DIRECT COMPARISON TEST
Hanpen Robot
Sunday January 17 2016
𝑖𝑓 𝑎 𝑛 ≤ 𝐴 𝑛 𝑎𝑛𝑑
𝑘=1
∞
𝐴 𝑘 𝑖𝑠 𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒
𝑡ℎ𝑒𝑛
𝑘=1
∞
𝑎 𝑘 𝑖𝑠 𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒.
Theorem
0 ≤
𝑘=𝑛+1
𝑚
𝑎 𝑘 ≤
𝑘=𝑛+1
𝑚
𝐴 𝑘 = 0, (𝑛 → ∞, 𝑚 → ∞)
Proof:
∴
𝑘=𝑛+1
𝑚
𝑎 𝑘 = 0 , (𝑛 → ∞, 𝑚 → ∞)
𝑘=𝑛+1
𝑚
𝑎 𝑘 = 0 , 𝑛 → ∞, 𝑚 → ∞
⇕
𝑆 𝑛 =
𝑘=1
𝑛
𝐴 𝑘 𝑖𝑠 𝐶𝑎𝑢𝑐ℎ𝑦 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒.
∴
𝑘=1
∞
𝑎 𝑘 𝑖𝑠 𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒. 𝑄. 𝐸. 𝐷.
THE END

Direct comparison test