t/m B 6t 2m 6m 12 mt 9 mt A 2 t/m B 6t 2m 6m M.S. A B 1 mt Mo 1 mt M1 δ10 + X δ11 = 0 X = −δ10 δ11 δ10 = ʃ 𝑴𝑶 𝑴𝟏 𝒅𝒍 𝑬𝑰 = 𝟏 𝑬𝑰 ʃ 𝑴𝑶𝑴𝟏𝒅𝒍 δ11 = ʃ 𝑴𝟏 𝑴𝟏 𝒅𝒍 𝑬𝑰 = 𝟏 𝑬𝑰 ʃ 𝑴𝟏𝑴𝟏𝒅𝒍 ʃ 𝑴𝑶𝑴𝟏𝒅𝒍 9 mt 6m 1 mt = Area x Yc = 2 3 𝑥6𝑥9 x 0.5 Area Yc 0.5x1=0.5 (Linear) - ‫مستقيم‬ ‫خط‬ ‫منكسر‬ ‫غير‬ ʃ 𝑴𝑶𝑴𝟏𝒅𝒍 = Area x Yc = 1 2 𝑥6𝑥8 x 3 Area 6m 6 mt 8 mt Yc 0.5x6=3 (Linear) - ʃ 𝑴𝑶𝑴𝟏𝒅𝒍 = Area x Yc = 1 2 𝑥6𝑥8 6 mt 6m 8 mt x 4 Area Yc 𝟐 𝟑 𝐱𝟔 = 𝟒 + 𝟐 𝟑 𝑳 ʃ 𝑴𝑶𝑴𝟏𝒅𝒍 = Area x Yc = 1 2 𝑥3𝑥8 8 mt 6 mt 3m 3m + Area Yc 𝟐 𝟑 𝑳 𝟏 𝟑 𝑳 𝟐 𝟑 𝐱𝟔 = 𝟒 x 4 ʃ 𝑴𝑶𝑴𝟏𝒅𝒍 x 2 = L 3 (𝐚𝐜 + 𝐛𝐝+ bc 2 + ad 2 ) 8 4 2 6 8m 8x6 = 8 3 ( + 4x2 + 𝟒𝒙𝟔 𝟐 + 𝟖𝒙𝟐 𝟐 ) 8 mt 6 mt ʃ 𝑴𝑶𝑴𝟏𝒅𝒍 = 6 3 ( 8x6 + 0 + 0 + 0 )
  • 32. A 2 t/m B 6t 2m 6m MA XA YA YB A 2 t/m B 6t 2m 6m 12 mt 9 mt A 2 t/m B 6t 2m 6m M.S. A B 1 mt Mo 1 mt M1 δ10 + X δ11 = 0 X = −δ10 δ11 δ10 = ʃ 𝑴𝑶 𝑴𝟏 𝒅𝒍 𝑬𝑰 = 𝟏 𝑬𝑰 ʃ 𝑴𝑶𝑴𝟏𝒅𝒍 δ11 = ʃ 𝑴𝟏 𝑴𝟏 𝒅𝒍 𝑬𝑰 = 𝟏 𝑬𝑰 ʃ 𝑴𝟏𝑴𝟏𝒅𝒍 = 𝟏 𝑬𝑰 [- 𝟐 𝟑 x 6 x 9 x0.5 + 𝟔 𝟑 ( 𝟏𝟐𝒙𝟏 𝟐 )] = −𝟔 𝑬𝑰 = 𝟏 𝑬𝑰 [ 𝟔 𝟑 (1x1)] = 𝟐 𝑬𝑰 = −( ൗ −𝟔 EI) ൗ 𝟐 EI = 𝟑
  • 33. A 2 t/m B 6t 2m 6m 3 0 4.5 13.5 A 2 t/m B 6t 2m 6m 12 mt 9 mt M.S. A B 1 mt Mo 1 mt M1 δ10 + X δ11 = 0 X = −δ10 δ11 δ10 δ11 = 𝟏 𝑬𝑰 [- 𝟐 𝟑 x 6 x 9 x0.5 + 𝟔 𝟑 ( 𝟏𝟐𝒙𝟏 𝟐 )] = −𝟔 𝑬𝑰 = 𝟏 𝑬𝑰 [ 𝟔 𝟑 (1x1)] = 𝟐 𝑬𝑰 = −( ൗ −𝟔 EI) ൗ 𝟐 EI = 𝟑 A B 3 12
  • 34. Structural Analysis Consistent Deformations II Eng. Khaled El-Aswany (Beams) (Twice)
  • 35. A 4 t/m D 4t 2m 4m 2m 2m 4m 2m 6t 6t B C I I 2I M.S 4 t/m 4t 6t 6t A D B 2m 4m 2m 2m 4m 2m C I I 2I 𝑀𝑜 12 12 4 8 𝑀1 1 𝑀2 1 1mt 1mt δ10 + 𝑿𝟏 δ11 + 𝑿𝟐 δ12 = 0 δ20 + 𝑿𝟏 δ21 + 𝑿𝟐 δ22 = 0 δ10 = ʃ 𝑴𝑶 𝑴𝟏 𝒅𝒍 𝑬𝑰 = 𝟏 𝑬𝑰 [-( 4+8 2 )𝒙𝟏𝟐 x0.5 - 𝟎. 𝟓𝒙𝟒𝒙𝟒 x0.5] = −𝟒𝟎 EI δ11 = ʃ 𝑴𝟏 𝑴𝟏 𝒅𝒍 𝑬𝑰 = 𝟏 𝑬𝑰 [ 8 3 𝒙(𝟏𝒙𝟏) = 4 EI + 4 3 𝒙(𝟏𝒙𝟏) ] δ12 = ʃ 𝑴𝟏 𝑴𝟐 𝒅𝒍 𝑬𝑰 = 𝟏 𝑬𝑰 [4 3 x( 1X1 2 ) ] = ൘ 2 3 EI δ02 = ʃ 𝑴𝑶 𝑴𝟐 𝒅𝒍 𝑬𝑰 = 𝟏 𝑬𝑰 [ - 𝟎. 𝟓𝒙𝟒𝒙𝟒 - 𝟏 𝟐 x0.5 𝒙 2 3 𝒙𝟒𝒙𝟖 x0.5 ]= ൘ −2𝟖 3 EI δ22 = ʃ 𝑴𝟐 𝑴𝟐 𝒅𝒍 𝑬𝑰 = 𝟏 𝑬𝑰 [ 𝒙 4 3 𝒙(𝟏𝒙𝟏) ] 4 3 𝒙(𝟏𝒙𝟏) + 1 2 = 𝟐 EI −40 EI + 4 EI 𝑋1 + ൘ 2 3 EI 𝑋2 = 0 −40+ 4 𝑋1 + 2 3 𝑋2 = 0 4 𝑋1 + 2 3 𝑋2 = 40 ൘ −28 3 EI + 𝑋1 ൘ 2 3 EI + 𝑋2 2 EI = 0 −28 3 + 2 3 𝑋1+2𝑋2 = 0 2 3 𝑋1 + 2 𝑋2 = 28 3 → 1 → 2 𝑿𝟏 = 9.76 mt 𝑿𝟐 = 𝟏. 𝟒𝟏 𝒎𝒕
  • 36. A 4 t/m D 4t 2m 4m 2m 2m 4m 2m 6t 6t B C I I 2I M.S 4 t/m 4t 6t 6t A D B 2m 4m 2m 2m 4m 2m C I I 2I 𝑀𝑜 12 12 4 8 𝑀1 1 𝑀2 1 1mt 1mt δ10 + 𝑿𝟏 δ11 + 𝑿𝟐 δ12 = 0 δ20 + 𝑿𝟏 δ21 + 𝑿𝟐 δ22 = 0 δ10 = ʃ 𝑴𝑶 𝑴𝟏 𝒅𝒍 𝑬𝑰 = 𝟏 𝑬𝑰 [-( 4+8 2 )𝒙𝟏𝟐 x0.5 - 𝟎. 𝟓𝒙𝟒𝒙𝟒 x0.5] = −𝟒𝟎 EI δ11 = ʃ 𝑴𝟏 𝑴𝟏 𝒅𝒍 𝑬𝑰 = 𝟏 𝑬𝑰 [ 8 3 𝒙(𝟏𝒙𝟏) = 4 EI + 4 3 𝒙(𝟏𝒙𝟏) ] δ12 = ʃ 𝑴𝟏 𝑴𝟐 𝒅𝒍 𝑬𝑰 = 𝟏 𝑬𝑰 [4 3 x( 1X1 2 ) ] = ൘ 2 3 EI δ02 = ʃ 𝑴𝑶 𝑴𝟐 𝒅𝒍 𝑬𝑰 = 𝟏 𝑬𝑰 [ - 𝟎. 𝟓𝒙𝟒𝒙𝟒 - 𝟏 𝟐 x0.5 𝒙 2 3 𝒙𝟒𝒙𝟖 x0.5 ]= ൘ −2𝟖 3 EI δ22 = ʃ 𝑴𝟐 𝑴𝟐 𝒅𝒍 𝑬𝑰 = 𝟏 𝑬𝑰 [ 𝒙 4 3 𝒙(𝟏𝒙𝟏) ] 4 3 𝒙(𝟏𝒙𝟏) + 1 2 = 𝟐 EI 4 𝑋1 + 2 3 𝑋2 = 40 2 3 𝑋1 + 2 𝑋2 = 28 3 → 1 → 2 9.76 1.41 𝑤𝑙2 8 =8 D A B C 9.76+1.41 2 =5.58 𝑃𝐿 4 =4 1.58 1 4 𝑋9.76=2.44 3 4 𝑋9.76=7.32 12 9.56 12 4.68 𝑿𝟏 = 9.76 mt 𝑿𝟐 = 𝟏. 𝟒𝟏 𝒎𝒕
  • 37. Structural Analysis Consistent Deformations II Eng. Khaled El-Aswany (Beams) (Support movement)
  • 38. δ10 𝑋1 δ11 δ10 + X1 δ11 = 0 δ10 𝑋1 δ11 δ10 + X1 δ11 = ±∆ Δ
  • 39. 1 𝑡 2 𝑐𝑚 3 X1 δ11 = −𝟎. 𝟎𝟐 δ11 = 𝟏 𝑬𝑰 ʃ 𝑴𝟏𝑴𝟏𝒅𝒍 = 𝟏 𝑬𝑰 ( 𝟔 𝟑 ( 3x3)x 2 ) = 𝟑𝟔 𝑬𝑰 X1 δ11 = ±∆ 2.5𝑡 1.25 𝑡 1.25 𝑡 7.5 B.M.D. Reactions X1 36 𝐸𝐼 = −0.02 X1 36 4500 = −0.02 X1 = −2.5 𝑡 EI = 4500 m2t
  • 40. 1 𝑡 2 𝑐𝑚 3 EI = 4500 m2t δ11 = 𝟏 𝑬𝑰 ʃ 𝑴𝟏𝑴𝟏𝒅𝒍 = 𝟏 𝑬𝑰 ( 𝟔 𝟑 ( 3x3)x 2 ) = 𝟑𝟔 𝑬𝑰 δ10 + X1 δ11 = ±∆ Reactions −𝟐𝟕𝟎𝟎 𝑬𝑰 + X1 36 𝐸𝐼 = −0.02 X1 = 72.5 𝑡 180 M.S. M0 M1 δ10 = 𝟏 𝑬𝑰 ( −𝟐 𝟑 𝒙𝟔𝒙𝟏𝟖𝟎 x( 𝟓 𝟖 𝒙𝟑) x 2 ) = −𝟐𝟕𝟎𝟎 𝑬𝑰 5 8 𝐿 3 8 𝐿 5 8 𝑥3 −𝟐𝟕𝟎𝟎 𝟒𝟓𝟎𝟎 + X1 36 4500 = −0.02 72.5 𝑡 23.75𝑡 23.75𝑡
  • 41. 1 𝑡 2 𝑐𝑚 3 EI = 4500 m2t δ11 = 𝟏 𝑬𝑰 ʃ 𝑴𝟏𝑴𝟏𝒅𝒍 = 𝟏 𝑬𝑰 ( 𝟔 𝟑 ( 3x3)x 2 ) = 𝟑𝟔 𝑬𝑰 δ10 + X1 δ11 = ±∆ B.M.D. −𝟐𝟕𝟎𝟎 𝑬𝑰 + X1 36 𝐸𝐼 = −0.02 X1 = 72.5 𝑡 180 M.S. M0 M1 δ10 = 𝟏 𝑬𝑰 ( −𝟐 𝟑 𝒙𝟔𝒙𝟏𝟖𝟎 x( 𝟓 𝟖 𝒙𝟑) x 2 ) = −𝟐𝟕𝟎𝟎 𝑬𝑰 5 8 𝐿 3 8 𝐿 5 8 𝑥3 −𝟐𝟕𝟎𝟎 𝟒𝟓𝟎𝟎 + X1 36 4500 = −0.02 37.5
  • 42. Structural Analysis Consistent Deformations II Eng. Khaled El-Aswany (Beams) (Extra 1)
  • 43. A 2 t/m B 6t 2m 2m 2m 2m 6t 2m 2m 2m 8mt 2m 6t 4t 4t 8mt C 1m 3I 2I M.S. 9 8 8 4 4 𝟗 2mt 2 Mo 𝟗 1mt 1 M1 1 M2 δ11 = 1 𝐸𝐼 ( 1 3 * 6 3 (1*1)) = 2 3𝐸𝐼 δ22 = 1 𝐸𝐼 ( 1 3 * 6 3 (1*1)) = 2 𝐸𝐼 * 8 3 (1*1)) +( 1 2 δ12 = 1 𝐸𝐼 ( 1 3 * 6 3 ( 1∗1 2 )) = 1 3𝐸𝐼 δ1o = 1 𝐸𝐼 ( 1 3 (- 2 3 x6x9x0.5 = −34 3𝐸𝐼 0.5 - 2+6 2 x8x0.5) δ2o = 1 𝐸𝐼 ( 1 3 (- 2 3 x6x9x0.5- 2+6 2 x8x0.5) +( 1 2 ( 8 3 X 1𝑋2 2 + 6 3 x9x0.75 0.75 + 2 3 x(9x0.75+ 9𝑋1 2 ) 0.5 + 4 3 x(4x0.5+ 4𝑋1 2 ) - 4 3 x(4x0.5) 0.25 - 2 3 x(9x0.25) - 6 3 x(9x0.25+ 9𝑋1 2 )) = −17 3𝐸𝐼 δ10 + 𝒙𝟏 δ11 + 𝒙𝟐 δ12= 0 −𝟑𝟒 𝟑 + 𝟐 𝟑 𝒙𝟏 + 𝟏 𝟑 𝒙𝟐 = 0 𝟐 𝒙𝟏 + 𝒙𝟐 = 34 𝒙𝟏 + 6𝒙𝟐 = 17 𝒙𝟏= 17 𝒙𝟐 = 0 δ20 + 𝒙𝟏 δ21 + 𝒙𝟐 δ22= 0 1mt 1mt
  • 44. A 2 t/m B 6t 2m 2m 2m 2m 6t 2m 2m 2m 8mt 2m 6t 4t 4t 8mt C 1m 3I 2I M.S. 9 8 8 4 4 𝟗 2mt 2 Mo 𝟗 1mt 1 M1 1 M2 0.5 0.75 0.5 0.25 0 A 3I B 6t 2m 2m 2m 2m 6t 2m 2m 2m 8mt 2m 6t 4t 4t 8mt C 1m 2I 2 t/m A 3I 2m 2m 2m 4t 4t 2 t/m 17 8mt B 6t 2m 2m 2m 2m 6t 2m 6t C 1m 2I 8mt 0 𝟏𝟐. 𝟖𝟑 𝟕. 𝟏𝟕 𝟒. 𝟐𝟓 𝟒. 𝟐𝟓 17 4.66 10.34 8 2 2 6.5 3 5 8.5 1mt 1mt
  • 45. Structural Analysis Consistent Deformations II Eng. Khaled El-Aswany (Frames) (Once)
  • 46. 4t A 2 t/m D B C I I 2I 4m 3m 3m 1.19 8 = 4 – 3 = 1 R = U – E 1.19 8 4t 2 t/m A D B C I I 2I 4m 3m 3m M.S. 9 6 Mo 1 1t 4 4 M1 δ10 δ11 = 𝟏 𝑬𝑰 ʃ 𝑴𝟎𝑴𝟏𝒅𝒍 = 𝟏 𝑬𝑰 ʃ 𝑴𝟏𝑴𝟏𝒅𝒍 = 𝟏 𝑬𝑰 [- x 𝟐 𝟑 x 6 x 9 x4 - = −𝟏𝟎𝟖 𝑬𝑰 4 4 𝟏 𝟐 x 𝟏 𝟐 x 6 x 6 x4 ] 𝟏 𝟐 = 𝟏 𝑬𝑰 [ 𝟒 𝟑 x (4x4) + = 𝟗𝟎.𝟔𝟕 𝑬𝑰 x 𝟒 x 6 x4 ] 𝟏 𝟐 x2 𝑿𝟏 = − δ10 δ11 = −( − 108/𝐸𝐼) 90.67/𝐸𝐼 = 1.19 𝑀𝑓 = 𝑀0 + 𝑋1 𝑀1 Mf 𝑀𝑓 = 0 + 1.19 x (-4) = -4.76 4.76 4.76 4.76 4.76 10.24
  • 47. Structural Analysis Consistent Deformations II Eng. Khaled El-Aswany (Frames) (Twice)
  • 48. 8t A 2 t/m D B C 2I 3I I 6m 3m 3m 2m 4t 3m XA YA XD YD =5– 3 = 2 R = U – E MA 8t A 2 t/m D B C 2I 3I I 6m 3m 3m 2m 4t 3m M.S. M0 12 9 16 12 M1 1t 1t 3 3 6 6 M2 1mt 0 δ10 = 𝟏 𝑬𝑰 [ x 3 3 x( 12 x 3) + = 𝟐𝟒𝟎 𝑬𝑰 𝟏 𝟐 6 3 x(16x6+12x3+ 16x3 2 + 12x6 2 ) X4.5 ] - 2 3 x6x9 δ11 = 𝟏 𝑬𝑰 [ x 3 3 x( 3 x 3) + = 𝟏𝟓𝟒.𝟓 𝑬𝑰 𝟏 𝟐 6 3 x(6x6+3x3+ 6x3 2 𝐱𝟐) + x 6 3 x( 6 x 6) ] 𝟏 𝟑 δ12 = 𝟏 𝑬𝑰 [ x 1 2 x6x6 + = 𝟐𝟏 𝑬𝑰 𝟏 𝟑 X 1 6 3 x(6x1+ 3x1 2 ) ] 1 1 1 δ20 = 𝟏 𝑬𝑰 [ = 𝟐𝟔 𝑬𝑰 6 3 x(16x1+12x0+ 16x0 2 + 12x1 2 ) X0.5 ] - 2 3 x6x9 δ22 = 𝟏 𝑬𝑰 [ x (𝟔𝒙𝟏) = 𝟒 𝑬𝑰 𝟏 𝟑 + 6 3 x( 1x1) ] x 𝟏
  • 49. 8t A 2 t/m D B C 2I 3I I 6m 3m 3m 2m 4t 3m YA XD YD =5– 3 = 2 R = U – E 8t A 2 t/m D B C 2I 3I I 6m 3m 3m 2m 4t 3m M.S. M0 12 9 16 12 M1 1t 1t 3 3 6 6 M2 1mt 0 δ10 = 𝟐𝟒𝟎 𝑬𝑰 δ11 = 𝟏𝟓𝟒.𝟓 𝑬𝑰 δ12 = 𝟐𝟏 𝑬𝑰 1 1 1 δ20 = 𝟐𝟔 𝑬𝑰 δ22 = 𝟒 𝑬𝑰 δ10 + 𝑿𝟏 δ11 + 𝑿𝟐 δ12 = 0 δ20 + 𝑿𝟏 δ21 + 𝑿𝟐 δ22 = 0 𝑿𝟏 = -2.34 mt 𝑿𝟐 = 𝟓. 𝟕𝟖 𝒎𝒕 154.5 𝑋1 + 21 𝑋2 = -240 21 𝑋1 + 4 𝑋2 = −26 → 1 → 2 MF 𝑀𝑓 = 𝑀0 + 𝑋1 𝑀1 + 𝑋2 𝑀2 𝑀𝑓 = 𝑀0 -2.34 𝑀1 + 5.78 𝑀2 𝑀𝑓 = (−16) -2.34 (−6) + 5.78 (−1) = -7.74 4.98 8.26 5.78 16 4.98 7.74 2.34 5.78
  • 50. Structural Analysis Consistent Deformations II Eng. Khaled El-Aswany (Frames) (Symmetry)
  • 51. = 5 – 3 = 2 R = U – E 2 t/m A B D C 4m 4m 2 t/m 4m 0 8 8 8 = 6 – 3 = 3 R = U – E 2 t/m A B D C 8m 4m
  • 52. = 5 – 3 = 2 R = U – E 2 t/m A B 4m 4m 2 t/m A B 4m 4m M.S. 𝑀𝑜 16 4 16 16 𝑀1 1mt 1 1 1 1 𝑀2 1t 4 δ11 = 𝟏 𝑬𝑰 [4x1x1 + 4x1x1]= 𝟖 𝑬𝑰 δ22 = 𝟏 𝑬𝑰 [𝟒 𝟑 𝒙(𝟒𝒙𝟒)]= 𝟐𝟏.𝟑𝟑 𝑬𝑰 δ12 = 𝟏 𝑬𝑰 [−𝟏 𝟐 𝒙𝟒𝒙𝟒 𝒙𝟏]= −𝟖 𝑬𝑰 δ20 = 𝟏 𝑬𝑰 [−𝟏 𝟐 𝒙𝟒𝒙𝟒 𝒙𝟏𝟔]= −𝟏𝟐𝟖 𝑬𝑰 δ10 + 𝑿𝟏 δ11 + 𝑿𝟐 δ12 = 0 δ20 + 𝑿𝟏 δ21 + 𝑿𝟐 δ22 = 0 𝑿𝟏 = -7.47 mt 𝑿𝟐 = 𝟑. 𝟐 𝒎𝒕 8 𝑋1 - 8 𝑋2 = -85.33 → 1 -8 𝑋1 + 21.33 𝑋2 = 128 → 2 𝑀𝑓 = 𝑀0 + 𝑋1 𝑀1 + 𝑋2 𝑀2 𝑀𝑓2 = 16 -7.47 (1) + 3.2 (0) = 8.53 𝑀𝑓 = 𝑀0 -7.47 𝑀1 + 3.2 𝑀2 𝑀𝑓3 = 16 -7.47 (1) + 3.2 (-4) = -4.27 1 2 3 𝑀𝐹 δ10= 𝟏 𝑬𝑰 [( 1 2 x4 x 16) 𝐱𝟏 − 𝟐 𝟑 𝒙𝟒𝒙𝟒 𝒙𝟏 +𝟒𝒙𝟏𝟔 𝒙𝟏 ] = 𝟖𝟓.𝟑𝟑 𝑬𝑰 7.47 8.53 8.53 4.27
  • 53. = 5 – 3 = 2 R = U – E 2 t/m A B 4m 4m 2 t/m A B 4m 4m M.S. 𝑀𝑜 16 4 16 16 𝑀1 1mt 1 1 1 1 𝑀2 1t 4 δ11 = 𝟏 𝑬𝑰 [4x1x1 + 4x1x1]= 𝟖 𝑬𝑰 δ22 = 𝟏 𝑬𝑰 [𝟒 𝟑 𝒙(𝟒𝒙𝟒)]= 𝟐𝟏.𝟑𝟑 𝑬𝑰 δ12 = 𝟏 𝑬𝑰 [−𝟏 𝟐 𝒙𝟒𝒙𝟒 𝒙𝟏]= −𝟖 𝑬𝑰 δ20 = 𝟏 𝑬𝑰 [−𝟏 𝟐 𝒙𝟒𝒙𝟒 𝒙𝟏𝟔]= −𝟏𝟐𝟖 𝑬𝑰 δ10 + 𝑿𝟏 δ11 + 𝑿𝟐 δ12 = 0 δ20 + 𝑿𝟏 δ21 + 𝑿𝟐 δ22 = 0 𝑿𝟏 = -7.47 mt 𝑿𝟐 = 𝟑. 𝟐 𝒎𝒕 8 𝑋1 - 8 𝑋2 = -85.33 → 1 -8 𝑋1 + 21.33 𝑋2 = 128 → 2 𝑀𝐹 δ10= 𝟏 𝑬𝑰 [( 1 2 x4 x 16) 𝐱𝟏 − 𝟐 𝟑 𝒙𝟒𝒙𝟒 𝒙𝟏 +𝟒𝒙𝟏𝟔 𝒙𝟏 ] = 𝟖𝟓.𝟑𝟑 𝑬𝑰 7.47 8.53 8.53 4.27 8.53 8.53 4.27
  • 54. 1 Structural Fantasy 3 Using the consistent deformation method Draw the B.M.D. for the shown frames. 2 t/m A B D C 3m 3m 3m 2m 2m H E J I 3m 3m 3m 2m 2m 4m F G 8t 8t 4t 8t 8t 4t 6m 2 t/m A B E C D 4t 2t 2t 6m 3m 3m 3m 2m 3m 2m 4t 2 t/m A B E C D 6t 6t 6m 3m 3m 3m 2m 3m 2m 3m 2 Exercise
  • 55. Structural Analysis Consistent Deformations II Eng. Khaled El-Aswany (Frames) (Support movement)
  • 56. Draw B.M.D. due to the given loads and right horizontal movement of support A by 2 cm. EI = 20000 m2t. 6t A 2 t/m D B C 4m 6m 0.92 YA = 4 – 3 = 1 R = U – E 6.92 YD 6t 2 t/m A D B C 4m 6m M.S. Mo 24 24 9 M1 1t 1t 4 4 4 4 δ10 = 𝟏 𝑬𝑰 ʃ 𝑴𝟎𝑴𝟏𝒅𝒍 = 𝟏 𝑬𝑰 [ 𝟒 𝟑 x (24x4) - 𝟐 𝟑 x 6 x 9 x4 + = 𝟐𝟕𝟐 𝑬𝑰 𝟏 𝟐 x 6 x 24 x4 ] δ11 = 𝟏 𝑬𝑰 ʃ 𝑴𝟏𝑴𝟏𝒅𝒍 = 𝟏 𝑬𝑰 [ 𝟒 𝟑 x (4x4) + = 𝟏𝟑𝟖.𝟔𝟕 𝑬𝑰 𝟒 x 6 x4 ] x2 δ10 + X1 δ11 = 0.02 𝟐𝟕𝟐 𝟐𝟎𝟎𝟎𝟎 + X1 138.67 20000 = 0.02 X1 = 0.92 𝑡 Mf 3.68 27.68 27.68 3.68 15.68
  • 58. R = U - E R = ( m + r ) - 2j 1 2 3 4 5 6 7 8 9 10 11 12 13 R = ( 13+ 3) - 2x8 = 0 (Determinate) 1 2 3 4 5 6 7 8 9 10 11 12 13 R = ( m + r ) - 2j R = ( 13+ 4) - 2x8 = 1 (Once indeterminate) (External) 1 2 3 4 5 6 7 8 9 10 11 12 13 R = ( m + r ) - 2j R = ( 14+ 3) - 2x8 = 1 (Once indeterminate) (Internal) 14 1 2 3 4 5 6 7 8 9 10 11 12 13 R = ( m + r ) - 2j R = ( 14+ 4) - 2x8 = 2 (Twice indeterminate) (External & Internal) 14
  • 59. R = U - E R = ( m + r ) - 2j 1 2 3 4 5 6 7 8 9 10 11 12 13 R = ( 13+ 3) - 2x8 = 0 (Determinate) 1 2 3 4 5 6 7 8 9 10 11 12 13 R = ( m + r ) - 2j R = ( 13+ 4) - 2x8 = 1 (Once indeterminate) (External) 1 2 3 4 5 6 7 8 9 10 11 12 13 R = ( m + r ) - 2j R = ( 14+ 3) - 2x8 = 1 (Once indeterminate) (Internal) 14 1 2 3 4 5 6 7 8 9 10 11 12 13 R = ( m + r ) - 2j R = ( 14+ 4) - 2x8 = 2 (Twice indeterminate) (External & Internal) 14 δ10 + 𝑿𝟏 δ11 = 0 A B N0 6 6 A B N1 1 1 δ10 = 𝟏 𝑬𝑨 ʃ 𝑵𝑶𝑵𝟏𝒅𝒍 4m = 𝟏 𝑬𝑨 ( -6 x 4 x 1 N0 N1 L C D C D + ……… + ...……) N0 N1 L N0 N1 L δ10 = ΣNON1L EA δ11 = ΣN1N1L EA Zero force members 2 members 3 members P
  • 60. Structural Analysis Consistent Deformations II Eng. Khaled El-Aswany (Trusses) (Example 1)
  • 61. R = ( m + r ) - 2j R = ( 13+ 4) - 2x8 = 1 (Once indeterminate) (External) 4t 4t 4t 4m 4m 4m 4m 6t 6t 𝜃 𝜃 𝜃 𝜃 𝜃 𝜃 𝜃 𝜃 3m 4t 4t 4t 4m 4m 4m 4m 1 2 3 4 5 6 7 8 9 10 11 12 13 3m 0 M.S.
  • 62. R = ( m + r ) - 2j R = ( 13+ 4) - 2x8 = 1 (Once indeterminate) (External) 4t 4t 4t 4m 4m 4m 4m 6t 6t 0 M.S. 𝜃 𝜃 𝜃 𝜃 𝜃 𝜃 𝜃 𝜃 4𝑚 3𝑚 5𝑚 3m 4t 4t 4t 4m 4m 4m 4m 1 2 3 4 5 6 7 8 9 10 11 12 13 3m 𝜃 cos 𝜃 = 4 5 = 0.8 sin 𝜃 = 3 5 = 0.6 4 4 No
  • 63. R = ( m + r ) - 2j R = ( 13+ 4) - 2x8 = 1 (Once indeterminate) (External) 4t 4t 4t 4m 4m 4m 4m 6t 6t 0 𝜃 𝜃 𝜃 𝜃 𝜃 𝜃 𝜃 𝜃 4𝑚 3𝑚 5𝑚 3m 4t 4t 4t 4m 4m 4m 4m 1 2 3 4 5 6 7 8 9 10 11 12 13 3m 𝜃 cos 𝜃 = 4 5 = 0.8 sin 𝜃 = 3 5 = 0.6 𝐹1 𝐹2 𝐹1sin 𝜃 𝐹1cos 𝜃 4 4 Σ𝐹𝑦 = 0 𝐹1sin 𝜃 + 6 = 0 𝐹1= −6 sin θ = −6 0.6 = -10 t (𝐶𝑜𝑚𝑝𝑟𝑒𝑠𝑖𝑜𝑛) No Σ𝐹𝑥 = 0 𝐹1cos 𝜃 + 𝐹2 = 0 (𝑇𝑒𝑛𝑠𝑖𝑜𝑛) −10 x0.8+ 𝐹2 = 0 𝐹2 = 8t
  • 64. R = ( m + r ) - 2j R = ( 13+ 4) - 2x8 = 1 (Once indeterminate) (External) 4t 4t 4t 4m 4m 4m 4m 6t 6t 0 M.S. 𝜃 𝜃 𝜃 𝜃 𝜃 𝜃 𝜃 𝜃 4𝑚 3𝑚 5𝑚 3m 4t 4t 4t 4m 4m 4m 4m 1 2 3 4 5 6 7 8 9 10 11 12 13 3m 𝜃 cos 𝜃 = 4 5 = 0.8 sin 𝜃 = 3 5 = 0.6 4 4 No 10 8 8
  • 65. R = ( m + r ) - 2j R = ( 13+ 4) - 2x8 = 1 (Once indeterminate) (External) 4t 4t 4t 4m 4m 4m 4m 6t 6t 0 M.S. 𝜃 𝜃 𝜃 𝜃 𝜃 𝜃 𝜃 𝜃 4𝑚 3𝑚 5𝑚 3m 4t 4t 4t 4m 4m 4m 4m 1 2 3 4 5 6 7 8 9 10 11 12 13 3m 𝜃 cos 𝜃 = 4 5 = 0.8 sin 𝜃 = 3 5 = 0.6 4 4 No 10 8 8 𝐹3 𝐹4 10cos𝜃 10sin𝜃 𝐹3 cos𝜃 𝐹3 sin𝜃 Σ𝐹𝑦 = 0 10sin 𝜃 - 4 - 𝐹3sin 𝜃 = 0 (𝑇𝑒𝑛𝑠𝑖𝑜𝑛) Σ𝐹𝑥 = 0 𝐹3cos 𝜃 + 𝐹4 + 10cos 𝜃 = 0 (𝐶𝑜𝑚𝑝𝑒𝑟𝑠𝑖𝑜𝑛) 𝐹4 = -10.67t 𝐹3 = 3.33t 3.33cos 𝜃 + 𝐹4 + 10cos 𝜃 = 0
  • 66. R = ( m + r ) - 2j R = ( 13+ 4) - 2x8 = 1 (Once indeterminate) (External) 4t 4t 4t 4m 4m 4m 4m 6t 6t 0 M.S. 𝜃 𝜃 𝜃 𝜃 𝜃 𝜃 𝜃 𝜃 4𝑚 3𝑚 5𝑚 3m 4t 4t 4t 4m 4m 4m 4m 1 2 3 4 5 6 7 8 9 10 11 12 13 3m 𝜃 cos 𝜃 = 4 5 = 0.8 sin 𝜃 = 3 5 = 0.6 4 4 No 10 8 8 3.33 10.67
  • 67. R = ( m + r ) - 2j R = ( 13+ 4) - 2x8 = 1 (Once indeterminate) (External) 4t 4t 4t 4m 4m 4m 4m 6t 6t 0 M.S. 𝜃 𝜃 𝜃 𝜃 𝜃 𝜃 𝜃 𝜃 4𝑚 3𝑚 5𝑚 3m 4t 4t 4t 4m 4m 4m 4m 1 2 3 4 5 6 7 8 9 10 11 12 13 3m 𝜃 cos 𝜃 = 4 5 = 0.8 sin 𝜃 = 3 5 = 0.6 4 4 No 10 8 8 3.33 10.67 3.33 10.67 8 8 10
  • 68. R = ( m + r ) - 2j R = ( 13+ 4) - 2x8 = 1 (Once indeterminate) (External) 4t 4t 4t 4m 4m 4m 4m 6t 6t 0 M.S. 𝜃 𝜃 𝜃 𝜃 𝜃 𝜃 𝜃 𝜃 4𝑚 3𝑚 5𝑚 3m 4t 4t 4t 4m 4m 4m 4m 1 2 3 4 5 6 7 8 9 10 11 12 13 3m 𝜃 cos 𝜃 = 4 5 = 0.8 sin 𝜃 = 3 5 = 0.6 4 4 No 8 8 3.33 3.33 8 8 4m 4m 4m 4m 3m 0 0 1t 1t N1 10 10.67 10.67 10 1 1 1 1
  • 69. R = ( m + r ) - 2j R = ( 13+ 4) - 2x8 = 1 (Once indeterminate) (External) 4t 4t 4t 4m 4m 4m 4m 6t 6t 0 𝜃 𝜃 𝜃 𝜃 𝜃 𝜃 𝜃 𝜃 4𝑚 3𝑚 5𝑚 3m 4t 4t 4t 4m 4m 4m 4m 1 2 3 4 5 6 7 8 9 10 11 12 13 3m 𝜃 cos 𝜃 = 4 5 = 0.8 sin 𝜃 = 3 5 = 0.6 4 4 No -10 8 8 3.33 -10.67 3.33 −10.67 8 8 -10 4m 4m 4m 4m 3m 1t 1t -1 -1 -1 -1 N1 Mem. L No N1 NoN1L N1N1L Nf 1 4 8 -1 -32 4 0 2 4 8 -1 -32 4 0 3 4 8 -1 -32 4 0 4 4 8 -1 -32 4 0 5 5 -10 0 0 0 -10 6 3 4 0 0 0 4 7 5 3.33 0 0 0 3.33 8 3 0 0 0 0 0 9 5 3.33 0 0 0 3.33 10 3 4 0 0 0 4 11 5 -10 0 0 0 -10 12 4 -10.67 0 0 0 -10.67 13 4 -10.67 0 0 0 -1067 -128 16 δ10 = 𝛴N ON1L EA = −128 EA δ11 = 𝛴N1N1L EA = 16 EA X1 = −δ10 δ11 = −(−128)/𝐸𝐴 16/EA = 8t Nf = N0 + X1 N1
  • 70. Structural Analysis Consistent Deformations II Eng. Khaled El-Aswany (Trusses) (Example 2)
  • 71. R = ( m + r ) - 2j R = ( 14+ 3) - 2x8 = 1 (Once indeterminate) (Internal) No 0 3m 4m 4m 4m 4t 6t 6t 4t 10t 10t 3m 4m 4m 4m 4t 6t 6t 4t 1 2 3 4 5 6 7 8 13 9 10 11 12 14 2A 2A 2A 𝜃 𝜃 𝜃 𝜃 𝜃 𝜃 𝜃
  • 72. R = ( m + r ) - 2j R = ( 14+ 3) - 2x8 = 1 (Once indeterminate) (Internal) No 0 3m 4m 4m 4m 4t 6t 6t 4t 10t 10t 3m 4m 4m 4m 4t 6t 6t 4t 1 2 3 4 5 6 7 8 13 9 10 11 12 14 2A 2A 2A 𝜃 𝜃 𝜃 𝜃 𝜃 𝜃 4 10 6 𝜃 4𝑚 3𝑚 5𝑚 cos 𝜃 = 4 5 = 0.8 sin 𝜃 = 3 5 = 0.6
  • 73. R = ( m + r ) - 2j R = ( 14+ 3) - 2x8 = 1 (Once indeterminate) (Internal) No 3m 4m 4m 4m 4t 6t 6t 4t 10t 10t 3m 4m 4m 4m 4t 6t 6t 4t 1 2 3 4 5 6 7 8 13 9 10 11 12 14 2A 2A 2A 𝜃 𝜃 𝜃 𝜃 𝜃 𝜃 10 6 4 𝜃 4𝑚 3𝑚 5𝑚 cos 𝜃 = 4 5 = 0.8 sin 𝜃 = 3 5 = 0.6
  • 74. R = ( m + r ) - 2j R = ( 14+ 3) - 2x8 = 1 (Once indeterminate) (Internal) No 3m 4m 4m 4m 4t 6t 6t 4t 10t 10t 3m 4m 4m 4m 4t 6t 6t 4t 1 2 3 4 5 6 7 8 13 9 10 11 12 14 2A 2A 2A 𝜃 𝜃 𝜃 𝜃 𝜃 𝜃 10 6 4 𝐹1 𝐹2 𝐹1sin 𝜃 𝐹1cos 𝜃 Σ𝐹𝑦 = 0 𝐹1sin 𝜃 -4 +10 = 0 𝐹1= -10 t (𝐶𝑜𝑚𝑝𝑟𝑒𝑠𝑖𝑜𝑛) Σ𝐹𝑥 = 0 𝐹1cos 𝜃 + 𝐹2 = 0 (𝑇𝑒𝑛𝑠𝑖𝑜𝑛) −10 x0.8+ 𝐹2 = 0 𝐹2 = 8t 𝜃 4𝑚 3𝑚 5𝑚 cos 𝜃 = 4 5 = 0.8 sin 𝜃 = 3 5 = 0.6
  • 75. R = ( m + r ) - 2j R = ( 14+ 3) - 2x8 = 1 (Once indeterminate) (Internal) No 3m 4m 4m 4m 4t 6t 6t 4t 10t 10t 3m 4m 4m 4m 4t 6t 6t 4t 1 2 3 4 5 6 7 8 13 9 10 11 12 14 2A 2A 2A 𝜃 𝜃 𝜃 𝜃 𝜃 𝜃 10 6 4 𝜃 4𝑚 3𝑚 5𝑚 cos 𝜃 = 4 5 = 0.8 sin 𝜃 = 3 5 = 0.6 10 8
  • 76. R = ( m + r ) - 2j R = ( 14+ 3) - 2x8 = 1 (Once indeterminate) (Internal) No 3m 4m 4m 4m 4t 6t 6t 4t 10t 10t 3m 4m 4m 4m 4t 6t 6t 4t 1 2 3 4 5 6 7 8 13 9 10 11 12 14 2A 2A 2A 𝜃 𝜃 𝜃 𝜃 𝜃 𝜃 10 6 4 𝜃 4𝑚 3𝑚 5𝑚 cos 𝜃 = 4 5 = 0.8 sin 𝜃 = 3 5 = 0.6 10 8 8
  • 77. R = ( m + r ) - 2j R = ( 14+ 3) - 2x8 = 1 (Once indeterminate) (Internal) No 3m 4m 4m 4m 4t 6t 6t 4t 10t 10t 3m 4m 4m 4m 4t 6t 6t 4t 1 2 3 4 5 6 7 8 13 9 10 11 12 14 2A 2A 2A 𝜃 𝜃 𝜃 𝜃 𝜃 𝜃 10 6 4 𝜃 4𝑚 3𝑚 5𝑚 cos 𝜃 = 4 5 = 0.8 sin 𝜃 = 3 5 = 0.6 10 8 8 𝐹3 𝐹4 10cos𝜃 10sin𝜃 𝐹3 cos𝜃 𝐹3 sin𝜃 Σ𝐹𝑦 = 0 10sin 𝜃 - 6 - 𝐹3sin 𝜃 = 0 Σ𝐹𝑥 = 0 𝐹3cos 𝜃 + 𝐹4 + 10cos 𝜃 = 0 (𝐶𝑜𝑚𝑝𝑒𝑟𝑠𝑖𝑜𝑛) 𝐹4 = - 8t 𝐹3 = 0 0 + 𝐹4 + 10cos 𝜃 = 0
  • 78. R = ( m + r ) - 2j R = ( 14+ 3) - 2x8 = 1 (Once indeterminate) (Internal) No 3m 4m 4m 4m 4t 6t 6t 4t 10t 10t 3m 4m 4m 4m 4t 6t 6t 4t 1 2 3 4 5 6 7 8 13 9 10 11 12 14 2A 2A 2A 𝜃 𝜃 𝜃 𝜃 𝜃 𝜃 10 6 4 𝜃 4𝑚 3𝑚 5𝑚 cos 𝜃 = 4 5 = 0.8 sin 𝜃 = 3 5 = 0.6 10 8 8 8 8
  • 79. R = ( m + r ) - 2j R = ( 14+ 3) - 2x8 = 1 (Once indeterminate) (Internal) No 3m 4m 4m 4m 4t 6t 6t 4t 10t 10t 3m 4m 4m 4m 4t 6t 6t 4t 1 2 3 4 5 6 7 8 13 9 10 11 12 14 2A 2A 2A 𝜃 𝜃 𝜃 𝜃 𝜃 𝜃 10 6 4 𝜃 4𝑚 3𝑚 5𝑚 cos 𝜃 = 4 5 = 0.8 sin 𝜃 = 3 5 = 0.6 10 8 8 8 8
  • 80. R = ( m + r ) - 2j R = ( 14+ 3) - 2x8 = 1 (Once indeterminate) (Internal) No 3m 4m 4m 4m 4t 6t 6t 4t 10t 10t 3m 4m 4m 4m 4t 6t 6t 4t 1 2 3 4 5 6 7 8 13 9 10 11 12 14 2A 2A 2A 𝜃 𝜃 𝜃 𝜃 𝜃 𝜃 10 6 4 𝜃 4𝑚 3𝑚 5𝑚 cos 𝜃 = 4 5 = 0.8 sin 𝜃 = 3 5 = 0.6 10 8 8 8 8 𝐹5 𝐹5 cos𝜃 𝐹5 sin𝜃 Σ𝐹𝑦 = 0 10 - 4 - 𝐹5sin 𝜃 = 0 Σ𝐹𝑥 = 0 𝐹5cos 𝜃 - 8 = 0 (𝑇𝑒𝑛𝑠𝑖𝑜𝑛) 𝐹5 = 10t 𝐹5 = 10t
  • 81. R = ( m + r ) - 2j R = ( 14+ 3) - 2x8 = 1 (Once indeterminate) (Internal) No 3m 4m 4m 4m 4t 6t 6t 4t 10t 10t 3m 4m 4m 4m 4t 6t 6t 4t 1 2 3 4 5 6 7 8 13 9 10 11 12 14 2A 2A 2A 𝜃 𝜃 𝜃 𝜃 𝜃 𝜃 -10 -6 -4 𝜃 4𝑚 3𝑚 5𝑚 cos 𝜃 = 4 5 = 0.8 sin 𝜃 = 3 5 = 0.6 -10 8 8 −8 −8 10
  • 82. R = ( m + r ) - 2j R = ( 14+ 3) - 2x8 = 1 (Once indeterminate) (Internal) No 3m 4m 4m 4m 4t 6t 6t 4t 10t 10t 3m 4m 4m 4m 4t 6t 6t 4t 1 2 3 4 5 6 7 8 13 9 10 11 12 14 2A 2A 2A 𝜃 𝜃 𝜃 𝜃 𝜃 𝜃 -10 -6 -4 𝜃 4𝑚 3𝑚 5𝑚 cos 𝜃 = 4 5 = 0.8 sin 𝜃 = 3 5 = 0.6 -10 8 8 −8 −8 10 3m 4m 4m 4m 0 N1 0 1t 1t 𝜃 -0.8 -0.6 𝜃 -0.8 -0.6 𝜃 1
  • 83. R = ( m + r ) - 2j R = ( 14+ 3) - 2x8 = 1 (Once indeterminate) (Internal) No 3m 4m 4m 4m 4t 6t 6t 4t 10t 10t 3m 4m 4m 4m 4t 6t 6t 4t 1 2 3 4 5 6 7 8 13 9 10 11 12 14 2A 2A 2A 𝜃 𝜃 𝜃 𝜃 𝜃 𝜃 -10 -6 -4 𝜃 4𝑚 3𝑚 5𝑚 cos 𝜃 = 4 5 = 0.8 sin 𝜃 = 3 5 = 0.6 -10 8 8 −8 −8 10 3m 4m 4m 4m 0 N1 0 𝜃 𝜃 𝜃 1 δ10 = 𝛴N ON1L EA δ11 = 𝛴N 1N1L EA X1 = −δ10 δ11 = −(−2)/𝐸𝐴 16/EA = 0.125t δ10 + X1 δ11 = 0 = 1 EA [ 1t 1t -0.8 -0.6 -0.8 -0.6 8x-0.8x4 -6x-0.6x3 + 1 2 x-8x-0.8x4] = −2 EA = 1 EA [ )0.8(2x4 +)0.6(2x3 x2+)1(2x5 x2 + 1 2 )0.8(2x4] = 16 EA
  • 84. R = ( m + r ) - 2j R = ( 14+ 3) - 2x8 = 1 (Once indeterminate) (Internal) No 3m 4m 4m 4m 4t 6t 6t 4t 10t 10t 3m 4m 4m 4m 4t 6t 6t 4t 1 2 3 4 5 6 7 8 13 9 10 11 12 14 2A 2A 2A 𝜃 𝜃 𝜃 𝜃 𝜃 𝜃 -10 -6 -4 𝜃 4𝑚 3𝑚 5𝑚 cos 𝜃 = 4 5 = 0.8 sin 𝜃 = 3 5 = 0.6 -10 8 8 −8 −8 10 3m 4m 4m 4m 0 N1 0 𝜃 𝜃 𝜃 1 1t 1t -0.8 -0.6 -0.8 -0.6 Mem. L No N1 A 1 4 0 0 1 2 4 8 -0.8 1 3 4 8 0 1 4 3 -10 0 1 5 5 10 0 1 6 3 -6 -0.6 1 7 5 0 1 1 8 5 0 1 1 9 3 0 -0.6 1 10 5 -10 0 1 11 3 -4 0 1 12 4 -8 0 2 13 4 -8 -0.8 2 14 4 0 0 2
  • 85. R = ( m + r ) - 2j R = ( 14+ 3) - 2x8 = 1 (Once indeterminate) (Internal) No 3m 4m 4m 4m 4t 6t 6t 4t 10t 10t 3m 4m 4m 4m 4t 6t 6t 4t 1 2 3 4 5 6 7 8 13 9 10 11 12 14 2A 2A 2A 𝜃 𝜃 𝜃 𝜃 𝜃 𝜃 -10 -6 -4 𝜃 4𝑚 3𝑚 5𝑚 cos 𝜃 = 4 5 = 0.8 sin 𝜃 = 3 5 = 0.6 -10 8 8 −8 −8 10 3m 4m 4m 4m 0 N1 0 𝜃 𝜃 𝜃 1 1t 1t -0.8 -0.6 -0.8 -0.6 Mem. L No N1 A 𝑁𝑜𝑁1𝐿 𝑨 𝑁𝟏𝑁1𝐿 𝑨 Nf 1 4 0 0 1 0 0 0 2 4 8 -0.8 1 -25.6 2.56 7.9 3 4 8 0 1 0 0 8 4 3 -10 0 1 0 0 -10 5 5 10 0 1 0 0 10 6 3 -6 -0.6 1 10.8 1.08 -6.075 7 5 0 1 1 0 5 0.125 8 5 0 1 1 0 5 0.125 9 3 0 -0.6 1 0 1.08 -0.075 10 5 -10 0 1 0 0 -10 11 3 -4 0 1 0 0 -4 12 4 -8 0 2 0 0 -8 13 4 -8 -0.8 2 12.8 1.28 -8.1 14 4 0 0 2 0 0 0 -2 16 δ10 = −2 EA δ11 = 16 EA X1 = 0.125t
  • 86. Structural Analysis Consistent Deformations II Eng. Khaled El-Aswany (Trusses) (Example 3)
  • 87. B 3m 4t 6t 4t 1 2 3 4 5 6 7 10 R = ( m + r ) - 2j R = ( 10+ 4) - 2x6 = 2 (Twice indeterminate) 8 9 3m 3m A A 3m 3m 3m 4t 6t 4t B 7𝑡 7𝑡 0 No -7 -7 -6 45° -3 -3 A 3m 3m 3m B N1 1𝑡 0 0 1𝑡 -1 -1 A 3m 3m 3m B N2 1𝑡 1𝑡 0 0 0 −1 2 −1 2 −1 2 −1 2 1𝑡 δ10 + X1 δ11 + X2 δ12 = 0 δ20 + X1 δ21 + X2 δ22 = 0 δ10 = 0 δ20 = 51.94 EA δ11 = 6 EA δ22 = 14.49 EA δ12 = 2.12 EA X1 = 1.34 𝑡 X2 = −3.78 𝑡 Nf = N0 + X1 N1 + X2 N2 Nf = N0 + 1.34 N1 -3.78 N2 6 X1 + 2.12 X2 = 0 → 1 2.12 X1 + 14.49 X2 = -51.94 → 2 Mem. L No N1 N2 NoN1L NoN2L N1N1L N2N2L N1N2L Nf 1 3 0 -1 0 0 0 3 0 0 -1.34 2 3 0 -1 −1 / 2 0 0 3 1.5 𝟑/ 𝟐 1.34 3 3 -7 0 0 0 0 0 0 0 -7 4 3 2 3 2 0 0 0 0 0 0 0 4.24 5 3 -6 0 −1 / 2 0 𝟏𝟖/ 𝟐 0 1.5 0 -3.33 6 3 2 0 0 1 0 0 0 𝟑 𝟐 0 -3.78 7 3 2 3 2 0 1 0 𝟏𝟖 0 𝟑 𝟐 0 0.46 8 3 -7 0 −1 / 2 0 𝟐𝟏/ 𝟐 0 1.5 0 -4.33 9 3 -3 0 0 0 0 0 0 0 -3 51.94 0 6 14.49 2.12
  • 88. 1 Structural Fantasy 3 2 8t 6m A B 𝑭𝟏 𝑭𝟐 𝑭𝟖 𝑭𝟗 𝑭𝟑 𝑭𝟒 𝑭𝟓 𝑭𝟔 𝑭𝟕 6m 6m 8t [𝒀𝑨 = 𝟖𝒕, 𝑭𝟖 = 𝟏𝟔 𝒕] [𝑭𝟏 = −𝟒. 𝟖𝟏𝒕, 𝑭𝟏𝟎 = 𝟑. 𝟗𝟖 𝒕] 3t 4m A B 𝑭𝟏 𝑭𝟐 𝑭𝟖 𝑭𝟗 𝑭𝟑 𝑭𝟒 𝑭𝟓 𝑭𝟔 𝑭𝟕 4m 3m 3m 𝑭𝟏𝟎 C [𝑿𝑨 = 𝟒. 𝟐𝟓𝒕, 𝑭𝟔 = −𝟒. 𝟓 𝒕] A 𝑭𝟏 𝑭𝟖 𝑭𝟏𝟔 𝑭𝟏𝟕 𝑭𝟐 𝑭𝟓 𝑭𝟗 𝑭𝟔 3m 3m 8t 4A 𝑭𝟏𝟖 𝑭𝟏𝟗 B 𝑭𝟑 𝑭𝟒 𝑭𝟕 𝑭𝟏𝟎 𝑭𝟏𝟏 𝑭𝟏𝟐 𝑭𝟏𝟑 𝑭𝟏𝟒 𝑭𝟏𝟓 3m 3m 8t 4t 4t 4t 3m 3m [𝑭𝟏 = 𝟒. 𝟖𝟓𝒕, 𝑭𝟔 = −𝟓. 𝟎𝟓 𝒕] 2m A B 𝑭𝟏 𝑭𝟐 𝑭𝟖 𝑭𝟔 𝑭𝟕 4m 10t 𝑭𝟑 𝑭𝟒 𝑭𝟓 1.5m 1.5m 4 Using the consistent deformation method Find the forces in all members. Exercise
  • 89. Structural Analysis Consistent Deformations II Eng. Khaled El-Aswany (Trusses) (Support movement)
  • 90. No load Effect Support movements Temperature Effects Fabrication Errors
  • 91. Support movements A w t/m B No movement: w t/m A B A B δ10 1t δ11 δ10 + X δ11 = 0 A w t/m B Movement: A w t/m B A B δ10 X δ11 δ10 + X δ11 = ±∆ ∆ Determine the internal forces in members for the shown truss due to the external loads and settlement of 2 cm at support B. 3m 4m 4m 4t A B C 3m 4m 4m A B C 3m 4m 4m 4t A B C M.S. δ10 + X δ11 = 𝟎. 𝟎𝟐 𝑬𝑨 + X 𝑬𝑨 = 𝟎. 𝟎𝟐 EA = 10000 t Answer X
  • 92. 4t 4t 4t 4m 4m 4m 4m 6t 6t 0 𝜃 𝜃 𝜃 𝜃 𝜃 𝜃 𝜃 𝜃 3m 4 4 No -10 8 8 3.33 -10.67 3.33 −10.67 8 8 -10 4m 4m 4m 4m 3m 1t 1t -1 -1 -1 -1 N1 Mem. L No N1 NoN1L N1N1L 1 4 8 -1 -32 4 2 4 8 -1 -32 4 3 4 8 -1 -32 4 4 4 8 -1 -32 4 5 5 -10 0 0 0 6 3 4 0 0 0 7 5 3.33 0 0 0 8 3 0 0 0 0 9 5 3.33 0 0 0 10 3 4 0 0 0 11 5 -10 0 0 0 12 4 -10.67 0 0 0 13 4 -10.67 0 0 0 -128 16 δ10 = 𝛴N ON1L EA = −128 EA δ11 = 𝛴N1N1L = 16 X1 = −δ10 δ11 = −(−128)/𝐸𝐴 16/EA = 8t Nf = N0 + X1 N1 Determine the internal forces in members for the shown truss due to the external loads and right horizontal movement of 2 cm at support B. EA = 10000 t 3m A B 4t 4t 4t 4m 4m 4m 4m
  • 93. Structural Analysis Consistent Deformations II Eng. Khaled El-Aswany (Trusses) (Temperature)
  • 94. Loads δ10 + X1 δ11 = 0 Temperature Temperature Effects No load Effect Loads & Temperature 8t δ1t + X1 δ11 = 0 δ1t + δ10 + X1 δ11 = 0 Loads: δ10 + X1 δ11 = 0 Temp.: δ1t + 𝑿𝟏 ′ δ11 = 0 Total: Xtot = X1 +𝑿𝟏 ′ δ1t = Σ𝜶. ∆𝒕. 𝑵𝟏. 𝑳 δ1t = 𝜶. ∆𝒕. Σ𝑵𝟏. 𝑳 OR δ10 + X1 δ11 + X2 δ12 = 0 δ20 + X1 δ21 + X2 δ22 = 0 δ1t + X1 δ11 + X2 δ12 = 0 δ2t + X1 δ21 + X2 δ22 = 0 δ1t + δ10 +X1 δ11 + X2 δ12 = 0 δ2t + δ20 +X1 δ21 + X2 δ22 = 0 8t 10t 10t δ1t = Σ𝜶. ∆𝒕. 𝑵𝟏. 𝑳 δ2t = Σ𝜶. ∆𝒕. 𝑵𝟐. 𝑳 10−5 Rise (+) Drop (−) Tension (+) compression (−) ONCE TWICE
  • 95. 𝜃 -1.67 Determine the internal forces in members for the shown truss due to the external loads and rise of temperature 100oC. 𝛼 = 1𝑥10−5 /𝑜𝐶 8m B 6t 6t 6m A Example 1 EA = 45000 t R = ( m + r ) - 2j R = ( 5+ 4) - 2x4= 1 (Once indeterminate) 6𝑥8 − 𝑌𝑏𝑥6 = 0 𝑌𝑏 = 8𝑡 Ʃ𝑀𝐴 = 0 𝜃 𝑆𝑖𝑛𝜃 = 8 10 𝑐𝑜𝑠𝜃 = 6 10 6m 8m 10m 8m B 6t 6t 6m A 6t 8t 2t 𝜃 𝜃 𝜃 𝜃 -8 -6 -6 10 No 8m 6m N1 B A 0 0 1t 1t 𝜃 𝜃 1.33 -1.67 1.33 1 𝜃 𝐹1 𝐹2 𝐹3 𝐹4 𝐹5 Mem. L No N1 NoN1L N1N1L N1L Nf 1 8 -6 1.333 -64 14.22 10.67 3.21 2 10 10 -1.667 -166.7 27.78 -16.67 -1.52 3 10 0 -1.667 0 27.78 -16.67 -11.52 4 8 -8 1.333 -85.33 14.22 10.67 1.21 5 6 -6 1 -36 6 6 0.91 -352 90 -6 Due to loads δ10 + X1 δ11 = 0 δ1t + X1 ’ δ11 = 0 X1 = 3.91 t δ1t = 𝛼. ∆𝑡. 𝛴𝑁1. 𝐿 Due to temperature δ1t = 1𝑥10−5 𝑥100𝑥 − 6 = −0.006 X1 ’ = 3t -0.006 + X1 ’ 𝟗𝟎 𝟒𝟓𝟎𝟎𝟎 = 0 Xtot = X1 +𝑿𝟏 ′ = 𝟔. 𝟗𝟏𝒕 Total Nf = N0 + Xtot N1
  • 96. B 3m 4t 6t 4t 1 2 3 4 5 6 7 10 R = ( m + r ) - 2j R = ( 10+ 4) - 2x6 = 2 (Twice indeterminate) 8 9 3m 3m A A 3m 3m 3m 4t 6t 4t B 7𝑡 7𝑡 0 No -7 -7 -6 45° -3 -3 1𝑡 A 3m 3m 3m B N1 0 0 1𝑡 -1 -1 A 3m 3m 3m B N2 1𝑡 1𝑡 0 0 0 −1 2 −1 2 −1 2 −1 2 1𝑡 δ1t + 𝑋1 ′ δ11 + 𝑋2 ′ δ12 = 0 δ2t + 𝑋1 ′ δ21 + 𝑋2 ′ δ22 = 0 δ10 = 0 δ20 = 51.94 EA δ11 = 6 EA δ22 = 14.49 EA δ12 = 2.12 EA X1 = 1.34 𝑡 X2 = −3.78 𝑡 Nf = N0 + X1t N1 + X2t N2 Nf = N0 + 1.34 N1 -3.78 N2 6 45000 𝑋1 ′ + 2.12 45000 𝑋2 ′ = 0.003 2.12 𝑋2 ′ + 14.49 𝑋2 ′ = 0 Determine the internal forces in members for the shown truss due to the external loads and rise of temperature 50oC. 𝛼 = 1𝑥10−5 /𝑜𝐶 Example 2 EA = 45000 t Due to loads Due to temperature X1t = X1 +𝑿𝟏 ′ = 𝟐𝟓. 𝟎𝟒𝒕 Total δ1t = 𝛼. ∆𝑡. 𝛴𝑁1. 𝐿 δ1t = 1𝑥10−5𝑥50𝑥(−1𝑥3𝑥2) = −0.003 δ2t = 1𝑥10−5 𝑥50𝑥 −1 2 𝑥3𝑥4 + 1𝑥3 2𝑥2 = 0 X2t = X2 +𝑿𝟐 ′ = −𝟕. 𝟐𝟓𝒕 𝑋1 ′ = 23.7 𝑡 𝑋2 ′ = −3.47𝑡 Mem. Nf 1 -25.04 2 -19.9 3 -7 4 4.24 5 -0.87 6 -7.25 7 -3 8 -1.87 9 -3 10 2.12
  • 97. Structural Analysis Consistent Deformations II Eng. Khaled El-Aswany (Trusses) (Fabrication error)
  • 98. Loads δ10 + X1 δ11 = 0 Fabricated Fabrication errors No load Effect Loads & fabrication 8t δ1f + X1 δ11 = 0 δ1f + δ10 + X1 δ11 = 0 Loads: δ10 + X1 δ11 = 0 fabrication: δ1f + 𝑿𝟏 ′ δ11 = 0 Total: Xtot = X1 +𝑿𝟏 ′ δ1f = Σ∆. 𝑵𝟏 OR δ10 + X1 δ11 + X2 δ12 = 0 δ20 + X1 δ21 + X2 δ22 = 0 δ1f + X1 δ11 + X2 δ12 = 0 δ2f + X1 δ21 + X2 δ22 = 0 δ1f + δ10 +X1 δ11 + X2 δ12 = 0 δ2f + δ20 +X1 δ21 + X2 δ22 = 0 10t Long (+) short (−) Tension (+) compression (−) ONCE TWICE δ1f = Σ∆. 𝑵𝟏 δ2f = Σ∆. 𝑵𝟐 8t 10t
  • 99. Determine the internal forces in members for the shown truss due to the external loads and fabrication error in members F3 by (+0.5cm) and F5 by (-1cm).. 8m B 6t 6t 6m A Example 1 EA = 45000 t R = ( m + r ) - 2j R = ( 5+ 4) - 2x4= 1 (Once indeterminate) 𝐹1 𝐹2 𝐹3 𝐹4 𝐹5 8m B 6t 6t 6m A 6t 8t 2t 𝜃 𝜃 𝜃 𝜃 -8 -6 -6 10 No 𝜃 -1.67 8m 6m N1 B A 0 0 1t 1t 𝜃 𝜃 1.33 -1.67 1.33 1 𝜃 -352 90 Due to loads δ10 + X1 δ11 = 0 X1 = 3.91 t Due to Fabrication δ1f + X1 ’ δ11 = 0 X1 ’ = 9.2t -0.018 + X1 ’ 𝟗𝟎 𝟒𝟓𝟎𝟎𝟎 = 0 Xtot = X1 +𝑿𝟏 ′ = 𝟏𝟑. 𝟏𝒕 Total Nf = N0 + Xtot N1 Mem. L No N1 NoN1L N1N1L Δ ΔN1 Nf 1 8 -6 1.333 -64 14.22 0 0 11.47 2 10 10 -1.667 -166.7 27.78 0 0 -11.8 3 10 0 -1.667 0 27.78 0.005 -0.008 -21.8 4 8 -8 1.333 -85.33 14.22 0 0 9.47 5 6 -6 1 -36 6 -0.01 -0.01 7.1 -0.018
  • 100. Structural Analysis Slope deflection Method II Eng. Khaled El-Aswany
  • 101. Structural Analysis Slope deflection Method II Eng. Khaled El-Aswany (Introduction)
  • 102. C 3 t/m 2I I 6m A B 6t 2m 2m Degree of Freedom C A B Rotation (𝛼) OR (𝜃) Translation (∆) 𝛼 = 0 𝛼 ≠ 0 𝛼 = 0 ∆𝑥 = 0 ∆𝑦 = 0 𝛼 =  ∆𝑥 = 0 ∆𝑦 = 0 𝛼 =  ∆𝑥 =  ∆𝑦 = 0 ∆= 0 Beams: [ Except settlement cases]
  • 103. C 3 t/m 2I I 6m A B 6t 2m 2m 3 t/m 6m A B C 6t 2m 2m B Fixed End Moment Rotation Moment Sway Moment L A B C L B L A B C L B 4EI L αA + 2EI L αB 4EI L αB + 2EI L αA 𝑀𝐴𝐵 𝐹 − 6EI L2 ∆ 𝑀𝐵𝐴 𝐹 MAB = MAB F + 2EI L (2αA+ αB -3 ∆ L ) MAB = MAB F + 4EI L αA + 2EI L αB − 6EI L2 ∆ αA αB − 6EI L2 ∆ ‫الساعة‬ ‫عقارب‬ ‫مع‬ 𝑀𝐵𝐶 𝐹 𝑀𝐶𝐵 𝐹 αB αC 4EI L αB + 2EI L αC 4EI L αC + 2EI L αB ∆ − 6EI L2 ∆ − 6EI L2 ∆ ∆ Ψ 𝐾 Slope Deflection Equations: MAB = MAB F + 2EI L (2αA+ αB -3 Ψ ) MBA = MBA F + 2EI L (2αB+ αA -3 Ψ ) MBC = MBC F + 2EI L (2αB+ αC -3 Ψ ) MCB = MCB F + 2EI L (2αC+ αB -3 Ψ )
  • 104. Structural Analysis Slope deflection Method II Eng. Khaled El-Aswany (Fixed End Moment)
  • 105. w t/m L A B B Pt L/2 L/2 A − 𝑤𝐿2 12 𝑤𝐿2 12 𝑤𝐿2 12 𝑤𝐿2 12 𝑃𝐿 8 𝑃𝐿 8 − 𝑃𝐿 8 𝑃𝐿 8 − Pa(L−a) L Pa(L−a) L Pa(L−a) L Pa(L−a) L L A B Pt Pt a a b − 2 9 PL 2 9 PL 2 9 PL 2 9 PL L A B Pt Pt a a a − Pa𝑏2 𝐿2 Pb𝑎2 𝐿2 Pa𝑏2 𝐿2 P𝑏𝑎2 𝐿2 L A B Pt a b − 𝑤𝑙2 20 𝑤𝑙2 30 𝑤𝑙2 30 L A B w t/m w𝑙2 20 Mb(2a−b) L2 Ma(2b−a) L2 L A B M a b − Mb(2a−b) L2 − Ma(2b−a) L2 L A B M a b 6x4(2x1−4) 52 6x1(2x4−1) 52 5m A B 6mt 1m 4m
  • 106. Structural Analysis Slope deflection Method II Eng. Khaled El-Aswany (Example 1)
  • 107. C 3 t/m 2I I 6m A B 6t 2m 2m 3 t/m 6m A B C 6t 2m 2m B 𝛼𝐴 = 0 𝛼𝐵 = ?? 𝛼𝐶 = 0 −9 9 −3 3 𝑀𝐴𝐵 𝐹 = -9 mt, 𝑀𝐵𝐴 𝐹 = 9 mt 𝑀𝐵𝐶 𝐹 = -3 mt, 𝑀𝐶𝐵 𝐹 = 3 mt 1) Unknowns 𝛼𝐵 2) Fixed End Moment 3) Relative Stiffness 𝐾𝐴𝐵 ∶ 𝐾𝐵𝐶 2𝑥2𝐸𝐼 6 : 2𝑥𝐸𝐼 4 2 ∶ 1.5 2𝐸𝐼 𝐿 𝐴𝐵 : 2𝐸𝐼 𝐿 𝐵𝐶 2 6 ∶ 1 4 × 6 × 2 4 ∶ 3 4) Slope deflection equations MAB = MAB F + 2EI L (2αA+ αB -3 Ψ ) MBA = MBA F + 2EI L (2αB+ αA -3 Ψ ) MBC = MBC F + 2EI L (2αB+ αC -3 Ψ ) MCB = MCB F + 2EI L (2αC+ αB -3 Ψ ) = −9 + 4 ( 0 + αB - 0 ) = 9 + 4 ( 2αB + 0 - 0 ) = −3 + 3 ( 2αB + 0 - 0 ) = 3 + 3 ( 0 + αB - 0 ) = −9 + 4αB = 9 + 8αB = −3 + 6αB = 3 + 3αB 5) Compatibility eq. ΣMb = 0 𝑀𝐵𝐴 + 𝑀𝐵𝐶 = 0 9 + 8αB +−3 + 6αB = 0 αB = −0.4286 𝑀𝐴𝐵 = -10.71 𝑀𝐵𝐴 = 5.57 𝑀𝐵𝐶 = -5.57 𝑀𝐶𝐵 = 1.71 6) Moment values 3 t/m 6m A B C 6t 2m 2m B 10.71 5.57 5.57 1.71 Reactions 8.16 9.86 3.96 2.04 F.E.M. 10.71 5.57 1.71 5.57+1.71 2 = 3.64 2.36 B.M.D. 𝑤𝐿2 8 𝑃𝐿 4 =6
  • 108. Structural Analysis Slope deflection Method II Eng. Khaled El-Aswany (Example 2)
  • 109. 3 t/m 6m A B C 6t 2m 2m B 𝛼𝐴 = 0 𝛼𝐵 = ?? −9 9 −3 3 𝑀𝐴𝐵 𝐹 = -9 mt, 𝑀𝐵𝐴 𝐹 = 9 mt 𝑀𝐵𝐶 𝐹 = -3 mt, 𝑀𝐶𝐵 𝐹 = 3 mt 1) Unknowns 2) Fixed End Moment 3) Relative Stiffness 𝐾𝐴𝐵 ∶ 𝐾𝐵𝐶 2𝑥2𝐸𝐼 6 : 2𝑥𝐸𝐼 4 2 ∶ 1.5 2𝐸𝐼 𝐿 𝐴𝐵 : 2𝐸𝐼 𝐿 𝐵𝐶 2 6 ∶ 1 4 × 6 × 2 4 ∶ 3 4) Slope deflection equations MAB = MAB F + 2EI L (2αA+ αB -3 Ψ ) MBA = MBA F + 2EI L (2αB+ αA -3 Ψ ) MBC = MBC F + 2EI L (2αB+ αC -3 Ψ ) MCB = MCB F + 2EI L (2αC+ αB -3 Ψ ) = −9 + 4 ( 0 + αB - 0 ) = 9 + 4 ( 2αB + 0 - 0 ) = −3 + 3 ( 2αB + 0 - 0 ) = 3 + 3 ( 0 + αB - 0 ) = −9 + 4αB = 9 + 8αB = −3 + 6αB + 3αC = 3 + 3αB + 6αC 5) Compatibility eq. ΣMb = 0 𝑀𝐵𝐴 + 𝑀𝐵𝐶 = 0 9 + 8αB −3 + 6αB+3αC = 0 αB = −0.36 αC = −0.32 𝑀𝐴𝐵 = -10.44 𝑀𝐵𝐴 = 6.12 𝑀𝐵𝐶 = -6.12 𝑀𝐶𝐵 = 0 6) Moment values 3 t/m 6m A B 10.44 6.12 6.12 Reactions F.E.M. 𝛼𝐶 = ?? C 3 t/m 2I I 6m A B 6t 2m 2m 𝛼𝐵 , 𝛼𝐶 𝑀𝐶𝐵 = 0 3 + 3αB+6αC = 0 3αB+6αC = -3 → 2 14αB +3αC = -6 → 1 C 6t 2m 2m B 8.28 9.72 4.53 1.47 10.44 6.12 6.12 2 = 3.06 2.94 B.M.D. 𝑃𝐿 4 =6 𝑤𝐿2 8
  • 110. Structural Analysis Slope deflection Method II Eng. Khaled El-Aswany (Modified)
  • 111. 3 t/m 6m A B Fixed End Moment Rotation Moment Sway Moment L A B L A B C L B 4EI L αA + 2EI L αB 4EI L αB + 2EI L αA 𝑀𝐴𝐵 𝐹 − 6EI L2 ∆ 𝑀𝐵𝐴 𝐹 MBC =𝑀𝐵𝐶 𝐹′ + 3EI L (αB − ∆ L ) MBC = 𝑀𝐵𝐶 𝐹′ + 3EI L αB − 3EI L2 ∆ αA αB − 6EI L2 ∆ ‫الساعة‬ ‫عقارب‬ ‫مع‬ 𝑀𝐵𝐶 𝐹′ 3EI L αB ∆ − 3EI L2 ∆ ∆ Ψ 𝐾 Slope Deflection Equations: MAB =𝑀𝐴𝐵 𝐹 + 2EI L (2αA+ αB -3 Ψ ) MBA = 𝑀𝐵𝐴 𝐹 + 2EI L (2αB+ αA -3 Ψ ) MBC = 𝑀𝐵𝐶 𝐹′ + 3EI L (αB - Ψ ) C 3 t/m 2I I 6m A B 6t 2m 2m C 6t 2m 2m B αB C L B 𝑀𝐴 = ?? 𝑀𝐶 = 0 𝑀𝐵 = ??
  • 112. w t/m L A B − 𝑤𝐿2 12 𝑤𝐿2 12 L A B 𝑀𝐴𝐵 𝐹 𝑀𝐵𝐴 𝐹 𝑀𝐴𝐵 𝐹′ L A B 𝑀𝐴𝐵 𝐹 𝑀𝐵𝐴 𝐹 = − 0.5 𝑀𝐴𝐵 𝐹′ L A B w t/m = −1.5 wL2 12 B Pt L/2 L/2 A − 𝑃𝐿 8 𝑃𝐿 8 𝑀𝐴𝐵 𝐹′ − 𝑃𝐿 8 = 𝑥 1.5 B Pt L/2 L/2 A − Pa𝑏2 𝐿2 Pb𝑎2 𝐿2 L A B Pt a b L A B Pt a b 𝑀𝐴𝐵 𝐹′ − Pa𝑏2 𝐿2 Pb𝑎2 𝐿2 = − 0.5 𝑀𝐴𝐵 𝐹′ = L A B 4EI L αA + 2EI L αB 4EI L αB + 2EI L αA αA αB 3EI L αA 𝑀𝐴𝐵 𝐹′ = − 0.5 L A B − 6EI L2 ∆ (− 6EI L2 ∆) − 6EI L2 ∆ − 6EI L2 ∆ ∆ L A B L A B
  • 113. w t/m L A B − 𝑤𝐿2 12 𝑤𝐿2 12 L A B 𝑀𝐴𝐵 𝐹 𝑀𝐵𝐴 𝐹 𝑀𝐴𝐵 𝐹′ L A B 𝑀𝐴𝐵 𝐹 𝑀𝐵𝐴 𝐹 = − 0.5 𝑀𝐴𝐵 𝐹′ L A B w t/m = −1.5 wL2 12 B Pt L/2 L/2 A − 𝑃𝐿 8 𝑃𝐿 8 𝑀𝐴𝐵 𝐹′ − 𝑃𝐿 8 = 𝑥 1.5 B Pt L/2 L/2 A − Pa𝑏2 𝐿2 Pb𝑎2 𝐿2 L A B Pt a b L A B Pt a b 𝑀𝐴𝐵 𝐹′ − Pa𝑏2 𝐿2 Pb𝑎2 𝐿2 = − 0.5 6m A B 2 t/m 6t 2m 12 −6 6 -12 6m A B 2 t/m 6t 2m 𝑀𝐴𝐵 𝐹′ = −6 6 -12 − 0.5 ( + ) = -3 B
  • 114. Structural Analysis Slope deflection Method II Eng. Khaled El-Aswany (Modified) (Redo Example 2)
  • 115. 𝑀𝐴𝐵 𝐹 = -9 mt, 𝑀𝐵𝐴 𝐹 = 9 mt 𝑀𝐵𝐶 𝐹 = -4.5 mt 1) Unknowns 2) Fixed End Moment 3) Relative Stiffness 𝐾𝐴𝐵 ∶ 𝐾𝐵𝐶 4 ∶ 9 2 2𝐸𝐼 𝐿 𝐴𝐵 : 3𝐸𝐼 𝐿 𝐵𝐶 2𝑥2 6 ∶ 3𝑥1 4 𝛼𝐵 3 t/m 6m A B C 6t 2m 2m B 𝛼𝐴 = 0 𝛼𝐵 = ?? 𝛼𝐶 = ?? −9 9 −4.5 F.E.M. C 3 t/m 2I I 6m A B 6t 2m 2m 𝑀𝐶 = 0 𝑀𝐴 = ?? 𝑀𝐵 = ?? : 8 ∶ 9 4) Slope deflection equations = −9 + 8 ( 0 + αB - 0 ) = 9 + 8 ( 2αB + 0 - 0 ) = −4.5 + 9 ( αB - 0) MAB = MAB F + 2EI L (2αA+ αB -3 Ψ ) MBA = MBA F + 2EI L (2αB+ αA -3 Ψ ) MBC = 𝑀𝐵𝐶 𝐹′ + 3EI L (αB - Ψ ) = −9 + 8αB = 9 + 16αB = −4.5 + 9αB 5) Compatibility eq. ΣMb = 0 𝑀𝐵𝐴 + 𝑀𝐵𝐶 = 0 9 + 16αB −4.5 + 9αB = 0 αB = −0.18 𝑀𝐴𝐵 = -10.44 𝑀𝐵𝐴 = 6.12 𝑀𝐵𝐶 = -6.12 6) Moment values 6.12 3 t/m 6m A B 10.44 6.12 Reactions C 6t 2m 2m B 8.28 9.72 4.53 1.47 10.44 6.12 6.12 2 = 3.06 2.94 B.M.D. 𝑃𝐿 4 =6 𝑤𝐿2 8
  • 116. 𝑀𝐴𝐵 𝐹 = -9 mt, 𝑀𝐵𝐴 𝐹 = 9 mt 𝑀𝐵𝐶 𝐹 = -4.5 mt 1) Unknowns 2) Fixed End Moment 3) Relative Stiffness 𝐾𝐴𝐵 ∶ 𝐾𝐵𝐶 4 ∶ 9 2 2𝐸𝐼 𝐿 𝐴𝐵 : 3𝐸𝐼 𝐿 𝐵𝐶 2𝑥2 6 ∶ 3𝑥1 4 𝛼𝐵 3 t/m 6m A B C 6t 2m 2m B 𝛼𝐴 = 0 𝛼𝐵 = ?? 𝛼𝐶 = ?? −9 9 −4.5 F.E.M. C 3 t/m 2I I 6m A B 6t 2m 2m 𝑀𝐶 = 0 𝑀𝐴 = ?? 𝑀𝐵 = ?? : 8 ∶ 9 4) Slope deflection equations = −9 + 8 ( 0 + αB - 0 ) = 9 + 8 ( 2αB + 0 - 0 ) = −4.5 + 9 ( αB - 0) MAB = MAB F + 2EI L (2αA+ αB -3 Ψ ) MBA = MBA F + 2EI L (2αB+ αA -3 Ψ ) MBC = 𝑀𝐵𝐶 𝐹′ + 3EI L (αB - Ψ ) = −9 + 8αB = 9 + 16αB = −4.5 + 9αB 5) Compatibility eq. ΣMb = 0 𝑀𝐵𝐴 + 𝑀𝐵𝐶 = 0 9 + 16αB −4.5 + 9αB = 0 αB = −0.18 𝑀𝐴𝐵 = -10.44 𝑀𝐵𝐴 = 6.12 𝑀𝐵𝐶 = -6.12 6) Moment values 6.12 3 t/m 6m A B 10.44 6.12 Reactions C 6t 2m 2m B 8.28 9.72 4.53 1.47 10.44 6.12 6.12 2 = 3.06 2.94 B.M.D. 𝑃𝐿 4 =6 𝑤𝐿2 8 Type Equation D.O.F αA, αB , Ψ αA, Ψ Stiffness 2EI L 3EI L F.E.M. 𝑀𝐴𝐵 𝐹′ = 𝑀𝐴𝐵 𝐹 - 1 2 𝑀𝐵𝐴 𝐹 Summary MAB = MAB F + 2EI L (2αA+ αB -3 Ψ ) MBA = MBA F + 2EI L (2αB+ αA -3 Ψ ) MAB = 𝑀𝐴𝐵 𝐹′ + 3EI L (αA - Ψ ) A B B A B A 𝑀𝐴𝐵 𝐹′ A B 𝑀𝐴𝐵 𝐹 𝑀𝐵𝐴 𝐹
  • 117. Structural Analysis Slope deflection Method II Eng. Khaled El-Aswany (Example 3)
  • 118. 𝑀𝐴𝐵 𝐹 = -9 mt, 𝑀𝐵𝐴 𝐹 = 9 mt 𝑀𝐵𝐶 𝐹 = -3 mt, 𝑀𝐶𝐵 𝐹 = 3 mt 1) Unknowns 2) Fixed End Moment 3) Relative Stiffness 𝐾𝐴𝐵 ∶ 𝐾𝐵𝐶 2𝑥2𝐸𝐼 6 : 2𝑥𝐸𝐼 4 2 ∶ 1.5 2𝐸𝐼 𝐿 𝐴𝐵 : 2𝐸𝐼 𝐿 𝐵𝐶 2 6 ∶ 1 4 × 6 × 2 4 ∶ 3 4) Slope deflection equations MAB = MAB F + 2EI L (2αA+ αB -3 Ψ ) MBA = MBA F + 2EI L (2αB+ αA -3 Ψ ) MBC = MBC F + 2EI L (2αB+ αC -3 Ψ ) MCB = MCB F + 2EI L (2αC+ αB -3 Ψ ) = −9 + 4 ( 0 + αB - 0 ) = 9 + 4 ( 2αB + 0 - 0 ) = −3 + 3 ( 2αB + 0 - 0 ) = 3 + 3 ( 0 + αB - 0 ) = −9 + 4αB = 9 + 8αB = −3 + 6αB + 3αC = 3 + 3αB + 6αC 5) Compatibility eq. ΣMb = 0 𝑀𝐵𝐴 + 𝑀𝐵𝐶 = 0 9 + 8αB −3 + 6αB+3αC = 0 αB = −0.84 αC = 1.92 𝑀𝐴𝐵 = -12.36 𝑀𝐵𝐴 = 2.28 𝑀𝐵𝐶 = -2.28 𝑀𝐶𝐵 = 12 6) Moment values 12.36 2.28 2.28 Reactions 𝛼𝐵 , 𝛼𝐶 𝑀𝐶𝐵 + 𝑀𝐶𝐷 = 0 3 + 3αB+6αC −12 = 0 3αB+6αC = 9 → 2 14αB +3αC = -6 → 1 𝛼𝐴 = 0 𝛼𝐵 = ?? 𝛼𝐶 = ?? C 3 t/m 2I I 6m A B 6t 2m 2m 6t 2m D 3 t/m 6m A B C 6t 2m 2m B −9 9 −3 3 12 −12 F.E.M. ΣMc = 0 3 t/m 6m A B C 6t 2m 2m B 12 6t 2m C D 12 6t 2m C D 7.32 10.68 0.57 5.43 12.36 2.28 1.14 B.M.D. 𝑤𝐿2 8 6 12
  • 119. Structural Analysis Slope deflection Method II Eng. Khaled El-Aswany (Example 4)
  • 120. A 9t 2m 4m 2m 6t B 1) Unknowns 𝛼𝐵 , 𝛼𝐶 2) Fixed End Moment 𝛼𝐴 = ?? 𝛼𝐵 = ?? 𝛼𝐶 = ?? C 3 t/m B 8m D 3I 2I 2m 2m 2m 6t 6t 2m 4m A I 9t 2m 6t I 3 t/m D C 8m 𝛼𝑑 = ?? 𝑀𝐴 = 12 𝑀𝐵 = ?? 𝑀𝐶 = ?? 𝑀𝑑 = 0 −24 4 6t 6t C B 2m 2m 2m 3 t/m 17 −17 𝑀𝐵𝐴 𝐹′ = 4 mt 𝑀𝐵𝐶 𝐹 = -17 mt, 𝑀𝐶𝐵 𝐹 = 17 mt 𝑀𝐶𝐷 𝐹′ = -24 mt 3) Relative Stiffness 𝐾𝐴𝐵 ∶ 𝐾𝐵𝐶 ∶ 𝐾𝐶𝐷 3𝐸𝐼 𝐿 𝐴𝐵 : 2𝐸𝐼 𝐿 𝐵𝐶 : 3𝐸𝐼 𝐿 𝐶𝐷 × 4 : : 3𝑥1 6 2𝑥3 6 3𝑥2 8 : : 1 2 1 3 4 : : 2 4 3 : : 4) Slope deflection equations = 4 + 2 ( αB - 0 ) = −17 + 4 ( 2αB + αC - 0) ) = 17 + 4 ( 2αC + αB - 0) = −24 + 3 (αC - 0 ) MBC = 𝑀𝐵𝐶 𝐹 + 2EI L (2αB+ αC -3 Ψ ) MCB = 𝑀𝐶𝐵 𝐹 + 2EI L (2αC+ αB -3 Ψ ) MCD = 𝑀𝐶𝐷 𝐹′ + 3EI L (αC - Ψ) MBA = 𝑀𝐵𝐴 𝐹′ + 3EI L (αB - Ψ) = 4 + 2αB = −17 + 8αB + 4αC = 17 + 4αB + 8αC = −24 + 3αC 5) Compatibility eq. ΣMb = 0 𝑀𝐵𝐴 + 𝑀𝐵𝐶 = 0 αB = 1.2234 αC = 0.1915 𝑀𝐶𝐵 + 𝑀𝐶𝐷 = 0 4αB+11αC = 7 → 2 10αB +4αC = 13 → 1 ΣMc = 0 6) Moment Values MBC = −6.45 𝑚𝑡 MCB = 23.43 𝑚𝑡 MCD = −23.43 𝑚𝑡 MBA = 6.45 𝑚𝑡 A 9t 2m 4m 2m 6t B 3 t/m D C 8m 6.45 6t 6t C B 2m 2m 2m 3 t/m 23.43 6.45 23.43 Reactions 17.83 12.17 5.075 9.925 14.93 9.07 12.28 6.23 11.89 3.7 6.45 23.43 12 B.M.D.
  • 121. Structural Analysis Slope deflection Method II Eng. Khaled El-Aswany (Frames) (Sway or without sway)
  • 122. Delete ✓ Can translate ? X Symmetry ? Ψ Ψ Frame Without Sway Symmetry No translation With Sway Δ Δ
  • 123. Without Sway With Sway Delete
  • 124. Structural Analysis Slope deflection Method II Eng. Khaled El-Aswany (Frames) (Without Sway)
  • 125. Delete C 1.5 t/m 6I I A B 6t 3m 2m 4I 1.5I 4t 6t F E D 3m 4m 1) Unknowns 𝛼𝐵 , 𝛼𝐶 12m 8m
  • 126. Delete 1) Unknowns 𝛼𝐵 , 𝛼𝐶 2) Fixed End Moment I 3m 1.5I 4t 6t E D 3m 4m 12m 8m 2m C 1.5 t/m 6I A B 6t 4I F C B 1.5 t/m -12 8 18 -18 -8 2m -4.5 B C -5.33 2.67 𝑀𝐴𝐵 𝐹 = -18 mt, 𝑀𝐵𝐴 𝐹 = 18 mt 𝑀𝐵𝐶 𝐹 = -8 mt, 𝑀𝐶𝐵 𝐹 = 8 mt 𝑀𝐵𝐷 𝐹 = -5.33 mt, 𝑀𝐷𝐵 𝐹 = 2.67 mt ഥ 𝑀𝐶𝐸 𝐹 = -4.5 mt
  • 127. Delete I 3m 1.5I 4t 6t E D 3m 4m 12m 8m 2m C 1.5 t/m 6I A B 6t 4I F C B 1.5 t/m -12 8 18 -18 -8 2m -4.5 B C -5.33 2.67 1) Unknowns 𝛼𝐵 , 𝛼𝐶 2) Fixed End Moment 𝑀𝐴𝐵 𝐹 = -18 mt, 𝑀𝐵𝐴 𝐹 = 18 mt 𝑀𝐵𝐶 𝐹 = -8 mt, 𝑀𝐶𝐵 𝐹 = 8 mt 𝑀𝐵𝐷 𝐹 = -5.33 mt, 𝑀𝐷𝐵 𝐹 = 2.67 mt ഥ 𝑀𝐶𝐸 𝐹 = -4.5 mt 3) Relative Stiffness 𝐾𝐴𝐵 ∶ 𝐾𝐵𝐶 ∶ 𝐾𝐵𝐷 ∶ 𝐾𝐶𝐸 2𝑋6 12 : 2𝑋4 8 : 2𝑋1.5 6 : 3𝑋1 6 1 ∶ 1 ∶ 1 2 : 1 2 2 ∶ 2 ∶ 1 : 1
  • 128. Delete I 3m 1.5I 4t 6t E D 3m 4m 12m 8m 2m C 1.5 t/m 6I A B 6t 4I F C B 1.5 t/m -12 8 18 -18 -8 2m -4.5 B C -5.33 2.67 1) Unknowns 𝛼𝐵 , 𝛼𝐶 2) Fixed End Moment 𝑀𝐴𝐵 𝐹 = -18 mt, 𝑀𝐵𝐴 𝐹 = 18 mt 𝑀𝐵𝐶 𝐹 = -8 mt, 𝑀𝐶𝐵 𝐹 = 8 mt 𝑀𝐵𝐷 𝐹 = -5.33 mt, 𝑀𝐷𝐵 𝐹 = 2.67 mt ഥ 𝑀𝐶𝐸 𝐹 = -4.5 mt 3) Relative Stiffness 𝐾𝐴𝐵 ∶ 𝐾𝐵𝐶 ∶ 𝐾𝐵𝐷 ∶ 𝐾𝐶𝐸 2𝑋6 12 : 2𝑋4 8 : 2𝑋1.5 6 : 3𝑋1 6 1 ∶ 1 ∶ 1 2 : 1 2 2 ∶ 2 ∶ 1 : 1 4) Slope Deflection Equation 𝑀𝐴𝐵 = -18 + 2 (2𝛼𝐴 + 𝛼𝐵) 𝑀𝐵𝐴 = 18 + 2 (2𝛼𝐵 + 𝛼𝐴) 𝑀𝐵𝐶 = -8 + 2 (2𝛼𝐵 + 𝛼𝐶) 𝑀𝐶𝐵 = 8 + 2 (2𝛼𝐶 + 𝛼𝐵) 𝑀𝐵𝐷 = -5.33 + (2𝛼𝐵 + 𝛼𝐷) 𝑀𝐷𝐵 = 2.67 + (2𝛼𝐷 + 𝛼𝐵) 𝑀𝐶𝐸 = -4.5 + (𝛼𝐶) = -18 + 2 𝛼𝐵 = 18 + 4𝛼𝐵 = -8 + 4𝛼𝐵 + 2𝛼𝐶 = 8 + 4𝛼𝐶 + 2𝛼𝐵 = -5.33 + 2𝛼𝐵 = 2.67 + 𝛼𝐵 = -4.5 + 𝛼𝐶
  • 129. Delete 1) Unknowns 𝛼𝐵 , 𝛼𝐶 2) Fixed End Moment 𝑀𝐴𝐵 𝐹 = -18 mt, 𝑀𝐵𝐴 𝐹 = 18 mt 𝑀𝐵𝐶 𝐹 = -8 mt, 𝑀𝐶𝐵 𝐹 = 8 mt 𝑀𝐵𝐷 𝐹 = -5.33 mt, 𝑀𝐷𝐵 𝐹 = 2.67 mt ഥ 𝑀𝐶𝐸 𝐹 = -4.5 mt 3) Relative Stiffness 𝐾𝐴𝐵 ∶ 𝐾𝐵𝐶 ∶ 𝐾𝐵𝐷 ∶ 𝐾𝐶𝐸 2𝑋6 12 : 2𝑋4 8 : 2𝑋1.5 6 : 3𝑋1 6 1 ∶ 1 ∶ 1 2 : 1 2 2 ∶ 2 ∶ 1 : 1 4) Slope Deflection Equation 𝑀𝐴𝐵 = -18 + 2 (2𝛼𝐴 + 𝛼𝐵) 𝑀𝐵𝐴 = 18 + 2 (2𝛼𝐵 + 𝛼𝐴) 𝑀𝐵𝐶 = -8 + 2 (2𝛼𝐵 + 𝛼𝐶) 𝑀𝐶𝐵 = 8 + 2 (2𝛼𝐶 + 𝛼𝐵) 𝑀𝐵𝐷 = -5.33 + (2𝛼𝐵 + 𝛼𝐷) 𝑀𝐷𝐵 = 2.67 + (2𝛼𝐷 + 𝛼𝐵) 𝑀𝐶𝐸 = -4.5 + (𝛼𝐶) = -18 + 2 𝛼𝐵 = 18 + 4𝛼𝐵 = -8 + 4𝛼𝐵 + 2𝛼𝐶 = 8 + 4𝛼𝐶 + 2𝛼𝐵 = -5.33 + 2𝛼𝐵 = 2.67 + 𝛼𝐵 = -4.5 + 𝛼𝐶 I 3m 1.5I 4t 6t E D 3m 4m 12m 8m 2m C 1.5 t/m 6I A B 6t 4I F C B 1.5 t/m -12 8 18 -18 -8 2m -4.5 B C -5.33 2.67 5) Comp. equations ΣMb = 0 𝑀𝐵𝐴 + 𝑀𝐵𝐶 + 𝑀𝐵𝐷 = 0 ΣMc = 0 𝑀𝐶𝐵 + 𝑀𝐶𝐸 + 𝑀𝐶𝐹 = 0 10𝛼𝐵 + 2𝛼𝐶 = -4.67 2𝛼𝐵 + 5𝛼𝐶 = 8.5 𝛼𝐵 = -0.87717 𝛼𝐶 = 2.05087 𝑀𝐴𝐵 = -19.75 𝑀𝐵𝐴 = 14.49 𝑀𝐵𝐶 = -7.4 𝑀𝐶𝐵 = 14.45 𝑀𝐵𝐷 = -7.09 𝑀𝐷𝐵 = 1.80 𝑀𝐶𝐸 = -2.45 6) Moments -12 12 14.45 14.49 19.75 7.4 2.45 7.09 1.80 3m 4t 6t E D 3m 4m 12m 8m 2m C 1.5 t/m A B 6t F C B 1.5 t/m 2mB C 9.44 8.56 5.12 6.88 6 1.12 4.88 2.4 1.6 19.75 14.49 7.4 14.4512 1.8 7.09 2.7 2.45 4.8
  • 130. Structural Analysis Slope deflection Method II Eng. Khaled El-Aswany (Frames) (Without Sway) (Symmetry)
  • 131. Delete 1) Unknowns 𝛼𝐵 , 𝛼𝐶 , 𝛼𝐷 , 𝛼𝐸 2) Fixed End Moment 𝛼𝐷 = - 𝛼𝐶 𝛼𝐸 = - 𝛼𝐵 3) Relative Stiffness 𝐾𝐴𝐵 ∶ 𝐾𝐵𝐶 ∶ 𝐾𝐵𝐸 ∶ 𝐾𝐶𝐷 6 ∶ 2 ∶ 2.5 : 3.75 C 3 t/m A B 5m 8m 2I 2I F E D 5m 6 t/m 2I I I 3I B E B E C D 8m 5m 32 16 -32 -16 5m 4) Slope Deflection Equations 𝑀𝐵𝐴 = 0 + 6 (𝛼𝐵) 𝑀𝐵𝐶 = 0 + 2 (2𝛼𝐵 + 𝛼𝐶) 𝑀𝐶𝐵 = 0 + 2 (2𝛼𝐶 + 𝛼𝐵) 𝑀𝐵𝐸 = -16 + 2.5(2𝛼𝐵 + 𝛼𝐸) 𝑀𝐶𝐷 = -32 + 3.75(2𝛼𝑐 + 𝛼𝐷) = 6𝛼𝐵 = 4𝛼𝐵 + 2𝛼𝐶 = 4𝛼𝐶 + 2𝛼𝐵 = -16 + 2.5(2𝛼𝐵 - 𝛼𝐵) = -32 + 3.75(2𝛼𝑐 - 𝛼𝑐) = -16 + 2.5𝛼𝐵 = -32 + 3.75𝛼𝑐 5) Compatibility Equations ΣMb = 0 𝑀𝐵𝐴 + 𝑀𝐵𝐶 + 𝑀𝐵𝐸 = 0 ΣMc = 0 𝑀𝐶𝐵 + 𝑀𝐶𝐷 = 0 12.5𝛼𝐵 + 2𝛼𝐶 = 16 2𝛼𝐵 + 7.75𝛼𝐶 = 32 𝛼𝐵 = 0.664603 𝛼𝐶 = 3.962315 6) Moment values 𝑀𝐵𝐴 = 3.88 𝑀𝐵𝐶 = 10.51 𝑀𝐶𝐵 = 17.14 𝑀𝐵𝐸 = -14.38 𝑀𝐶𝐷 = -17.14 C 3 t/m A B 5m 8m 2I 2I F E D 5m 𝜶𝑩 =?? 𝜶𝑪 =?? 6 t/m 2I I I 3I 𝜶𝑬 =?? 𝜶𝑫 =?? C A B F E D
  • 132. Structural Analysis Slope deflection Method II Eng. Khaled El-Aswany (Frames) (With Sway)
  • 133.
  • 134.
  • 135.
  • 136.
  • 137.
  • 138.
  • 140. Structural Analysis Moment Distribution II Eng. Khaled El-Aswany (Introduction)
  • 141. Introduction 1- Fixed End Moment 2- Distribution Moment (Distribution Factor) 3- Carry over C 3 t/m 6m A B 6t 2m 2m B 6t 2m 2m C A 6m 3 t/m B 3 9 -3 -6 -9 Carry over Carry over D.M. D.M.
  • 142. Fixed end moment Distribution Factor Carry over w t/m L 𝑤𝐿2 12 − 𝑤𝐿2 12 𝑃𝐿 8 − 𝑃𝐿 8 − 𝑃𝑎𝑏2 𝐿2 𝑃𝑏𝑎2 𝐿2 L/2 Pt L/2 𝑤𝐿2 30 − 𝑤𝐿2 20 𝑃𝑎(𝐿 − 𝑎) 𝐿 − 𝑃𝑎(𝐿 − 𝑎) 𝐿 L 𝑀𝑎(2𝑏 − 𝑎) 𝐿2 𝑀𝑏(2𝑎 − 𝑏) 𝐿2 w t/m L − 𝑤𝐿2 12 𝒙𝟏. 𝟓 − 𝑃𝐿 8 𝒙𝟏. 𝟓 − 𝑃𝑎𝑏2 𝐿2 L/2 Pt L/2 a Pt b L L Pt Pt a a b M a b L Pt a b L − 𝟎. 𝟓 𝐱 𝑷𝒃𝒂𝟐 𝑳𝟐
  • 143. Fixed end moment Distribution Factor Carry over D.F. for Joint B KBA : KBC C 3 t/m 6m A B 6t 2m 2m 6t 4m 2m D 3I 2I I 3 t/m 6m A 3I B C B 6t 2m 2m 2I 6t 4m 2m D I C D.F. for Joint C KCB : KCD KBA + KBC KBA + KBC KCB + KCD KCB + KCD
  • 144. Fixed end moment Distribution Factor Carry over Joint B KBA : KBC C 3 t/m 6m A B 6t 2m 2m 6t 4m 2m D 3I 2I I 3 t/m 6m A 3I B C B 6t 2m 2m 2I 6t 4m 2m D I C Joint C KCB : KCD 4𝑥𝐸𝑥3 6 : 4𝑥𝐸𝑥2 4 4𝑥𝐸𝑥2 4 : 4𝑥𝐸𝑥1 6 1 2 : 1 2 1 2 : 1 6 6 : 2 𝟑 𝟒 : 𝟏 𝟒 3 : 1 1 2 1 2 + 1 2 : 1 2 1 2 + 1 2 𝟏 𝟐 : 𝟏 𝟐 L L K = 𝑰 𝑳 K = 𝑰 𝑳 𝒙 𝟑 𝟒 C 3 t/m 6m A B 6t 2m 2m 3 t/m 6m D 3I 2I 3I K = 𝑰 𝑳 𝒙 𝟏 𝟐 L 𝑲𝑨𝑩= 𝑰 𝑳 𝑲𝑩𝑪= 𝑰 𝑳 𝒙 𝟏 𝟐 Example for Symmetry Beam: (Symmetry)
  • 145. Fixed end moment Distribution Factor Carry over L A B L B C D.M. D.M. 𝟏 𝟐 D.M. 𝟎 x 𝟏 𝟐
  • 146. Structural Analysis Moment Distribution II Eng. Khaled El-Aswany (Beams) (Example 1)
  • 147. C 3 t/m 6m A B 6t 2m 2m B 6t 2m 2m C A 6m 3 t/m B 3 9 -3 -9 FEM 1- Fixed End Moment − 𝑤𝐿2 12 = 𝑤𝐿2 12 = PL 8 = - PL 8 =
  • 148. C 3 t/m 6m A B 6t 2m 2m B 6t 2m 2m C A 6m 3 t/m B 3 9 -3 -9 3 9 -3 -9 FEM A B C 𝟐/𝟓 𝟑/𝟓 D.M. -6 -2.4 D.F. FEM 1 - ‫نجمع‬ 2 - ‫االشارة‬ ‫نغير‬ 3 - ‫في‬ ‫نضرب‬ ‫التوزيع‬ ‫نسب‬ Joint B KBA : KBC 1 6 : 1 4 4 : 6 2 : 3 2 5 : 3 5 I L : I L Distribution factors: 2- Distribution Moment
  • 149. C 3 t/m 6m A B 6t 2m 2m B 6t 2m 2m C A 6m 3 t/m B 3 9 -3 -9 3 9 -3 -9 FEM A B C 𝟐/𝟓 𝟑/𝟓 D.M. -6 -2.4 -3.6 D.F. 1 - ‫نجمع‬ 2 - ‫االشارة‬ ‫نغير‬ 3 - ‫في‬ ‫نضرب‬ ‫التوزيع‬ ‫نسب‬ FEM Joint B KBA : KBC 1 6 : 1 4 4 : 6 2 : 3 2 5 : 3 5 I L : I L Distribution factors: 2- Distribution Moment
  • 150. C 3 t/m 6m A B 6t 2m 2m B 6t 2m 2m C A 6m 3 t/m B 3 9 -3 -9 3 9 -3 -9 FEM A B C 𝟐/𝟓 𝟑/𝟓 D.M. -2.4 -3.6 C.O. -1.2 -1.8 D.F. Joint B KBA : KBC 1 6 : 1 4 4 : 6 2 : 3 2 5 : 3 5 I L : I L Distribution factors: FEM 3- Carry Over
  • 151. C 3 t/m 6m A B 6t 2m 2m B 6t 2m 2m C A 6m 3 t/m B 3 9 -3 -9 3 9 -3 -9 FEM A B C 𝟐/𝟓 𝟑/𝟓 D.M. -2.4 -3.6 C.O. -1.2 -1.8 F.M. -10.2 6.6 -6.6 1.2 D.F. A 6m 3 t/m B B 6t 2m 2m C 10.2 6.6 6.6 1.2 ‫سالب‬ ( ‫الساعة‬ ‫عقارب‬ ‫عكس‬ ) ‫موجب‬ ( ‫الساعة‬ ‫عقارب‬ ‫مع‬ ) Joint B KBA : KBC 1 6 : 1 4 4 : 6 2 : 3 2 5 : 3 5 I L : I L Distribution factors:
  • 152. C 3 t/m 6m A B 6t 2m 2m B 6t 2m 2m C A 6m 3 t/m B 3 9 -3 -9 3 9 -3 -9 FEM A B C 𝟐/𝟓 𝟑/𝟓 D.M. -2.4 -3.6 C.O. -1.2 -1.8 F.M. -10.2 6.6 -6.6 1.2 D.F. A 6m 3 t/m B B 6t 2m 2m C 10.2 6.6 6.6 1.2 = 8.4 9.6 =4.35 1.65 C A B 10.2 6.6 1.2 2.1 3x6x3 + 6.6 -10.2 6 6x2+6.6-1.2 4 FEM Joint B KBA : KBC 1 6 : 1 4 4 : 6 2 : 3 2 5 : 3 5 I L : I L Distribution factors: B.M.D.
  • 153. Structural Analysis Moment Distribution II Eng. Khaled El-Aswany (Beams) (Example 2)
  • 154. A 6m 3 t/m B 9 -4.5 -9 C 3 t/m 6m A B 6t 2m 2m B 6t 2m 2m C 0 9 -4.5 -9 FEM 𝟖/𝟏𝟕 9/𝟏𝟕 D.F. A B C Joint B KBA : KBC 1 6 : 3 16 16 : 18 8 : 9 8 17 : 9 17 1 6 : 1 4 𝑥 3 4 D.M. -2.12 -2.38 C.O. -1.06 F.M. -10.06 6.88 -6.88 0 A 6m 3 t/m B 10.06 6.88 6.88 B 6t 2m 2m C 9.53 8.47 1.28 4.72 C A B 10.06 6.88 2.56 B.M.D. Distribution factors: I L : I L 𝑥 3 4
  • 155. Structural Analysis Moment Distribution II Eng. Khaled El-Aswany (Beams) (Example 3)
  • 156. C 2 t/m A B 8t 1t 6m 2m 2m 2m I 2I A 8t 2m 2m I B C 2 t/m B 1t 6m 2m 2I −4 4 1t 2m C 2 t/m B 6m 6 −6 −2 −0.5 ( )= -8 FEM −6 −2 6
  • 157. C 2 t/m A B 8t 1t 6m 2m 2m 2m I 2I A 8t 2m 2m I B C 2 t/m B 1t 6m 2m 2I −4 4 C 2 t/m B 6m 2m C B 1t 6m 2m −9 2 1 1 −8 FEM
  • 158. C 2 t/m A B 8t 1t 6m 2m 2m 2m I 2I A 8t 2m 2m I B C 2 t/m B 1t 6m 2m 2I −4 4 −8 4 -8 -4 FEM 𝟎. 𝟓 0.5 D.M. D.F. A B C Joint B KBA : KBC 1 4 : 1 4 1 : 1 1 2 : 1 2 1 4 : 2 6 𝑥 3 4 I L : I L 𝑥 3 4 2 2 C.O. 1 F.M. -3 6 -6 3 6 6 3.25 4.75 6.33 6.67 B.M.D. A 8t 2m 2m B C 2 t/m B 1t 6m 2m 3.5 C A B 3 6 2 Distribution factors: FEM
  • 159. Structural Analysis Moment Distribution II Eng. Khaled El-Aswany (Beams) (Example 4)
  • 160. C 3 t/m 10m A B 8t 7.5m 7.5m 10m D I 2I I 3 t/m 10m A I B C B 8t 7.5m 7.5m 2I D I C 10m 25 −25 −15 15 0 0 Joint B KBA : KBC Joint C KCB : KCD 𝐼 𝐿 : 𝐼 𝐿 1 10 : 2 15 15 : 20 𝟑 𝟕 : 𝟒 𝟕 25 −15 15 0 0 −25 15 35 : 20 35 𝐼 𝐿 : 𝐼 𝐿 2 15 : 1 10 20 : 15 𝟒 𝟕 : 𝟑 𝟕 20 35 : 15 35 3/7 4/7 4/7 3/7 −5.714 −8.55 −6.45 A B C D FEM D.M.1 D.F. C.O.1 −4.286 D.M.2 2.443 1.629 1.229 1.832 -2.143 -4.275 -2.857 -3.225 C.O.2 0.916 0.814 1.221 0.614 D.M.3 −0.465 −0.349 −0.525 −0.696 C.O.3 -0.174 -0.348 -0.233 -0.263 D.M.4 0.199 0.149 0.133 C.O.4 0.075 0.066 0.099 0.05 0.1 D.M.5 −0.038 −0.028 -0.057 -0.043 F.M. -26.33 -22.32 5.69 -2.82 -5.69 22.32 22.32 26.33 5.69 2.82 3 t/m 10m A B 8t 7.5m B C 7.5m 10m C D 5.69 22.32 0.851 0.851 5.11 2.89 15.4 14.6 C A B B.M.D. 26.33 22.32 5.69 2.82 𝑤𝑙2 8 26.33 + 22.32 2 13.175 =37.5 =24.32 𝑃𝐿 4 22.32 + 5.69 2 16 =30 =14 Distribution factors: Reactions
  • 161. Structural Analysis Moment Distribution II Eng. Khaled El-Aswany (Beams) (Example 5 - Symmetry)
  • 162. C 1 t/m 4m A B 12m D 9 mt 2m 4m 2m 9 mt A B 9 mt 4m 2m C B 12m 1 t/m C D 9 mt 4m 2m −3 0 FEM −12 12 0 3 0 -12 -3 FEM 0.8 0.2 D.F. A B C D.M. 9.6 2.4 Joint B KBA : KBC 1 6 : 1 24 24 : 6 4 5 : 1 5 1 6 : 1 12 𝑥 1 2 I L : I L 𝑥 1 2 4 : 1 C.O. 4.8 F.M. 1.8 9.6 -9.6 A B 9 mt 4m 2m C B 12m 1 t/m 1.8 9.6 9.6 9.6 0.4 0.4 6 6 8.8 0.2 1.8 8.8 0.2 1.8 C A B 9.6 9.6 8.4 B.M.D.
  • 163. Structural Analysis Moment Distribution II Eng. Khaled El-Aswany (Beams) (Example 6)
  • 164. 3 t/m D C 8m -16 16 C 3 t/m B 8m D 3I 2I 2m 2m 2m 6t 6t 3m 3m A I 8t 2m 6t I 3 3m 3m A 8t 2m 6t B FEM 𝑃𝐿 8 𝑥1.5 = 9 3m 3m A 8t 2m B 6t 6t C B 2m 2m 2m −6 3m 3m A 2m 6t B 12 6 6t 6t C B −17 17 2m 2m 2m 3 t/m C B 2m 2m 2m 3 t/m 𝑤𝐿2 12 = 9 − 𝑤𝐿2 12 = -9 − 𝑃𝑎(𝐿−𝑎) 𝐿 = -8 𝑃𝑎(𝐿−𝑎) 𝐿 = 8
  • 165. 3 t/m 6t 6t C 3 t/m B 8m D 3I 2I C B 3I D 2I C 8m 3 −17 17 -16 16 Joint B Joint C KCB : KCD 𝐼 𝐿 𝑥 3 4 : 𝐼 𝐿 3 -17 17 -16 16 𝐼 𝐿 : 𝐼 𝐿 1 2 : 1 4 2 𝟎. 𝟐 𝟎. 𝟖 2/𝟑 1/𝟑 11.2 -0.667 -0.333 A B C D FEM D.M.1 D.F. C.O.1 2.8 D.M.2 0.267 -3.733 -1.867 0.667 -0.333 5.6 -0.167 C.O.2 -1.867 0.133 -0.933 D.M.3 1.493 0.373 -0.044 -0.089 C.O.3 -0.044 -0.747 -0.022 D.M.4 0.036 0.009 -0.498 C.O.4 -0.249 0.018 -0.124 -0.249 D.M.5 0.199 0.05 -0.012 -0.006 F.M. -6.3 18.499 14.75 -18.499 6.3 C A B B.M.D. 12 6.3 18.5 14.75 2.85 13.64 Distribution factors: 2m 2m 2m 6t 6t 3m 3m A I 8t 2m 6t I 2m 2m 2m 3 t/m 3m 3m A I 8t 2m 6t I B 3 6 : 2 8 : 4 1 : 2 𝟏 𝟑 : 𝟐 𝟑 KBA : KBC 1 6 𝑥 3 4 : 3 6 1 8 : 1 2 8 : 2 4 : 1 𝟒 𝟓 : 𝟏 𝟓 6.3 18.5 14.75 18.5 6.3 12.47 11.53 12.97 17.03 3.05 8m C D 3 t/m 6t B C 2m 3 t/m 6t 2m 2m 3m 8t A B 3m 2m 6t 9.56 7.375 Reactions D FEM 10.95
  • 166. Structural Analysis Moment Distribution II Eng. Khaled El-Aswany (Beams) (Settlement)
  • 167. D I C 10m 1 cm Determinate structures Indeterminate structures −12 −12 −3𝐸𝐼∆ 𝐿2 ∆ ∆ ∆ C 3 t/m 10m A B 8t 7.5m 7.5m 10m D I 2I I 2 cm 1 cm EI = 10000 m2t 3 t/m 10m A I B 2 cm C B 8t 7.5m 7.5m 2I 2 cm 1 cm 10m A B 2 cm I −6𝐸𝐼∆ 𝐿2 −6𝐸𝐼∆ 𝐿2 3 t/m 10m A I B 25 −25 13 −37 C B 8t 7.5m 7.5m 2I C B 15m 2I 2 cm 1 cm Δ 5.33 15 −15 5.33 20.33 −9.67 3
  • 168. 36.18 14.93 5.79 19.64 11.95 D I C 10m 1 cm C 3 t/m 10m A B 8t 7.5m 7.5m 10m D I 2I I 2 cm 1 cm EI = 10000 m2t 3 t/m 10m A I B 2 cm C B 8t 7.5m 7.5m 2I 2 cm 1 cm 13 −37 20.33 −9.67 3 Joint B KBA : KBC Joint C KCB : KCD 𝐼 𝐿 : 𝐼 𝐿 1 10 : 2 15 15 : 20 𝟑 𝟕 : 𝟒 𝟕 15 35 : 20 35 𝐼 𝐿 : 𝐼 𝐿 𝑥 3 4 2 15 : 1 10 𝑥 3 4 80 : 45 𝟎. 𝟔𝟒 : 𝟎. 𝟑𝟔 80 125 : 45 125 13 −9.67 20.33 3 0 −37 3/7 4/7 𝟎. 𝟔𝟒 𝟎. 𝟑𝟔 −1.903 −14.93 −8.399 A B C D FEM D.M.1 D.F. C.O.1 −1.428 D.M.2 4.266 0.609 0.342 3.199 -0.714 -7.466 -0.951 C.O.2 1.6 0.304 2.133 D.M.3 −0.174 −0.13 −0.768 −1.365 C.O.3 -0.065 -0.682 -0.087 D.M.4 0.39 0.292 0.056 0.031 F.M. -36.18 -14.93 5.79 0 -5.79 14.93 C A B D B.M.D.
  • 169. Structural Analysis Moment Distribution II Eng. Khaled El-Aswany (Frames) (Example 1)
  • 170. 5t 1.5 t/m B C 2I 4m 4m 5t A 1.5 t/m D B C I I 2I 5m 4m 4m −13 13 A D I I C B 5m 0 0 5m 0 0 0 -13 0 FEM 8/13 5/13 D.F. A B C D D.M. Joint B KBA : KBC 1 5 : 1 8 8 : 5 8 13 : 5 13 1 5 : 2 8 𝑥 1 2 I L : I L 𝑥 1 2 Distribution Factors 8 5 C.O. 4 F.M. 4 8 -8 5t 1.5 t/m B C 4m 4m 8 4 4 8 8 8 2.4 A B 5 m 2.4 8.5 8.5 2.4 C D 5 m 2.4 8 4 4 8 8 8 B.M.D. 14 𝑤𝑙2 8 + 𝑃𝐿 4 = 22
  • 171. Structural Analysis Moment Distribution II Eng. Khaled El-Aswany (Frames) (Example 2)
  • 172. 4t A 3 t/m B C 8m −16 16 4t A 3 t/m B C 3m 8m 3m B −4.5 3m 3m 16 -4.5 -16 FEM 0.5 0.5 D.F. A B C D.M. -5.75 -5.75 C.O. -2.875 F.M. -18.875 10.25 -10.25 Joint B KBA : KBC 1 8 : 1 8 1 : 1 𝟎. 𝟓 : 𝟎. 𝟓 1 8 : 1 6 𝑥 3 4 I L : I L 𝑥 3 4 Distribution Factors : A 3 t/m B 8m 18.875 10.25 10.25 13.08 10.92 B 4t C 3m 3m 3.71 A B C 10.25 10.25 18.875 0.29 0.875
  • 173. Structural Analysis Moment Distribution II Eng. Khaled El-Aswany (Frames) (Example 3)
  • 174. A 3 t/m B 8m −16 16 4t C B −4.5 3t B −6 3m 3m 16 -4.5 -16 FEM 0.5 0.5 D.F. A B C D.M. Joint B KBA : KBC 1 8 : 1 8 1 : 1 𝟎. 𝟓 : 𝟎. 𝟓 1 8 : 1 6 𝑥 3 4 I L : I L 𝑥 3 4 : -6 4t A 3 t/m B C 3m 8m 2m 3m 3t 0 -2.75 -2.75 C.O. -1.375 F.M. -17.375 13.25 -6 -7.25 0 A 3 t/m B 8m 17.375 13.25 7.25 B 4t C 3m 3m A B C 7.25 13.25 17.375 2.375 3t 2m B 6 6 𝑝𝑙 4 B.M.D.
  • 175. Structural Analysis Moment Distribution II Eng. Khaled El-Aswany (Frames) (Example 4)
  • 176. I 3m 4t E DB 3m 12m 2m 1.5 t/m 6I A B C -12 -4.5 BD C -5.33 2.67 A B -18 18 C -5.33 -8 8 8m C 4I B 1.5 t/m -8 8 E -12 -4.5 0 D 18 -18 6t 2.67 C 1.5 t/m 6I I A B 6t 3m 12m 8m 2m 4I 1.5I 4t 6t F E D 3m 4m FEM D.F. Joint B KBA : KBD : KBC I L : Distribution Factors : : I L I L : 6 12 : 1.5 6 4 8 : 6 : 3 6 : 0.4 : 0.2 0.4 : Joint C KCB : KCE : I L : I L x 3 4 4 8 : 1 6 x 3 4 4 8 : 1 8 4 : 1 0.8 : 0.2 0.4 0.2 0.4 0.8 0.2
  • 177. I 3m 4t E DB 3m 12m 2m 1.5 t/m 6I A B C -12 -4.5 BD C -5.33 2.67 A B -18 18 C -5.33 -8 8 8m C 4I B 1.5 t/m -8 8 E -12 -4.5 0 D 18 -18 6t 2.67 FEM D.F. Joint B KBA : KBD : KBC I L : Distribution Factors : : I L I L : 6 12 : 1.5 6 4 8 : 6 : 3 6 : 0.4 : 0.2 0.4 : Joint C KCB : KCE : I L : I L x 3 4 4 8 : 1 6 x 3 4 4 8 : 1 8 4 : 1 0.8 : 0.2 0.4 0.2 0.4 0.8 0.2 C 1.5 t/m 6I I A B 6t 3m 12m 8m 2m 4I 1.5I 4t 6t F E D 3m 4m D.M.1 -1.867 -0.933 6.8 1.7 C.O.1 -0.933 -0.467 3.4 -0.933 D.M.2 C.O.2 -1.36 -0.68 -1.36 0.747 0.187 0.373 -0.68 -0.68 -0.34 D.M.3 C.O.3 -0.149 -0.075 -0.149 0.272 0.544 -0.075 0.136 -0.075 -0.037 D.M.4 -0.109 -0.054 -0.109 0.06 0.015 F.M. -19.69 14.52 -7.08 -7.44 14.46 -12 -2.46 0 1.82 12m 1.5 t/m A B 19.69 14.52 8m 1.5 t/m B C 7.44 14.46 6t D 4m 2m B 1.82 7.08 2.46 6t E C 3m 3m 2m C 6t 12 14.52 19.69 7.44 14.46 12 1.82 7.08 2.7 2.46 4.8 B.M.D. -1.867