SlideShare a Scribd company logo
Dynamics and Structure of
Janus Particles
B4 Okura Tatsuya
Department of Chemical Engineering
Transport Phenomena Lab.
Introduction
Applications
Objective
What is a Janus particle?
1
• two symmetric hemispheres
characterized by different surface properties
• form a variety of clusters
such as micelles, vesicles or layers
analyze the process of cluster forming under shear flow
• design of future nano-materials
[1] Soft Matter, 2015.11, 3767-3771
[1]
• drug delivery
• emulsion stabilizers
[2] https://www.google.co.jp/search?q=cell+targeting
[2]
Janus Potential Model
2
   jiijjanusijrepulsionjiij UrUU q,q,rq,q,r ˆˆ)(ˆˆ 
      ijijijrΦj,i,ijU janus rqqqqr  ˆˆˆˆ
 n
ijr
1
2
 n
ijr
1
2
 




































0
2
4 ε
n
ijr
σ
n
ijr
σ
ε
rU ijrepulsion
 
 
2
exp
ijr
σijrλCσ
ijrΦ









C : interaction strength
: range of the anisotropic interaction
iqˆ
ijr
jqˆtail
head jiij rrr 
: diameter
Potential Energy
Repulsion Potential Janus Potential
Truncated LJ potential
LJU
repulsionU
Multi-particle Simulation
Previous Research
[1] Soft Matter, 2015.11, 3767-3771
3
<M>
E /N
: Average cluster size
: Shear rate
: Energy per particle
High
Low
breakup and reform
unstable clusters
destroy clusters:
:
rij
iqˆ
jqˆ
Binary Simulation
Simulation Method
ii VR 
other
i
H
iiiM FFV 
H
iii NΩI  
0 fu
  pfftf fp    )( σIuu
Smoothed Profile Method
a


: Particle radius
: Interface width
: Interface function
Fundamental Equations
Particles
Host fluid
4
R. Yamamoto et al., Phys. Rev. E, 71, 036707 (2005)
Newton – Euler equations
Navier – Stokes equation
5
Results 1
• Phase diagram of pair stability connected
separated
C
C
:
:
:
:
D4
2


5
10-2
10-2
3
)2/,2/(   Lu 
connected
separated
C
1
3
5
7
òòòò òò
10-4 10-3 10-2 10-1
Pe
0.05 0.5 5 50
òòòò òò
kBT =13
Tk
D B
D
uL
Pe 
6
Results 2
C / kBT = 50C / kBT = 5
f = 0.01 = 0.01
high temperature low temperature
7
N = 13
icosahedron
Structure
• Narrow peak of N=13
• Various cluster size
between N=6 and N=12
[1] Soft Matter, 2015.11, 3767-3771
when
conditions
C / kBT = 0.1
Pe = 50
f = 0.01
Numerical analysis of the Structure
8
• Radial distribution function
Rosenthal , Gubbins , and K lapp JCP, 136, 174901 (2012)
g r( )=
V
4pr2
N2
d r -rij( )
j¹i
å
i
å
gp r( )=
V
4pr2
N2
d r -rij( ) ˆqi × ˆqj
j¹i
å
i
å
ga r( )=
V
4pr2
N2
d r -rij( ) ˆqi × ˆrij
j¹i
å
i
å
 rg
rijiqˆ jqˆ
rij
iqˆ jqˆ
gp r( )> 0
gp r( )< 0
ga r( )> 0
ga r( )< 0
peak
peak
peak
peak
g r( )®1
r ®¥
tail-to-tail
head-to-head
 rgparallel
 rg elantiparall
9
gp r( )=
V
4pr2
N2
d r-rij( ) ˆqi × ˆqj
j¹i
å
i
å ga r( )=
V
4pr2
N2
d r-rij( ) ˆqi × ˆrij
j¹i
å
i
å
  0rga
  0rga
peak
peak
  0rgp
  0rgp
peak
peak
/r/r
Numerical analysis of the Structure
g r( )=
V
4pr2
N2
d r -rij( )
j¹i
å
i
å
/r
N = 13icosahedron
ga(r)
gp(r)
g(r)
10
Results 4
f = 0.2
= 5C
γ= 0.01
11
Results 5
Pe = 0
0 02.0

gyro layers
f = 0.3
Pe =10
02.00
12
rijiqˆ jqˆ
Numerical analysis of Structure
   

i ij
ijiija rr
Nr
V
rg rq ˆˆ
4 22


/r
   

i ij
jiijp rr
Nr
V
rg qq ˆˆ
4 22


/r
tetra-layers
ga(r)
gp(r)
  0rgp
  0rgp
peak
peak
  0rga
  0rga
peak
peak
13
Rheology
gyro tetra-layers
≃ 0.3f 0
: viscosity
02.001.0
14
gyro tetra-layers
≃ 0.3f 0 02.001.0
≃ 0.01f
micelles
(icosahedrons)
elongated
micelles
≃ 0.2f
Conclusions
Thank you for your attention
15
Appendix
16
17
LJU
repulsionU
Potential Model
   jiijjanusijrepulsionjiij UrUU q,q,rq,q,r  )(
      ijijijrΦj,i,ijU janus rqqqqr  ˆˆˆˆ
 
 
2
exp
ijr
σijrλCσ
ijrΦ








18
gp r( )=
V
4pr2
N2
d r-rij( ) ˆqi × ˆqj
j¹i
å
i
å ga r( )=
V
4pr2
N2
d r-rij( ) ˆqi × ˆrij
j¹i
å
i
å
  0rga
  0rga
peak
peak
  0rgp
  0rgp
peak
peak
/r/r
Numerical analysis of the Structure
g r( )=
V
4pr2
N2
d r -rij( )
j¹i
å
i
å
/r
ga(r)
gp(r)
g(r)
gyro
≃ 0.3f
0
19
rijiqˆ jqˆ
Numerical analysis of Structure
   

i ij
ijiija rr
Nr
V
rg rq ˆˆ
4 22


/r
   

i ij
jiijp rr
Nr
V
rg qq ˆˆ
4 22


/r
tetra-layers
ga(r)
gp(r)
  0rgp
  0rgp
peak
peak
  0rga
  0rga
peak
peak
g(r)
g r( )=
V
4pr2
N2
d r -rij( )
j¹i
å
i
å
≃ 0.3f
02.0
20
Appendix
• Compare zigzag with Lees Edwards
• Add terms of potential energy to the Janus potential model
x
y
zigzag Lees Edwards
x
y
artificial
• Cluster size analysis with algorithm
Rosenthal , Gubbins , and K lapp JCP, 136, 174901 (2012)
21N = 13icosahedron
Pe=50 ,Φ=0.01 , C=5
(a)    

i ij
ijrr
Nr
V
rg 
 22000
4
Ste
/r
 rg000
Numerical analysis of the Structure
time
E/N
22
Simulation Conditions 1
box size : 64×64×64
x
y
zigzag
time step : 100×300
2Re 

 
uD
),1,1(   u
initial orientation : tail to
tail
Binary simulation
: 10-4 ~ 10-2
: 6
: 1

TkB
Re : 0.036 ~ 0.36
3
 
 
  ijij
ijr
σijrλCσ
jiijjanusU rqqq,q,r 







 ˆˆ
2
exp
ˆˆ
where

C : interaction strength
: range of the anisotropic interaction
: diameter
23
Simulation Conditions 2
box size : 128×128×128
: 0.01
: 6
: 0.1 ~1

3
TkB
 
 
  ijij
ijr
σijrλCσ
jiijjanusU rqqq,q,r 







 ˆˆ
2
exp
ˆˆ
where
time step : 300×500
2Re 

 
uD
),1,1(   u
Re : 0.036 ~ 0.36
Multi-particle simulation
Initial distribution: uniform random
Lees Edwards
x
y

C : interaction strength
: range of the anisotropic interaction
: diameter
24
2
Re 



uD
),1,1(   u
ijrjqiqjq,iq,ijr 



 








 




 ˆˆ
2
exp
ˆˆ
ijr
σijrλCσ
janusU
















0
0
0
)skrew(
xy
xz
yz
ΩΩ
ΩΩ
ΩΩ
Ω
Appendix
25
26
/r
g110 r( ) g101 r( )
/r
 rg000
/r

More Related Content

What's hot

Synthesis of silver nanoparticles-A novel method.
Synthesis of silver nanoparticles-A novel method.Synthesis of silver nanoparticles-A novel method.
Synthesis of silver nanoparticles-A novel method.
ankurchaturvedi92
 
ZnO-Nanostructures_Presentation
ZnO-Nanostructures_PresentationZnO-Nanostructures_Presentation
ZnO-Nanostructures_Presentation
jeanpierrecf6
 
Nanocomposite
NanocompositeNanocomposite
Nanocomposite
krishslide
 
Synthesis and characterization of pure zinc oxide nanoparticles and nickel do...
Synthesis and characterization of pure zinc oxide nanoparticles and nickel do...Synthesis and characterization of pure zinc oxide nanoparticles and nickel do...
Synthesis and characterization of pure zinc oxide nanoparticles and nickel do...
eSAT Journals
 
Graphene oxide and its biomedical applications
Graphene oxide and its biomedical applicationsGraphene oxide and its biomedical applications
Graphene oxide and its biomedical applications
Dr. Sitansu Sekhar Nanda
 
Ferrofluids and their applications
Ferrofluids and their applicationsFerrofluids and their applications
Ferrofluids and their applications
Shivansh Gaur
 
crysta limperfactions
crysta limperfactionscrysta limperfactions
Introduction to Nanoparticals
Introduction to NanoparticalsIntroduction to Nanoparticals
Introduction to Nanoparticals
ganeshapsunde
 
Nanomaterials
NanomaterialsNanomaterials
Nanomaterials
JaydevVadachhak
 
CdS Nanoparticles
CdS Nanoparticles CdS Nanoparticles
Presentation silver nano particles
Presentation silver nano particlesPresentation silver nano particles
Presentation silver nano particles
Shuaib Mubarak
 
Nanotechnology Notes by Jaideep Aluru
Nanotechnology Notes by Jaideep AluruNanotechnology Notes by Jaideep Aluru
Nanotechnology Notes by Jaideep Aluru
Aluru Jaideep Reddy
 
Nanotechnology20120918 19-26 lecture 4-5-6 - Nanomaterials
Nanotechnology20120918  19-26 lecture 4-5-6 - NanomaterialsNanotechnology20120918  19-26 lecture 4-5-6 - Nanomaterials
Nanotechnology20120918 19-26 lecture 4-5-6 - Nanomaterials
Chin Yung Jyi
 
Magnetic fluids
Magnetic fluidsMagnetic fluids
Magnetic fluids
ANANDHU THAMPI
 
Nanotechnology in solar power
Nanotechnology in solar powerNanotechnology in solar power
Nanotechnology in solar power
Mike S Robinson Solar
 
Nano particles
Nano particlesNano particles
Nano particles
RAJENDRA SINGH
 
GaAs
GaAsGaAs
Chemical vapour deposition
Chemical vapour depositionChemical vapour deposition
Chemical vapour deposition
MonikaShrivastav3
 
Powder diffraction study of zeolitic imidazolate framework-8
Powder diffraction study of zeolitic imidazolate framework-8Powder diffraction study of zeolitic imidazolate framework-8
Powder diffraction study of zeolitic imidazolate framework-8
Owen Gledhill
 
Nanofluids PPT
Nanofluids PPT Nanofluids PPT
Nanofluids PPT
Darshan J
 

What's hot (20)

Synthesis of silver nanoparticles-A novel method.
Synthesis of silver nanoparticles-A novel method.Synthesis of silver nanoparticles-A novel method.
Synthesis of silver nanoparticles-A novel method.
 
ZnO-Nanostructures_Presentation
ZnO-Nanostructures_PresentationZnO-Nanostructures_Presentation
ZnO-Nanostructures_Presentation
 
Nanocomposite
NanocompositeNanocomposite
Nanocomposite
 
Synthesis and characterization of pure zinc oxide nanoparticles and nickel do...
Synthesis and characterization of pure zinc oxide nanoparticles and nickel do...Synthesis and characterization of pure zinc oxide nanoparticles and nickel do...
Synthesis and characterization of pure zinc oxide nanoparticles and nickel do...
 
Graphene oxide and its biomedical applications
Graphene oxide and its biomedical applicationsGraphene oxide and its biomedical applications
Graphene oxide and its biomedical applications
 
Ferrofluids and their applications
Ferrofluids and their applicationsFerrofluids and their applications
Ferrofluids and their applications
 
crysta limperfactions
crysta limperfactionscrysta limperfactions
crysta limperfactions
 
Introduction to Nanoparticals
Introduction to NanoparticalsIntroduction to Nanoparticals
Introduction to Nanoparticals
 
Nanomaterials
NanomaterialsNanomaterials
Nanomaterials
 
CdS Nanoparticles
CdS Nanoparticles CdS Nanoparticles
CdS Nanoparticles
 
Presentation silver nano particles
Presentation silver nano particlesPresentation silver nano particles
Presentation silver nano particles
 
Nanotechnology Notes by Jaideep Aluru
Nanotechnology Notes by Jaideep AluruNanotechnology Notes by Jaideep Aluru
Nanotechnology Notes by Jaideep Aluru
 
Nanotechnology20120918 19-26 lecture 4-5-6 - Nanomaterials
Nanotechnology20120918  19-26 lecture 4-5-6 - NanomaterialsNanotechnology20120918  19-26 lecture 4-5-6 - Nanomaterials
Nanotechnology20120918 19-26 lecture 4-5-6 - Nanomaterials
 
Magnetic fluids
Magnetic fluidsMagnetic fluids
Magnetic fluids
 
Nanotechnology in solar power
Nanotechnology in solar powerNanotechnology in solar power
Nanotechnology in solar power
 
Nano particles
Nano particlesNano particles
Nano particles
 
GaAs
GaAsGaAs
GaAs
 
Chemical vapour deposition
Chemical vapour depositionChemical vapour deposition
Chemical vapour deposition
 
Powder diffraction study of zeolitic imidazolate framework-8
Powder diffraction study of zeolitic imidazolate framework-8Powder diffraction study of zeolitic imidazolate framework-8
Powder diffraction study of zeolitic imidazolate framework-8
 
Nanofluids PPT
Nanofluids PPT Nanofluids PPT
Nanofluids PPT
 

Viewers also liked

ららぽーと Gis
ららぽーと Gisららぽーと Gis
ららぽーと Gis
Yukihiro Shimokawabe
 
最終版0112【日光市の日本酒を用いた新規企画 発表資料】中央大学経済学部(民間インターンシップb班)
最終版0112【日光市の日本酒を用いた新規企画 発表資料】中央大学経済学部(民間インターンシップb班)最終版0112【日光市の日本酒を用いた新規企画 発表資料】中央大学経済学部(民間インターンシップb班)
最終版0112【日光市の日本酒を用いた新規企画 発表資料】中央大学経済学部(民間インターンシップb班)
Yukihiro Shimokawabe
 
Flp細野 三島市政策提言
Flp細野 三島市政策提言Flp細野 三島市政策提言
Flp細野 三島市政策提言
Yukihiro Shimokawabe
 
Patricia Rubnich Resume Current
Patricia Rubnich Resume CurrentPatricia Rubnich Resume Current
Patricia Rubnich Resume Current
Patti Rubnich
 
CAN INFO-TECH 2014
CAN INFO-TECH 2014CAN INFO-TECH 2014
CAN INFO-TECH 2014
Sparrow SMS
 
El poder del marketing online
El poder del marketing onlineEl poder del marketing online
El poder del marketing online
erickferq
 
Paisajes y biodiversidad representan a loja
Paisajes y biodiversidad representan a lojaPaisajes y biodiversidad representan a loja
Paisajes y biodiversidad representan a loja
Wendy Michelle Quezada Silva
 
Miller_Sept27_2016AI
Miller_Sept27_2016AIMiller_Sept27_2016AI
Miller_Sept27_2016AI
Carol Miller
 
Atrial septal defect
Atrial septal defectAtrial septal defect
Atrial septal defect
Bs. Nhữ Thu Hà
 
The Ugly Truth about Plastic Water Bottles
The Ugly Truth about Plastic Water BottlesThe Ugly Truth about Plastic Water Bottles
The Ugly Truth about Plastic Water Bottles
Infruition
 
富山県上市町 地方創生 ゲストハウス
富山県上市町 地方創生 ゲストハウス富山県上市町 地方創生 ゲストハウス
富山県上市町 地方創生 ゲストハウス
Naruto Seri
 
Funcab 2016-pc-pa-delegado-de-policia-civil-prova
Funcab 2016-pc-pa-delegado-de-policia-civil-provaFuncab 2016-pc-pa-delegado-de-policia-civil-prova
Funcab 2016-pc-pa-delegado-de-policia-civil-prova
Vicente Silva Filho
 
多角化の成功要因
多角化の成功要因多角化の成功要因
多角化の成功要因
Naoki Yoshida
 
Sinh lý chuyển dạ
Sinh lý chuyển dạSinh lý chuyển dạ
Sinh lý chuyển dạ
Chia se Y hoc
 
Trắc nghiệm Lịch sử Đảng cộng sản Việt Nam
Trắc nghiệm Lịch sử Đảng cộng sản Việt NamTrắc nghiệm Lịch sử Đảng cộng sản Việt Nam
Trắc nghiệm Lịch sử Đảng cộng sản Việt Nam
vietlod.com
 
日本企業の有給休暇取得率の向上しない要因の分析
日本企業の有給休暇取得率の向上しない要因の分析日本企業の有給休暇取得率の向上しない要因の分析
日本企業の有給休暇取得率の向上しない要因の分析
増田 遥
 
Art nuvo
Art nuvoArt nuvo
Art nuvo
Marina Chudov
 
支部会発表スライド
支部会発表スライド支部会発表スライド
支部会発表スライド
Ryoichi Kato
 
Research presentation slideshare
Research presentation slideshareResearch presentation slideshare
Research presentation slideshare
Takeru Arai
 
Câu hỏi trắc nghiệm đáp án a
Câu hỏi trắc nghiệm   đáp án aCâu hỏi trắc nghiệm   đáp án a
Câu hỏi trắc nghiệm đáp án a
Trúc Hương
 

Viewers also liked (20)

ららぽーと Gis
ららぽーと Gisららぽーと Gis
ららぽーと Gis
 
最終版0112【日光市の日本酒を用いた新規企画 発表資料】中央大学経済学部(民間インターンシップb班)
最終版0112【日光市の日本酒を用いた新規企画 発表資料】中央大学経済学部(民間インターンシップb班)最終版0112【日光市の日本酒を用いた新規企画 発表資料】中央大学経済学部(民間インターンシップb班)
最終版0112【日光市の日本酒を用いた新規企画 発表資料】中央大学経済学部(民間インターンシップb班)
 
Flp細野 三島市政策提言
Flp細野 三島市政策提言Flp細野 三島市政策提言
Flp細野 三島市政策提言
 
Patricia Rubnich Resume Current
Patricia Rubnich Resume CurrentPatricia Rubnich Resume Current
Patricia Rubnich Resume Current
 
CAN INFO-TECH 2014
CAN INFO-TECH 2014CAN INFO-TECH 2014
CAN INFO-TECH 2014
 
El poder del marketing online
El poder del marketing onlineEl poder del marketing online
El poder del marketing online
 
Paisajes y biodiversidad representan a loja
Paisajes y biodiversidad representan a lojaPaisajes y biodiversidad representan a loja
Paisajes y biodiversidad representan a loja
 
Miller_Sept27_2016AI
Miller_Sept27_2016AIMiller_Sept27_2016AI
Miller_Sept27_2016AI
 
Atrial septal defect
Atrial septal defectAtrial septal defect
Atrial septal defect
 
The Ugly Truth about Plastic Water Bottles
The Ugly Truth about Plastic Water BottlesThe Ugly Truth about Plastic Water Bottles
The Ugly Truth about Plastic Water Bottles
 
富山県上市町 地方創生 ゲストハウス
富山県上市町 地方創生 ゲストハウス富山県上市町 地方創生 ゲストハウス
富山県上市町 地方創生 ゲストハウス
 
Funcab 2016-pc-pa-delegado-de-policia-civil-prova
Funcab 2016-pc-pa-delegado-de-policia-civil-provaFuncab 2016-pc-pa-delegado-de-policia-civil-prova
Funcab 2016-pc-pa-delegado-de-policia-civil-prova
 
多角化の成功要因
多角化の成功要因多角化の成功要因
多角化の成功要因
 
Sinh lý chuyển dạ
Sinh lý chuyển dạSinh lý chuyển dạ
Sinh lý chuyển dạ
 
Trắc nghiệm Lịch sử Đảng cộng sản Việt Nam
Trắc nghiệm Lịch sử Đảng cộng sản Việt NamTrắc nghiệm Lịch sử Đảng cộng sản Việt Nam
Trắc nghiệm Lịch sử Đảng cộng sản Việt Nam
 
日本企業の有給休暇取得率の向上しない要因の分析
日本企業の有給休暇取得率の向上しない要因の分析日本企業の有給休暇取得率の向上しない要因の分析
日本企業の有給休暇取得率の向上しない要因の分析
 
Art nuvo
Art nuvoArt nuvo
Art nuvo
 
支部会発表スライド
支部会発表スライド支部会発表スライド
支部会発表スライド
 
Research presentation slideshare
Research presentation slideshareResearch presentation slideshare
Research presentation slideshare
 
Câu hỏi trắc nghiệm đáp án a
Câu hỏi trắc nghiệm   đáp án aCâu hỏi trắc nghiệm   đáp án a
Câu hỏi trắc nghiệm đáp án a
 

Similar to Dynamics and Structure of Janus Particles

【DL輪読会】NeRF-VAE: A Geometry Aware 3D Scene Generative Model
【DL輪読会】NeRF-VAE: A Geometry Aware 3D Scene Generative Model【DL輪読会】NeRF-VAE: A Geometry Aware 3D Scene Generative Model
【DL輪読会】NeRF-VAE: A Geometry Aware 3D Scene Generative Model
Deep Learning JP
 
Polynomial Matrix Decompositions
Polynomial Matrix DecompositionsPolynomial Matrix Decompositions
Polynomial Matrix Decompositions
Förderverein Technische Fakultät
 
TSU Seminar, JNCASR, March 2016
TSU Seminar, JNCASR, March 2016TSU Seminar, JNCASR, March 2016
TSU Seminar, JNCASR, March 2016
Amit Bhattacharjee
 
Minimax optimal alternating minimization \\ for kernel nonparametric tensor l...
Minimax optimal alternating minimization \\ for kernel nonparametric tensor l...Minimax optimal alternating minimization \\ for kernel nonparametric tensor l...
Minimax optimal alternating minimization \\ for kernel nonparametric tensor l...
Taiji Suzuki
 
Results on Characteristic Vectors
Results on Characteristic VectorsResults on Characteristic Vectors
Results on Characteristic Vectors
ijtsrd
 
O0747881
O0747881O0747881
O0747881
IOSR Journals
 
Fem 3d solid
Fem 3d solidFem 3d solid
Fem 3d solid
Harshil Bhuva
 
2014 04 22 wits presentation oqw
2014 04 22 wits presentation oqw2014 04 22 wits presentation oqw
2014 04 22 wits presentation oqw
Rene Kotze
 
WE4.L09 - MEAN-SHIFT AND HIERARCHICAL CLUSTERING FOR TEXTURED POLARIMETRIC SA...
WE4.L09 - MEAN-SHIFT AND HIERARCHICAL CLUSTERING FOR TEXTURED POLARIMETRIC SA...WE4.L09 - MEAN-SHIFT AND HIERARCHICAL CLUSTERING FOR TEXTURED POLARIMETRIC SA...
WE4.L09 - MEAN-SHIFT AND HIERARCHICAL CLUSTERING FOR TEXTURED POLARIMETRIC SA...
grssieee
 
ESL 4.4.3-4.5: Logistic Reression (contd.) and Separating Hyperplane
ESL 4.4.3-4.5: Logistic Reression (contd.) and Separating HyperplaneESL 4.4.3-4.5: Logistic Reression (contd.) and Separating Hyperplane
ESL 4.4.3-4.5: Logistic Reression (contd.) and Separating Hyperplane
Shinichi Tamura
 
The Analytical Nature of the Greens Function in the Vicinity of a Simple Pole
The Analytical Nature of the Greens Function in the Vicinity of a Simple PoleThe Analytical Nature of the Greens Function in the Vicinity of a Simple Pole
The Analytical Nature of the Greens Function in the Vicinity of a Simple Pole
ijtsrd
 
Dual Gravitons in AdS4/CFT3 and the Holographic Cotton Tensor
Dual Gravitons in AdS4/CFT3 and the Holographic Cotton TensorDual Gravitons in AdS4/CFT3 and the Holographic Cotton Tensor
Dual Gravitons in AdS4/CFT3 and the Holographic Cotton Tensor
Sebastian De Haro
 
Basics Nuclear Physics concepts
Basics Nuclear Physics conceptsBasics Nuclear Physics concepts
Basics Nuclear Physics concepts
Muhammad IrfaN
 
Analytical Solutions of the Modified Coulomb Potential using the Factorizatio...
Analytical Solutions of the Modified Coulomb Potential using the Factorizatio...Analytical Solutions of the Modified Coulomb Potential using the Factorizatio...
Analytical Solutions of the Modified Coulomb Potential using the Factorizatio...
ijrap
 
“Simulations of Lipidic Bilayers”. Prof. Dr. Kaline Coutinho – IF/USP.
“Simulations of Lipidic Bilayers”. Prof. Dr. Kaline Coutinho – IF/USP.“Simulations of Lipidic Bilayers”. Prof. Dr. Kaline Coutinho – IF/USP.
“Simulations of Lipidic Bilayers”. Prof. Dr. Kaline Coutinho – IF/USP.
lccausp
 
6. Proton Spin and Tensorgluons
6. Proton Spin and Tensorgluons6. Proton Spin and Tensorgluons
6. Proton Spin and Tensorgluons
Spyros Konitopoulos
 
ANALYTICAL SOLUTIONS OF THE MODIFIED COULOMB POTENTIAL USING THE FACTORIZATIO...
ANALYTICAL SOLUTIONS OF THE MODIFIED COULOMB POTENTIAL USING THE FACTORIZATIO...ANALYTICAL SOLUTIONS OF THE MODIFIED COULOMB POTENTIAL USING THE FACTORIZATIO...
ANALYTICAL SOLUTIONS OF THE MODIFIED COULOMB POTENTIAL USING THE FACTORIZATIO...
ijrap
 
Prof Tom Trainor (University of Washington, Seattle, USA)
Prof Tom Trainor (University of Washington, Seattle, USA)Prof Tom Trainor (University of Washington, Seattle, USA)
Prof Tom Trainor (University of Washington, Seattle, USA)
Rene Kotze
 
L20_D.pdf
L20_D.pdfL20_D.pdf
L20_D.pdf
ssuserdc94e8
 
การสุ่มตัวอย่างในงานวิจัยสาธารณสุข
การสุ่มตัวอย่างในงานวิจัยสาธารณสุขการสุ่มตัวอย่างในงานวิจัยสาธารณสุข
การสุ่มตัวอย่างในงานวิจัยสาธารณสุข
Ultraman Taro
 

Similar to Dynamics and Structure of Janus Particles (20)

【DL輪読会】NeRF-VAE: A Geometry Aware 3D Scene Generative Model
【DL輪読会】NeRF-VAE: A Geometry Aware 3D Scene Generative Model【DL輪読会】NeRF-VAE: A Geometry Aware 3D Scene Generative Model
【DL輪読会】NeRF-VAE: A Geometry Aware 3D Scene Generative Model
 
Polynomial Matrix Decompositions
Polynomial Matrix DecompositionsPolynomial Matrix Decompositions
Polynomial Matrix Decompositions
 
TSU Seminar, JNCASR, March 2016
TSU Seminar, JNCASR, March 2016TSU Seminar, JNCASR, March 2016
TSU Seminar, JNCASR, March 2016
 
Minimax optimal alternating minimization \\ for kernel nonparametric tensor l...
Minimax optimal alternating minimization \\ for kernel nonparametric tensor l...Minimax optimal alternating minimization \\ for kernel nonparametric tensor l...
Minimax optimal alternating minimization \\ for kernel nonparametric tensor l...
 
Results on Characteristic Vectors
Results on Characteristic VectorsResults on Characteristic Vectors
Results on Characteristic Vectors
 
O0747881
O0747881O0747881
O0747881
 
Fem 3d solid
Fem 3d solidFem 3d solid
Fem 3d solid
 
2014 04 22 wits presentation oqw
2014 04 22 wits presentation oqw2014 04 22 wits presentation oqw
2014 04 22 wits presentation oqw
 
WE4.L09 - MEAN-SHIFT AND HIERARCHICAL CLUSTERING FOR TEXTURED POLARIMETRIC SA...
WE4.L09 - MEAN-SHIFT AND HIERARCHICAL CLUSTERING FOR TEXTURED POLARIMETRIC SA...WE4.L09 - MEAN-SHIFT AND HIERARCHICAL CLUSTERING FOR TEXTURED POLARIMETRIC SA...
WE4.L09 - MEAN-SHIFT AND HIERARCHICAL CLUSTERING FOR TEXTURED POLARIMETRIC SA...
 
ESL 4.4.3-4.5: Logistic Reression (contd.) and Separating Hyperplane
ESL 4.4.3-4.5: Logistic Reression (contd.) and Separating HyperplaneESL 4.4.3-4.5: Logistic Reression (contd.) and Separating Hyperplane
ESL 4.4.3-4.5: Logistic Reression (contd.) and Separating Hyperplane
 
The Analytical Nature of the Greens Function in the Vicinity of a Simple Pole
The Analytical Nature of the Greens Function in the Vicinity of a Simple PoleThe Analytical Nature of the Greens Function in the Vicinity of a Simple Pole
The Analytical Nature of the Greens Function in the Vicinity of a Simple Pole
 
Dual Gravitons in AdS4/CFT3 and the Holographic Cotton Tensor
Dual Gravitons in AdS4/CFT3 and the Holographic Cotton TensorDual Gravitons in AdS4/CFT3 and the Holographic Cotton Tensor
Dual Gravitons in AdS4/CFT3 and the Holographic Cotton Tensor
 
Basics Nuclear Physics concepts
Basics Nuclear Physics conceptsBasics Nuclear Physics concepts
Basics Nuclear Physics concepts
 
Analytical Solutions of the Modified Coulomb Potential using the Factorizatio...
Analytical Solutions of the Modified Coulomb Potential using the Factorizatio...Analytical Solutions of the Modified Coulomb Potential using the Factorizatio...
Analytical Solutions of the Modified Coulomb Potential using the Factorizatio...
 
“Simulations of Lipidic Bilayers”. Prof. Dr. Kaline Coutinho – IF/USP.
“Simulations of Lipidic Bilayers”. Prof. Dr. Kaline Coutinho – IF/USP.“Simulations of Lipidic Bilayers”. Prof. Dr. Kaline Coutinho – IF/USP.
“Simulations of Lipidic Bilayers”. Prof. Dr. Kaline Coutinho – IF/USP.
 
6. Proton Spin and Tensorgluons
6. Proton Spin and Tensorgluons6. Proton Spin and Tensorgluons
6. Proton Spin and Tensorgluons
 
ANALYTICAL SOLUTIONS OF THE MODIFIED COULOMB POTENTIAL USING THE FACTORIZATIO...
ANALYTICAL SOLUTIONS OF THE MODIFIED COULOMB POTENTIAL USING THE FACTORIZATIO...ANALYTICAL SOLUTIONS OF THE MODIFIED COULOMB POTENTIAL USING THE FACTORIZATIO...
ANALYTICAL SOLUTIONS OF THE MODIFIED COULOMB POTENTIAL USING THE FACTORIZATIO...
 
Prof Tom Trainor (University of Washington, Seattle, USA)
Prof Tom Trainor (University of Washington, Seattle, USA)Prof Tom Trainor (University of Washington, Seattle, USA)
Prof Tom Trainor (University of Washington, Seattle, USA)
 
L20_D.pdf
L20_D.pdfL20_D.pdf
L20_D.pdf
 
การสุ่มตัวอย่างในงานวิจัยสาธารณสุข
การสุ่มตัวอย่างในงานวิจัยสาธารณสุขการสุ่มตัวอย่างในงานวิจัยสาธารณสุข
การสุ่มตัวอย่างในงานวิจัยสาธารณสุข
 

Recently uploaded

学校原版美国波士顿大学毕业证学历学位证书原版一模一样
学校原版美国波士顿大学毕业证学历学位证书原版一模一样学校原版美国波士顿大学毕业证学历学位证书原版一模一样
学校原版美国波士顿大学毕业证学历学位证书原版一模一样
171ticu
 
Comparative analysis between traditional aquaponics and reconstructed aquapon...
Comparative analysis between traditional aquaponics and reconstructed aquapon...Comparative analysis between traditional aquaponics and reconstructed aquapon...
Comparative analysis between traditional aquaponics and reconstructed aquapon...
bijceesjournal
 
Properties Railway Sleepers and Test.pptx
Properties Railway Sleepers and Test.pptxProperties Railway Sleepers and Test.pptx
Properties Railway Sleepers and Test.pptx
MDSABBIROJJAMANPAYEL
 
Optimizing Gradle Builds - Gradle DPE Tour Berlin 2024
Optimizing Gradle Builds - Gradle DPE Tour Berlin 2024Optimizing Gradle Builds - Gradle DPE Tour Berlin 2024
Optimizing Gradle Builds - Gradle DPE Tour Berlin 2024
Sinan KOZAK
 
BRAIN TUMOR DETECTION for seminar ppt.pdf
BRAIN TUMOR DETECTION for seminar ppt.pdfBRAIN TUMOR DETECTION for seminar ppt.pdf
BRAIN TUMOR DETECTION for seminar ppt.pdf
LAXMAREDDY22
 
Literature Review Basics and Understanding Reference Management.pptx
Literature Review Basics and Understanding Reference Management.pptxLiterature Review Basics and Understanding Reference Management.pptx
Literature Review Basics and Understanding Reference Management.pptx
Dr Ramhari Poudyal
 
Curve Fitting in Numerical Methods Regression
Curve Fitting in Numerical Methods RegressionCurve Fitting in Numerical Methods Regression
Curve Fitting in Numerical Methods Regression
Nada Hikmah
 
LLM Fine Tuning with QLoRA Cassandra Lunch 4, presented by Anant
LLM Fine Tuning with QLoRA Cassandra Lunch 4, presented by AnantLLM Fine Tuning with QLoRA Cassandra Lunch 4, presented by Anant
LLM Fine Tuning with QLoRA Cassandra Lunch 4, presented by Anant
Anant Corporation
 
官方认证美国密歇根州立大学毕业证学位证书原版一模一样
官方认证美国密歇根州立大学毕业证学位证书原版一模一样官方认证美国密歇根州立大学毕业证学位证书原版一模一样
官方认证美国密歇根州立大学毕业证学位证书原版一模一样
171ticu
 
Transformers design and coooling methods
Transformers design and coooling methodsTransformers design and coooling methods
Transformers design and coooling methods
Roger Rozario
 
john krisinger-the science and history of the alcoholic beverage.pptx
john krisinger-the science and history of the alcoholic beverage.pptxjohn krisinger-the science and history of the alcoholic beverage.pptx
john krisinger-the science and history of the alcoholic beverage.pptx
Madan Karki
 
Understanding Inductive Bias in Machine Learning
Understanding Inductive Bias in Machine LearningUnderstanding Inductive Bias in Machine Learning
Understanding Inductive Bias in Machine Learning
SUTEJAS
 
22CYT12-Unit-V-E Waste and its Management.ppt
22CYT12-Unit-V-E Waste and its Management.ppt22CYT12-Unit-V-E Waste and its Management.ppt
22CYT12-Unit-V-E Waste and its Management.ppt
KrishnaveniKrishnara1
 
BPV-GUI-01-Guide-for-ASME-Review-Teams-(General)-10-10-2023.pdf
BPV-GUI-01-Guide-for-ASME-Review-Teams-(General)-10-10-2023.pdfBPV-GUI-01-Guide-for-ASME-Review-Teams-(General)-10-10-2023.pdf
BPV-GUI-01-Guide-for-ASME-Review-Teams-(General)-10-10-2023.pdf
MIGUELANGEL966976
 
ISPM 15 Heat Treated Wood Stamps and why your shipping must have one
ISPM 15 Heat Treated Wood Stamps and why your shipping must have oneISPM 15 Heat Treated Wood Stamps and why your shipping must have one
ISPM 15 Heat Treated Wood Stamps and why your shipping must have one
Las Vegas Warehouse
 
KuberTENes Birthday Bash Guadalajara - K8sGPT first impressions
KuberTENes Birthday Bash Guadalajara - K8sGPT first impressionsKuberTENes Birthday Bash Guadalajara - K8sGPT first impressions
KuberTENes Birthday Bash Guadalajara - K8sGPT first impressions
Victor Morales
 
Engineering Drawings Lecture Detail Drawings 2014.pdf
Engineering Drawings Lecture Detail Drawings 2014.pdfEngineering Drawings Lecture Detail Drawings 2014.pdf
Engineering Drawings Lecture Detail Drawings 2014.pdf
abbyasa1014
 
IEEE Aerospace and Electronic Systems Society as a Graduate Student Member
IEEE Aerospace and Electronic Systems Society as a Graduate Student MemberIEEE Aerospace and Electronic Systems Society as a Graduate Student Member
IEEE Aerospace and Electronic Systems Society as a Graduate Student Member
VICTOR MAESTRE RAMIREZ
 
The Python for beginners. This is an advance computer language.
The Python for beginners. This is an advance computer language.The Python for beginners. This is an advance computer language.
The Python for beginners. This is an advance computer language.
sachin chaurasia
 
哪里办理(csu毕业证书)查尔斯特大学毕业证硕士学历原版一模一样
哪里办理(csu毕业证书)查尔斯特大学毕业证硕士学历原版一模一样哪里办理(csu毕业证书)查尔斯特大学毕业证硕士学历原版一模一样
哪里办理(csu毕业证书)查尔斯特大学毕业证硕士学历原版一模一样
insn4465
 

Recently uploaded (20)

学校原版美国波士顿大学毕业证学历学位证书原版一模一样
学校原版美国波士顿大学毕业证学历学位证书原版一模一样学校原版美国波士顿大学毕业证学历学位证书原版一模一样
学校原版美国波士顿大学毕业证学历学位证书原版一模一样
 
Comparative analysis between traditional aquaponics and reconstructed aquapon...
Comparative analysis between traditional aquaponics and reconstructed aquapon...Comparative analysis between traditional aquaponics and reconstructed aquapon...
Comparative analysis between traditional aquaponics and reconstructed aquapon...
 
Properties Railway Sleepers and Test.pptx
Properties Railway Sleepers and Test.pptxProperties Railway Sleepers and Test.pptx
Properties Railway Sleepers and Test.pptx
 
Optimizing Gradle Builds - Gradle DPE Tour Berlin 2024
Optimizing Gradle Builds - Gradle DPE Tour Berlin 2024Optimizing Gradle Builds - Gradle DPE Tour Berlin 2024
Optimizing Gradle Builds - Gradle DPE Tour Berlin 2024
 
BRAIN TUMOR DETECTION for seminar ppt.pdf
BRAIN TUMOR DETECTION for seminar ppt.pdfBRAIN TUMOR DETECTION for seminar ppt.pdf
BRAIN TUMOR DETECTION for seminar ppt.pdf
 
Literature Review Basics and Understanding Reference Management.pptx
Literature Review Basics and Understanding Reference Management.pptxLiterature Review Basics and Understanding Reference Management.pptx
Literature Review Basics and Understanding Reference Management.pptx
 
Curve Fitting in Numerical Methods Regression
Curve Fitting in Numerical Methods RegressionCurve Fitting in Numerical Methods Regression
Curve Fitting in Numerical Methods Regression
 
LLM Fine Tuning with QLoRA Cassandra Lunch 4, presented by Anant
LLM Fine Tuning with QLoRA Cassandra Lunch 4, presented by AnantLLM Fine Tuning with QLoRA Cassandra Lunch 4, presented by Anant
LLM Fine Tuning with QLoRA Cassandra Lunch 4, presented by Anant
 
官方认证美国密歇根州立大学毕业证学位证书原版一模一样
官方认证美国密歇根州立大学毕业证学位证书原版一模一样官方认证美国密歇根州立大学毕业证学位证书原版一模一样
官方认证美国密歇根州立大学毕业证学位证书原版一模一样
 
Transformers design and coooling methods
Transformers design and coooling methodsTransformers design and coooling methods
Transformers design and coooling methods
 
john krisinger-the science and history of the alcoholic beverage.pptx
john krisinger-the science and history of the alcoholic beverage.pptxjohn krisinger-the science and history of the alcoholic beverage.pptx
john krisinger-the science and history of the alcoholic beverage.pptx
 
Understanding Inductive Bias in Machine Learning
Understanding Inductive Bias in Machine LearningUnderstanding Inductive Bias in Machine Learning
Understanding Inductive Bias in Machine Learning
 
22CYT12-Unit-V-E Waste and its Management.ppt
22CYT12-Unit-V-E Waste and its Management.ppt22CYT12-Unit-V-E Waste and its Management.ppt
22CYT12-Unit-V-E Waste and its Management.ppt
 
BPV-GUI-01-Guide-for-ASME-Review-Teams-(General)-10-10-2023.pdf
BPV-GUI-01-Guide-for-ASME-Review-Teams-(General)-10-10-2023.pdfBPV-GUI-01-Guide-for-ASME-Review-Teams-(General)-10-10-2023.pdf
BPV-GUI-01-Guide-for-ASME-Review-Teams-(General)-10-10-2023.pdf
 
ISPM 15 Heat Treated Wood Stamps and why your shipping must have one
ISPM 15 Heat Treated Wood Stamps and why your shipping must have oneISPM 15 Heat Treated Wood Stamps and why your shipping must have one
ISPM 15 Heat Treated Wood Stamps and why your shipping must have one
 
KuberTENes Birthday Bash Guadalajara - K8sGPT first impressions
KuberTENes Birthday Bash Guadalajara - K8sGPT first impressionsKuberTENes Birthday Bash Guadalajara - K8sGPT first impressions
KuberTENes Birthday Bash Guadalajara - K8sGPT first impressions
 
Engineering Drawings Lecture Detail Drawings 2014.pdf
Engineering Drawings Lecture Detail Drawings 2014.pdfEngineering Drawings Lecture Detail Drawings 2014.pdf
Engineering Drawings Lecture Detail Drawings 2014.pdf
 
IEEE Aerospace and Electronic Systems Society as a Graduate Student Member
IEEE Aerospace and Electronic Systems Society as a Graduate Student MemberIEEE Aerospace and Electronic Systems Society as a Graduate Student Member
IEEE Aerospace and Electronic Systems Society as a Graduate Student Member
 
The Python for beginners. This is an advance computer language.
The Python for beginners. This is an advance computer language.The Python for beginners. This is an advance computer language.
The Python for beginners. This is an advance computer language.
 
哪里办理(csu毕业证书)查尔斯特大学毕业证硕士学历原版一模一样
哪里办理(csu毕业证书)查尔斯特大学毕业证硕士学历原版一模一样哪里办理(csu毕业证书)查尔斯特大学毕业证硕士学历原版一模一样
哪里办理(csu毕业证书)查尔斯特大学毕业证硕士学历原版一模一样
 

Dynamics and Structure of Janus Particles

  • 1. Dynamics and Structure of Janus Particles B4 Okura Tatsuya Department of Chemical Engineering Transport Phenomena Lab.
  • 2. Introduction Applications Objective What is a Janus particle? 1 • two symmetric hemispheres characterized by different surface properties • form a variety of clusters such as micelles, vesicles or layers analyze the process of cluster forming under shear flow • design of future nano-materials [1] Soft Matter, 2015.11, 3767-3771 [1] • drug delivery • emulsion stabilizers [2] https://www.google.co.jp/search?q=cell+targeting [2]
  • 3. Janus Potential Model 2    jiijjanusijrepulsionjiij UrUU q,q,rq,q,r ˆˆ)(ˆˆ        ijijijrΦj,i,ijU janus rqqqqr  ˆˆˆˆ  n ijr 1 2  n ijr 1 2                                       0 2 4 ε n ijr σ n ijr σ ε rU ijrepulsion     2 exp ijr σijrλCσ ijrΦ          C : interaction strength : range of the anisotropic interaction iqˆ ijr jqˆtail head jiij rrr  : diameter Potential Energy Repulsion Potential Janus Potential Truncated LJ potential LJU repulsionU
  • 4. Multi-particle Simulation Previous Research [1] Soft Matter, 2015.11, 3767-3771 3 <M> E /N : Average cluster size : Shear rate : Energy per particle High Low breakup and reform unstable clusters destroy clusters: : rij iqˆ jqˆ Binary Simulation
  • 5. Simulation Method ii VR  other i H iiiM FFV  H iii NΩI   0 fu   pfftf fp    )( σIuu Smoothed Profile Method a   : Particle radius : Interface width : Interface function Fundamental Equations Particles Host fluid 4 R. Yamamoto et al., Phys. Rev. E, 71, 036707 (2005) Newton – Euler equations Navier – Stokes equation
  • 6. 5 Results 1 • Phase diagram of pair stability connected separated C C : : : : D4 2   5 10-2 10-2 3 )2/,2/(   Lu  connected separated C 1 3 5 7 òòòò òò 10-4 10-3 10-2 10-1 Pe 0.05 0.5 5 50 òòòò òò kBT =13 Tk D B D uL Pe 
  • 7. 6 Results 2 C / kBT = 50C / kBT = 5 f = 0.01 = 0.01 high temperature low temperature
  • 8. 7 N = 13 icosahedron Structure • Narrow peak of N=13 • Various cluster size between N=6 and N=12 [1] Soft Matter, 2015.11, 3767-3771 when conditions C / kBT = 0.1 Pe = 50 f = 0.01
  • 9. Numerical analysis of the Structure 8 • Radial distribution function Rosenthal , Gubbins , and K lapp JCP, 136, 174901 (2012) g r( )= V 4pr2 N2 d r -rij( ) j¹i å i å gp r( )= V 4pr2 N2 d r -rij( ) ˆqi × ˆqj j¹i å i å ga r( )= V 4pr2 N2 d r -rij( ) ˆqi × ˆrij j¹i å i å  rg rijiqˆ jqˆ rij iqˆ jqˆ gp r( )> 0 gp r( )< 0 ga r( )> 0 ga r( )< 0 peak peak peak peak g r( )®1 r ®¥ tail-to-tail head-to-head  rgparallel  rg elantiparall
  • 10. 9 gp r( )= V 4pr2 N2 d r-rij( ) ˆqi × ˆqj j¹i å i å ga r( )= V 4pr2 N2 d r-rij( ) ˆqi × ˆrij j¹i å i å   0rga   0rga peak peak   0rgp   0rgp peak peak /r/r Numerical analysis of the Structure g r( )= V 4pr2 N2 d r -rij( ) j¹i å i å /r N = 13icosahedron ga(r) gp(r) g(r)
  • 11. 10 Results 4 f = 0.2 = 5C γ= 0.01
  • 12. 11 Results 5 Pe = 0 0 02.0  gyro layers f = 0.3 Pe =10 02.00
  • 13. 12 rijiqˆ jqˆ Numerical analysis of Structure      i ij ijiija rr Nr V rg rq ˆˆ 4 22   /r      i ij jiijp rr Nr V rg qq ˆˆ 4 22   /r tetra-layers ga(r) gp(r)   0rgp   0rgp peak peak   0rga   0rga peak peak
  • 14. 13 Rheology gyro tetra-layers ≃ 0.3f 0 : viscosity 02.001.0
  • 15. 14 gyro tetra-layers ≃ 0.3f 0 02.001.0 ≃ 0.01f micelles (icosahedrons) elongated micelles ≃ 0.2f Conclusions
  • 16. Thank you for your attention 15
  • 18. 17 LJU repulsionU Potential Model    jiijjanusijrepulsionjiij UrUU q,q,rq,q,r  )(       ijijijrΦj,i,ijU janus rqqqqr  ˆˆˆˆ     2 exp ijr σijrλCσ ijrΦ        
  • 19. 18 gp r( )= V 4pr2 N2 d r-rij( ) ˆqi × ˆqj j¹i å i å ga r( )= V 4pr2 N2 d r-rij( ) ˆqi × ˆrij j¹i å i å   0rga   0rga peak peak   0rgp   0rgp peak peak /r/r Numerical analysis of the Structure g r( )= V 4pr2 N2 d r -rij( ) j¹i å i å /r ga(r) gp(r) g(r) gyro ≃ 0.3f 0
  • 20. 19 rijiqˆ jqˆ Numerical analysis of Structure      i ij ijiija rr Nr V rg rq ˆˆ 4 22   /r      i ij jiijp rr Nr V rg qq ˆˆ 4 22   /r tetra-layers ga(r) gp(r)   0rgp   0rgp peak peak   0rga   0rga peak peak g(r) g r( )= V 4pr2 N2 d r -rij( ) j¹i å i å ≃ 0.3f 02.0
  • 21. 20 Appendix • Compare zigzag with Lees Edwards • Add terms of potential energy to the Janus potential model x y zigzag Lees Edwards x y artificial • Cluster size analysis with algorithm Rosenthal , Gubbins , and K lapp JCP, 136, 174901 (2012)
  • 22. 21N = 13icosahedron Pe=50 ,Φ=0.01 , C=5 (a)      i ij ijrr Nr V rg   22000 4 Ste /r  rg000 Numerical analysis of the Structure time E/N
  • 23. 22 Simulation Conditions 1 box size : 64×64×64 x y zigzag time step : 100×300 2Re     uD ),1,1(   u initial orientation : tail to tail Binary simulation : 10-4 ~ 10-2 : 6 : 1  TkB Re : 0.036 ~ 0.36 3       ijij ijr σijrλCσ jiijjanusU rqqq,q,r          ˆˆ 2 exp ˆˆ where  C : interaction strength : range of the anisotropic interaction : diameter
  • 24. 23 Simulation Conditions 2 box size : 128×128×128 : 0.01 : 6 : 0.1 ~1  3 TkB       ijij ijr σijrλCσ jiijjanusU rqqq,q,r          ˆˆ 2 exp ˆˆ where time step : 300×500 2Re     uD ),1,1(   u Re : 0.036 ~ 0.36 Multi-particle simulation Initial distribution: uniform random Lees Edwards x y  C : interaction strength : range of the anisotropic interaction : diameter
  • 25. 24 2 Re     uD ),1,1(   u ijrjqiqjq,iq,ijr                      ˆˆ 2 exp ˆˆ ijr σijrλCσ janusU                 0 0 0 )skrew( xy xz yz ΩΩ ΩΩ ΩΩ Ω Appendix
  • 26. 25
  • 27. 26 /r g110 r( ) g101 r( ) /r  rg000 /r

Editor's Notes

  1. Thank you for coming to my presentation. Today, I will talk about Dynamical properties and Structure of Janus Particles dispersions.
  2. To begin with, I’m going to give you a feeling of what a Janus particle looks like. As you can see in this figure, a Janus particle has two symmetric hemispheres, characterized by different surface properties. According to the surface characteristics, these particles can form a variety of clusters such as micelles, vesicles, or layers. Such a system can be useful for the design of nano-materials which have potential applications as drug delivery systems or emulsion stabilizers. In this research, I focus on the process of cluster forming under shear flow.
  3. First, I’m going to explain how the model is constructed. This is one of the simplest Janus particle models. It’s a sphere where one half is covered with an attractive patch and the other one( is covered with) a repulsive patch. I call the blue part the tail and orange one the head. The Potential Energy is described as a sum of Urepulsion and Ujanus. r is the distance between particles, and normalized vector q denotes the orientation of the particle. Urepulsion includes an isotropic contribution. I adopted a truncated LJ potential to avoid overlapping of the particles. On the other hand, UJanus includes an anisotropic contribution, which depends not only on the distance but also on the orientation. where σ is the diameter and the parameters C and λ denote the interaction strength and range, respectively. The upper figure shows the Janus pair potential model for four distinct configurations. In this model, tail to tail is the most stable configuration.
  4. Previous research has studied what happens to these Janus particles under shear. (a) consider two particles which are in a tail-to-tail configuration. (b) If add the shear, it makes a particle move and rotate. (c) At one point, when the shear is strong enough, the pairs are not stable. So why shear flow? why is it important to apply shear? Multi-particle simulations suggest that at low shear rate, shear can help to breakup and reform aggregates which have energetically unfavorable configurations. Furthermore, shear flow increases the mobility of the dispersed particles and this improves the probability of merging free particles and unstable aggregates. However, this process cannot be sustained indefinitely, and clusters rapidly decay when shear rate is increased further.
  5. In order to investigate the behavior of Janus particles, I applied direct numerical simulations to spherical particles immersed in a host fluid, using the smoothed profile method. The motion of the particles is calculated by the Newton-Euler equations. The dynamic of the fluid is described by the Navier-Stokes equation.
  6. (From now, I am going to show you some simulation results.) At first, I conducted some simulations with two particles. This phase diagram shows the stability of a pair as a function of interaction strength and shear rate. I put two particles with tail to tail configuration at the center of the system. Then I added the shear. Here, I will show you two movies at different states. Two particles are moving and rotating, but they’re still stable. when hydrodynamic force affects two particles more than Janus attraction , they cannot keep the tail to tail configuration.
  7. Next, I conducted multi-particle simulations. Let me show you the comparison among two temperatures at low volume fraction. At high temperature you can see a lot of free particles and a few clusters because of the fluctuation of the particles. On the other hand, at low temperature, you can see more stable aggregates. We can also say that the lower temperature has a big influence on the process of making up the stable clusters.
  8. When I look at the detail of the structure, I observed micelles such as icosahedrons composed of 13 particles, including a single particle as the cluster center, at low volume fraction and low temperature. This behavior has been already reported in the literature.
  9. In order to identify the structure, I employed radial distribution function, defined here. g(r) counts the number of neighboring particles in a shell with distance r from a center particle. But just standard g of r is not enough because Janus particles have the orientation. So, I introduced extra g of r to get more detailed information. They can help me to distinguish the configuration. Gparallel , if positive, will give me parallel orientations. Gantiparallel, if positive, will give me antiparallel orientations. Specifically, positive values indicate tail to tail configuration.
  10. I calculated three g of r. Then, I got three peak positions almost corresponding to an ideal icosahedron, described as dotted line. In this sense, my data confirms the icosahedral structure indicated by the snapshot.
  11. More interestingly, at higher volume fraction (φ = 0.2), I observed larger micelles than icosahedrons even at high temperature. Then they become linked to one another in the direction of the shear flow and finally merge into huge , elongated micelles. They look like columns.
  12. When φ = 0.3, in the absence of shear (γ ̇ = 0), I did not find any well-regulated structure. But they look like gyroidal structure. As the shear rate is increased up to γ ̇ = 0.02, the structure has changed and eventually turned into clear layers.
  13. From the numerical analysis, I confirm that there are a lot of side by side configurations and tail to tail configurations, looking at the different g(r) Obviously, they are not icosahedrons anymore. They seem to be like tetra-layers.
  14. Finally, I’m going to show you the rheological results. This graph shows that at low volume fraction viscosity is constant regardless of shear rate. However, at high volume fraction, preliminary results represent shear-thickening. I found this behavior at the end of my research, so I don’t fully understand the mechanism yet. But, I expect that there is a correlation between their viscosity and large scale structure because the structure is different. (I think this is because shear rate becomes considerably large so that the interaction between particles can be neglected. At low shear rate, I could not find the steady state because the simulations take time much longer. So I’m not quite sure these values are safe. )
  15. In conclusions, I have analyzed the structure as a function of shear rate, temperature, volume fraction and interaction strength, and observed different types of aggregation depending on these factors. However, I did not find any clear bilayers or vesicles. I suspect that this is because of the lack of any attractive interaction for side-by-side configurations. In future work, I will consider this matter in detail. Thank you for your attention.
  16. I calculated three g of r. Then, I got three peak positions almost corresponding to an ideal icosahedron, described as dotted line. In this sense, my data confirms the icosahedral structure indicated by the snapshot. (I can also say that there is no head-to-head configuration with distance σ from every particles.)
  17. From the numerical analysis, I confirm that there are a lot of side by side configurations and tail to tail configurations, looking at the different g(r) Obviously, they are not icosahedrons anymore. They seem to be like tetra-layers.
  18. 「この挙動は、zigzagの不自然な部分が引き起こすものかどうかをチェッックするため、Lees_Edwards のシステムと比較してみました。」 先ほどの、動径分布関数は測定したターゲットの全情報を足し合わせた平均的な情報であるため、これだけでは、詳細なクラスターサイズはわかりません。 なので、右上のようなクラスター判定のアルゴリズムを考えて、 横軸がクラスターサイズ、縦軸が出現確率を示す、グラフを作成しようと思っています。 今までのシミュレーションはすべてzigzagシステムで行いました。 このシステムは上下L/4の場所でx方向に剪断が最大にかかっていて、その部分では定常剪断が不連続になってしまい、不自然です。 そのため、Lees_Edwrds と比べたいと思います。 最後にもし時間があれば、Janus potential の式にside by side の相互作用の項を加えて、どのようなクラスターが得られるのかを見たいと思っています。 以上で終わります。
  19. I tried to find a steady state from the time change of the total energy per particle. I extracted the data after the steady state (time= 8700) and calculated three radial distribution functions. I got three peak positions almost corresponding to an ideal icosahedron, described as dotted line. In this sense, my microscopic data confirms the icosahedral structure indicated by the snapshot.
  20. Next, I conducted multi-particle simulations to observe the effect of temperature on the structure. Here are the simulation conditions.