Deep Directed Generative Models with Energy-Based Probability
Estimation
By Yoshua Bengio
mabonki0725
()1
June 16, 2017
(1) Alpha
SL 64
RL Q-
(2) AI
(3)
(4)
VAE
GAN
Energy-Base ( )
IRL
Figure:
Eθ(x) -NFAHJ
 
x Eθ(x)
x
Pθ(x) =
1
Z(θ)
exp (−Eθ(x))
Figure: x=0 =1 x= =0 3 / 11
EΘ(x)
˜Pθi
(x) =
1
1 + exp −WT
i x + bi

PΘ(x) =
1
ZΘ i
˜Pθi
(x) =
1
ZΘ
eEΘ(x)
 
EΘ(x) =
i
log 1 + e−(W T
i x+bi)
!
 
Eθ(x) =
1
σ2
xT
x − bT
x −
i
log 1 + eW T
i x+bi 
4 / 11
L(Θ, D′
) = −
1
N
N
i=1
log Pθ(x(i)
) (5)
PositivePhase( ) NegativePhase(
∂L(Θ, D′)
∂Θ
= −
1
N
N
i=1
∂ log Pθ(x(i))
∂Θ
= −
1
N
N
i=1
∂ log
exp(Eθ(x(i)
))
Zθ
∂Θ
(6)
= −
1
N
N
i=1
∂ log exp(Eθ(x(i)))
∂Θ
+
∂ log 1
ZΘ
∂Θ
(7)
=
1
N
N
i=1
∂Eθ(x(i))
∂Θ
− Ex∼Pθ(x)
∂Eθ(x)
∂Θ
(8)
≈ Ex+∼PD(x)
∂Eθ(x+)
∂Θ
P ositiveP hase
− Ex−∼Pθ(x)
∂Eθ(x)
∂Θ
NegativeP hase
(9)
5 / 11
L(Θ, D′)
x+ x−
Pφ(y = 1|x) = σ(−Eφ(x)) =
1
1 + exp(−Eφ(x))
(10)
P(y = 0) = p(y = 1) = 1
2
Positive Phase Negative Phase
E(x,y)∼P (x,y) −
∂ log Pφ(y|x)
∂φ
= E(x,y)∼P (x,y) −
∂ log Pφ(y = 1|x)yPφ(y = 0|x)(1−y)
∂φ
(11)
= −
1
2
Ex+∼PD(x)
∂ log Pφ(y = 1|x+)
∂φ
+ Ex−∼PΘ(x)
∂ log Pφ(y = 0|x−)
∂φ
(12)
=
1
2
Ex+∼PD(x) Pφ(y = 0|x+
)
∂Eφ(x+)
∂φ
− Ex−∼PΘ(x) Pφ(y = 1|x−
)
∂Eφ(|x−)
∂φ
≈
1
4
Ex+∼PD(x)
∂Eφ(x+)
∂φ
− Ex−∼PΘ(x)
∂Eφ(x−)
∂φ
(13)
6 / 11
Deep Generative Model with Enegrgy-Based
2 Positive Phase Negative Phase DeepLearning
Figure:
7 / 11
Deep Energy Model
Positive Phase x+ Negative Phase x−
Energy
Energy
Eθ(x) =
1
σ2
xT
x − bT
x −
i
log 1 + eW T
i fφ(x)+bi (14)
fφ(x)
(7) ∂L(Θ,D′
)
∂Θ
Deep Energy Model
∂L(Θ, D′)
∂Θ
≈ Ex+∼PD(x)
∂Eθ(x+)
∂Θ
P ositiveP hase
− Ex−∼Pθ(x)
∂Eθ(x)
∂Θ
NegativeP hase
(15)
8 / 11
Deep Generative Model
(Negative Phase )
DKL(Pφ(x)||Pθ(x)) = Ex−∼Pφ(x) − log Pθ(x−
) − H(Pφ(x)) (16)
Negativ Phase
∂
∂φ
Ex−∼Pφ(x) − log Pθ(x−
) =
∂
∂φ
Ez−∼P i(z) − log Pθ(Gφ(z)) (17)
= Ez∼P (z)
∂Eθ(Gφ(z))
∂φ
(18)
≈
1
N
N
i=1
∂Eθ(Gφ(zi))
∂φ
zi ∼ P(z) (19)
Gφ(zi) Deep Network
zi ∼ P(z) (1 ∼ −1)
Negativ Phase
H(Pφ(x)) ≈
αi
H(N(µαi , σi)) =
αi
1
2
log 2 exp(πσ2
αi
) (20)
9 / 11
Figure:
Figure:
10 / 11
VAE GAN
1 (VAE+GAN
VAE GAN /
Controlable Text Generation by Salakhutdinov
2
Generator
Discrimetor CNN
Adversarial Neural Machine Translation
Energy-Base
GAN
Energy
11 / 11

Deep genenergyprobdoc

  • 1.
    Deep Directed GenerativeModels with Energy-Based Probability Estimation By Yoshua Bengio mabonki0725 ()1 June 16, 2017
  • 2.
    (1) Alpha SL 64 RLQ- (2) AI (3) (4) VAE GAN Energy-Base ( ) IRL Figure:
  • 3.
    Eθ(x) -NFAHJ xEθ(x) x Pθ(x) = 1 Z(θ) exp (−Eθ(x)) Figure: x=0 =1 x= =0 3 / 11
  • 4.
    EΘ(x) ˜Pθi (x) = 1 1 +exp −WT i x + bi PΘ(x) = 1 ZΘ i ˜Pθi (x) = 1 ZΘ eEΘ(x) EΘ(x) = i log 1 + e−(W T i x+bi) ! Eθ(x) = 1 σ2 xT x − bT x − i log 1 + eW T i x+bi 4 / 11
  • 5.
    L(Θ, D′ ) =− 1 N N i=1 log Pθ(x(i) ) (5) PositivePhase( ) NegativePhase( ∂L(Θ, D′) ∂Θ = − 1 N N i=1 ∂ log Pθ(x(i)) ∂Θ = − 1 N N i=1 ∂ log exp(Eθ(x(i) )) Zθ ∂Θ (6) = − 1 N N i=1 ∂ log exp(Eθ(x(i))) ∂Θ + ∂ log 1 ZΘ ∂Θ (7) = 1 N N i=1 ∂Eθ(x(i)) ∂Θ − Ex∼Pθ(x) ∂Eθ(x) ∂Θ (8) ≈ Ex+∼PD(x) ∂Eθ(x+) ∂Θ P ositiveP hase − Ex−∼Pθ(x) ∂Eθ(x) ∂Θ NegativeP hase (9) 5 / 11
  • 6.
    L(Θ, D′) x+ x− Pφ(y= 1|x) = σ(−Eφ(x)) = 1 1 + exp(−Eφ(x)) (10) P(y = 0) = p(y = 1) = 1 2 Positive Phase Negative Phase E(x,y)∼P (x,y) − ∂ log Pφ(y|x) ∂φ = E(x,y)∼P (x,y) − ∂ log Pφ(y = 1|x)yPφ(y = 0|x)(1−y) ∂φ (11) = − 1 2 Ex+∼PD(x) ∂ log Pφ(y = 1|x+) ∂φ + Ex−∼PΘ(x) ∂ log Pφ(y = 0|x−) ∂φ (12) = 1 2 Ex+∼PD(x) Pφ(y = 0|x+ ) ∂Eφ(x+) ∂φ − Ex−∼PΘ(x) Pφ(y = 1|x− ) ∂Eφ(|x−) ∂φ ≈ 1 4 Ex+∼PD(x) ∂Eφ(x+) ∂φ − Ex−∼PΘ(x) ∂Eφ(x−) ∂φ (13) 6 / 11
  • 7.
    Deep Generative Modelwith Enegrgy-Based 2 Positive Phase Negative Phase DeepLearning Figure: 7 / 11
  • 8.
    Deep Energy Model PositivePhase x+ Negative Phase x− Energy Energy Eθ(x) = 1 σ2 xT x − bT x − i log 1 + eW T i fφ(x)+bi (14) fφ(x) (7) ∂L(Θ,D′ ) ∂Θ Deep Energy Model ∂L(Θ, D′) ∂Θ ≈ Ex+∼PD(x) ∂Eθ(x+) ∂Θ P ositiveP hase − Ex−∼Pθ(x) ∂Eθ(x) ∂Θ NegativeP hase (15) 8 / 11
  • 9.
    Deep Generative Model (NegativePhase ) DKL(Pφ(x)||Pθ(x)) = Ex−∼Pφ(x) − log Pθ(x− ) − H(Pφ(x)) (16) Negativ Phase ∂ ∂φ Ex−∼Pφ(x) − log Pθ(x− ) = ∂ ∂φ Ez−∼P i(z) − log Pθ(Gφ(z)) (17) = Ez∼P (z) ∂Eθ(Gφ(z)) ∂φ (18) ≈ 1 N N i=1 ∂Eθ(Gφ(zi)) ∂φ zi ∼ P(z) (19) Gφ(zi) Deep Network zi ∼ P(z) (1 ∼ −1) Negativ Phase H(Pφ(x)) ≈ αi H(N(µαi , σi)) = αi 1 2 log 2 exp(πσ2 αi ) (20) 9 / 11
  • 10.
  • 11.
    VAE GAN 1 (VAE+GAN VAEGAN / Controlable Text Generation by Salakhutdinov 2 Generator Discrimetor CNN Adversarial Neural Machine Translation Energy-Base GAN Energy 11 / 11