SlideShare a Scribd company logo
Convex Hull Approximation of
Nearly Optimal Lasso Solutions
1
Satoshi Hara Takanori Maehara
PRICAI’19
Background Lasso and Enumeration
n Lasso Typical approach for feature selection
min
$
1
2
'( − * + + - ( . =: 1 ( , ', * ∈ ℝ5 ×7×ℝ5
n Enumeration for feature selection [Hara & Maehara, AAAI’17]
• Helpful for gaining more insights of data.
2
Ordinary Lasso
• One global optimum, i.e.,
one feature set, is obtained.
Enumeration of Lasso
• Several possible solutions, i.e.,
multiple feature sets, are obtained.
I found one feature set that is
helpful for predicting energy
consumption.
Found:
{Wall Area, Glazing Area}
I found several feature sets
that are helpful for predicting
energy consumption.
Found:
{Wall Area, Glazing Area},
{Wall Area, Overall Height},
{Roof Area, Glazing Area}, …
Background Lasso and Enumeration
n Example Lasso Enumeration for 20Newsdata
• Identifying relevant words for article classification.
3
Selected words
in Lasso
solution
adb apple bios bus cable com controller
dos drivers duo fpu gateway ibm ide
mac motherboard simm vlb vram windows
Background Lasso and Enumeration
n Example Lasso Enumeration for 20Newsdata
• Identifying relevant words for article classification.
4
Selected words
in Lasso
solution
adb apple bios bus cable com controller
dos drivers duo fpu gateway ibm ide
mac motherboard simm vlb vram windows
Model7
Remove motherboard
cable
adb
drivers
Model8
Remove motherboard
cable
adb
drivers
Model9
Remove motherboard
cable
adb
drivers
Model4
Remove motherboard
cable
adb
drivers
Model5
Remove motherboard
cable
adb
drivers
Model6
Remove motherboard
cable
adb
drivers
Model1
Remove motherboard
cable
adb
drivers
Model2
Remove motherboard
cable
adb
drivers
Model3
Remove motherboard
cable
adb
drivers
Enumerated Models
Background Lasso and Enumeration
n Example Lasso Enumeration for 20Newsdata
• Identifying relevant words for article classification.
5
Selected
words in
Lasso
solution
adb apple bios bus cable com controller
dos drivers duo fpu gateway ibm ide
mac motherboard simm vlb vram windows
Model7
Remove motherboard
cable
adb
drivers
Model8
Remove motherboard
cable
adb
drivers
Model9
Remove motherboard
cable
adb
drivers
Model4
Remove motherboard
cable
adb
drivers
Model5
Remove motherboard
cable
adb
drivers
Model6
Remove motherboard
cable
adb
drivers
Model1
Remove motherboard
cable
adb
drivers
Model2
Remove motherboard
cable
adb
drivers
Model3
Remove motherboard
cable
adb
drivers
Enumerated Models
Drawback of Enumeration
Enumerated models can be just a combination
of a few representative patterns.
Exponentially many combinations of similar models can be found.
These similar models are not helpful for gaining insights.
Goal of This Study
n Goal
Find small numbers of diverse models.
large numbers similar
n Overview of the Proposed Approach
• Define a set of good models.
! " ≔ $: & $ ≤ "
• Find vertices of ! " .
Vertices = sparse models
Vertices are distinct -> diversity
6
! !Enumeration
" "
Outline
n Background and Overview
n Problem Formulation
n Proposed Method
n Experiments
n Summary
7
Properties of ! "
n ! " ≔ $: & $ ≔
'
(
)$ − + (
+ - $ ' ≤ "
• A set of models with sufficiently small Lasso objectives.
1. ! " consists of smooth boundaries
and non-smooth vertices.
• Smooth boundaries = dense models
• Non-smooth vertices = sparse models
2. A convex hull of the set of vertices /
can approximate ! " well.
• conv / ≈ ! "
8
Problem Approximation of ! "
n Our Approach
Approximate !(") by a set of % points & = () )*+
,
.
n To attain good approximation,
the vertices - of !(") should
be selected as &.
9
Problem Approximation of ! "
n Our Approach
Approximate !(") by a set of % points & = () )*+
,
.
n Question How to measure the approximation quality?
10
!(")
How similar
they are?
We use Hausdorff distance.
& = () )*+
,
Problem Approximation of ! "
n Def. Hausdorff distance between the two sets.
• Maximum margin in the non-overlapping region.
#$ %, %′ ≔ max sup
/∈1
inf
/5∈15
6 − 68 , sup
/8∈18
inf
/∈1
6 − 68
n We measure the approximation quality by using #$.
Problem Minimization of Hausdorff distance
min
9
#$ conv = , !(") , s. t. = ≤ C
11
%
%′
!(")
conv =Measure #$ = = EF FGH
I
Outline
n Background and Overview
n Problem Formulation
n Proposed Method
n Experiments
n Summary
12
Method Sampling + Greedy Selection
n Step1 Sampling points from the boundary of ! "
n Step2 Greedily select # points to minimize $%.
13
Step1 Sampling Step2 Greedy Selection
Step1 Sampling
n Note Want to sample vertices as much as possible.
n Proposed Sampling Method
• Take a random direction.
• Find an “edge” of ! " at that direction.
14
This method can sample
vertices with high probabilities.
Step1 Sampling
n Finding an “edge”
max$ %&', s. t. ' ∈ -(/) (%: random direction)
n Finding an “edge” by binary search
• Dual Problem
min
345
max
$
%&' − 7(8 ' − /)
• Find ' that satisfies 8 ' = /
by finding optimal 7 by using
binary search.
15
solvable with Lasso solvers
large 7
small 7
optimal 7
Method Sampling + Greedy Selection
n Step1 Sampling points from the boundary of ! "
n Step2 Greedily select # points to minimize $%.
16
Step1 Sampling Step2 Greedy Selection
Step2 Greedy Selection
n Original Problem
min
$
%& conv * , ,(.) , s. t. * ≤ 4
n Approximate , . with the sampled points 5.
• , . ≈ conv 5
min
$⊆8
%& conv * , conv 5 , s. t. * ≤ 4
• Remark
%& conv * , conv 5 = max
<∈8
min
<>∈?@AB $
C − C′
17
,(.)
conv(5)
conv *Measure %&
≈
Step2 Greedy Selection
n The problem is NP-hard in general.
• min
$⊆&
'( conv , , conv . , s. t. , ≤ 3
n Our Approach Greedy Selection
• Initialization step
Select one point 4 ∈ .
, 6 ← 4 , . ← . ∖ {4}, and ; ← 1
• While ; < 3
>4 ∈ max
A∈&
min
AB∈CDEF $ G
4 − 4′
, JK6 ← , J ∪ >4 , . ← . ∖ { >4}, and ; ← ; + 1
18
conv(.)
conv(,)
Greedily add one point to ,
that minimizes the objective.
Step2 Greedy Selection
n The problem is NP-hard in general.
• min
$⊆&
'( conv , , conv . , s. t. , ≤ 3
n Our Approach Greedy Selection
• Initialization step
Select one point 4 ∈ .
, 6 ← 4 , . ← . ∖ {4}, and ; ← 1
• While ; < 3
>4 ∈ max
A∈&
min
AB∈CDEF $ G
4 − 4′
, JK6 ← , J ∪ >4 , . ← . ∖ { >4}, and ; ← ; + 1
19
conv(.)
conv(,)
Greedily add one point to ,
that minimizes the objective.
Step2 Greedy Selection
n The problem is NP-hard in general.
• min
$⊆&
'( conv , , conv . , s. t. , ≤ 3
n Our Approach Greedy Selection
• Initialization step
Select one point 4 ∈ .
, 6 ← 4 , . ← . ∖ {4}, and ; ← 1
• While ; < 3
>4 ∈ max
A∈&
min
AB∈CDEF $ G
4 − 4′
, JK6 ← , J ∪ >4 , . ← . ∖ { >4}, and ; ← ; + 1
20
conv(.)
conv(,)
Greedily add one point to ,
that minimizes the objective.
Step2 Greedy Selection
n The problem is NP-hard in general.
• min
$⊆&
'( conv , , conv . , s. t. , ≤ 3
n Our Approach Greedy Selection
• Initialization step
Select one point 4 ∈ .
, 6 ← 4 , . ← . ∖ {4}, and ; ← 1
• While ; < 3
>4 ∈ max
A∈&
min
AB∈CDEF $ G
4 − 4′
, JK6 ← , J ∪ >4 , . ← . ∖ { >4}, and ; ← ; + 1
21
conv(.)
conv(,)
Greedily add one point to ,
that minimizes the objective.
Step2 Greedy Selection
n Details of computing !" ∈ max
'∈(
min
'+∈,-./ 0 1
" − "′
n 1. Computing min Quadratic Programming (QP)
• min
'+∈,-./ 0 1
" − "′
⇔ min
5
" − 6
7
8797 , s. t. 8 ≥ 0, 6
7
87 = 1
n 2. Computing max Lazy Update
• A naïve implementation requires searching over all " ∈ B.
• By using a monotonicity of the Hausdorff distance, we
can skip redundant computations and accelerate the
search.
22
Method Sampling + Greedy Selection
n Step1 Sampling points from the boundary of ! "
• Sampling random directions + Lasso + Binary Search
n Step2 Greedily select # points to minimize $%.
• Greedy selection
23
Step1 Sampling Step2 Greedy Selection
Outline
n Background and Overview
n Problem Formulation
n Proposed Method
n Experiments
n Summary
24
Synthetic Experiment Visualization of ! " and #
n Synthetic Problems
• 2D ver. $ =
1 1
1 1 + 1/40
, , =
1
1
• 3D ver. $ =
1 1 1
1 1 + 1/40 1
1 1 1 + 2/40
, , =
1
1
1
n Results
25
2D ver. 3D ver. Hausdorff dist.
2D ver.
3D ver.
Synthetic Experiment High-dimensional Data
n Synthetic data
• ! = #$% + '
• % ∼ ) 0, , , ,-. = exp −0.1|6 − 7|
• dimensionality of % = 100
n Result
• Huadorff dist. decreases
as 8 increases.
• Huadorff dist. decreases
as the sampling size 9 increases.
The effect is marginal, though.
In practice, 9 ≈ 1,000 would suffice.
26
Real-Data Experiment Diversity verification
n Data: 20Newsgroups
• Classification of news articles into two categories.
(ibm or mac)
• Feature selection = Identification of important words.
! ∈ ℝ$$%&': tf-idf weighted bag-of-words
( ∈ {0, 1}: categories of articles
# of data: 1168
n Model
• Linear logistic regression + ℓ$
n Baseline Methods [Hara & Maehara, AAAI’17]
• Enumeration Exact enumeration of top-K models
• Heuristic Skip similar models while enumeration.
27
Real-Data Experiment Diversity verification
n Comparison of the found 500 models
n Visualization with PCA
• Projected found models with PCA.
• The proposed method attained
the largest diversity.
28
Found Words
Enumeration 39
Heuristic 63
Proposed 889
apple macs macintosh
Enumeration ✘ ✘
Heuristic ✘
Proposed
Baseline methods found
combinations of a few
representative patterns only.
Baseline methods missed
some important words.
Summary
n Our Goal
• Find small numbers of diverse models for Lasso.
n Our Method
• Find “vertices” of a set of models ! " ≔ $: & $ ≤ "
• Problem: Hausdorff distance minimization.
• Method: Sampling + Greedy Selection
n Verified the effectiveness of the proposed method.
• The proposed method could
find points that can well approximate ! " .
obtain diverse models than the existing enumeration
methods.
29
GitHub: /sato9hara/LassoHull

More Related Content

What's hot

EMアルゴリズム
EMアルゴリズムEMアルゴリズム
EMアルゴリズム
moritama1515
 
Sparse Codingをなるべく数式を使わず理解する(PCAやICAとの関係)
Sparse Codingをなるべく数式を使わず理解する(PCAやICAとの関係)Sparse Codingをなるべく数式を使わず理解する(PCAやICAとの関係)
Sparse Codingをなるべく数式を使わず理解する(PCAやICAとの関係)
Teppei Kurita
 
PRML読書会#4資料+補足
PRML読書会#4資料+補足PRML読書会#4資料+補足
PRML読書会#4資料+補足Hiromasa Ohashi
 
パターン認識と機械学習 §6.2 カーネル関数の構成
パターン認識と機械学習 §6.2 カーネル関数の構成パターン認識と機械学習 §6.2 カーネル関数の構成
パターン認識と機械学習 §6.2 カーネル関数の構成
Prunus 1350
 
オセロゲームにおける強化学習を用いたゲーム戦略の獲得
オセロゲームにおける強化学習を用いたゲーム戦略の獲得オセロゲームにおける強化学習を用いたゲーム戦略の獲得
オセロゲームにおける強化学習を用いたゲーム戦略の獲得
Ko Shira
 
Gunosyにおけるパーソナライズシステム
GunosyにおけるパーソナライズシステムGunosyにおけるパーソナライズシステム
Gunosyにおけるパーソナライズシステム
Shunsuke Kozawa
 
PRML 3.5.2, 3.5.3, 3.6
PRML 3.5.2, 3.5.3, 3.6PRML 3.5.2, 3.5.3, 3.6
PRML 3.5.2, 3.5.3, 3.6
Kohei Tomita
 
「ランダムフォレスト回帰」のハイパーパラメーター
「ランダムフォレスト回帰」のハイパーパラメーター「ランダムフォレスト回帰」のハイパーパラメーター
「ランダムフォレスト回帰」のハイパーパラメーター
Jun Umezawa
 
ウィナーフィルタと適応フィルタ
ウィナーフィルタと適応フィルタウィナーフィルタと適応フィルタ
ウィナーフィルタと適応フィルタ
Toshihisa Tanaka
 
スパース性に基づく機械学習 2章 データからの学習
スパース性に基づく機械学習 2章 データからの学習スパース性に基づく機械学習 2章 データからの学習
スパース性に基づく機械学習 2章 データからの学習
hagino 3000
 
畳み込みネットワークによる高次元信号復元と異分野融合への展開
畳み込みネットワークによる高次元信号復元と異分野融合への展開 畳み込みネットワークによる高次元信号復元と異分野融合への展開
畳み込みネットワークによる高次元信号復元と異分野融合への展開
Shogo Muramatsu
 
Isolation forest
Isolation forestIsolation forest
Isolation forest
kataware
 
劣モジュラ最適化と機械学習 2.4節
劣モジュラ最適化と機械学習 2.4節劣モジュラ最適化と機械学習 2.4節
劣モジュラ最適化と機械学習 2.4節
Hakky St
 
初めてのグラフカット
初めてのグラフカット初めてのグラフカット
初めてのグラフカットTsubasa Hirakawa
 
感覚運動随伴性、予測符号化、そして自由エネルギー原理 (Sensory-Motor Contingency, Predictive Coding and ...
感覚運動随伴性、予測符号化、そして自由エネルギー原理 (Sensory-Motor Contingency, Predictive Coding and ...感覚運動随伴性、予測符号化、そして自由エネルギー原理 (Sensory-Motor Contingency, Predictive Coding and ...
感覚運動随伴性、予測符号化、そして自由エネルギー原理 (Sensory-Motor Contingency, Predictive Coding and ...
Masatoshi Yoshida
 
グラフィカルモデル入門
グラフィカルモデル入門グラフィカルモデル入門
グラフィカルモデル入門Kawamoto_Kazuhiko
 
PRML chapter5
PRML chapter5PRML chapter5
Advanced Microeconomics - Lecture Slides
Advanced Microeconomics - Lecture SlidesAdvanced Microeconomics - Lecture Slides
Advanced Microeconomics - Lecture Slides
Yosuke YASUDA
 
PRML 4.1 Discriminant Function
PRML 4.1 Discriminant FunctionPRML 4.1 Discriminant Function
PRML 4.1 Discriminant Function
Shintaro Takemura
 

What's hot (20)

EMアルゴリズム
EMアルゴリズムEMアルゴリズム
EMアルゴリズム
 
Sparse Codingをなるべく数式を使わず理解する(PCAやICAとの関係)
Sparse Codingをなるべく数式を使わず理解する(PCAやICAとの関係)Sparse Codingをなるべく数式を使わず理解する(PCAやICAとの関係)
Sparse Codingをなるべく数式を使わず理解する(PCAやICAとの関係)
 
PRML読書会#4資料+補足
PRML読書会#4資料+補足PRML読書会#4資料+補足
PRML読書会#4資料+補足
 
パターン認識と機械学習 §6.2 カーネル関数の構成
パターン認識と機械学習 §6.2 カーネル関数の構成パターン認識と機械学習 §6.2 カーネル関数の構成
パターン認識と機械学習 §6.2 カーネル関数の構成
 
オセロゲームにおける強化学習を用いたゲーム戦略の獲得
オセロゲームにおける強化学習を用いたゲーム戦略の獲得オセロゲームにおける強化学習を用いたゲーム戦略の獲得
オセロゲームにおける強化学習を用いたゲーム戦略の獲得
 
線形計画法入門
線形計画法入門線形計画法入門
線形計画法入門
 
Gunosyにおけるパーソナライズシステム
GunosyにおけるパーソナライズシステムGunosyにおけるパーソナライズシステム
Gunosyにおけるパーソナライズシステム
 
PRML 3.5.2, 3.5.3, 3.6
PRML 3.5.2, 3.5.3, 3.6PRML 3.5.2, 3.5.3, 3.6
PRML 3.5.2, 3.5.3, 3.6
 
「ランダムフォレスト回帰」のハイパーパラメーター
「ランダムフォレスト回帰」のハイパーパラメーター「ランダムフォレスト回帰」のハイパーパラメーター
「ランダムフォレスト回帰」のハイパーパラメーター
 
ウィナーフィルタと適応フィルタ
ウィナーフィルタと適応フィルタウィナーフィルタと適応フィルタ
ウィナーフィルタと適応フィルタ
 
スパース性に基づく機械学習 2章 データからの学習
スパース性に基づく機械学習 2章 データからの学習スパース性に基づく機械学習 2章 データからの学習
スパース性に基づく機械学習 2章 データからの学習
 
畳み込みネットワークによる高次元信号復元と異分野融合への展開
畳み込みネットワークによる高次元信号復元と異分野融合への展開 畳み込みネットワークによる高次元信号復元と異分野融合への展開
畳み込みネットワークによる高次元信号復元と異分野融合への展開
 
Isolation forest
Isolation forestIsolation forest
Isolation forest
 
劣モジュラ最適化と機械学習 2.4節
劣モジュラ最適化と機械学習 2.4節劣モジュラ最適化と機械学習 2.4節
劣モジュラ最適化と機械学習 2.4節
 
初めてのグラフカット
初めてのグラフカット初めてのグラフカット
初めてのグラフカット
 
感覚運動随伴性、予測符号化、そして自由エネルギー原理 (Sensory-Motor Contingency, Predictive Coding and ...
感覚運動随伴性、予測符号化、そして自由エネルギー原理 (Sensory-Motor Contingency, Predictive Coding and ...感覚運動随伴性、予測符号化、そして自由エネルギー原理 (Sensory-Motor Contingency, Predictive Coding and ...
感覚運動随伴性、予測符号化、そして自由エネルギー原理 (Sensory-Motor Contingency, Predictive Coding and ...
 
グラフィカルモデル入門
グラフィカルモデル入門グラフィカルモデル入門
グラフィカルモデル入門
 
PRML chapter5
PRML chapter5PRML chapter5
PRML chapter5
 
Advanced Microeconomics - Lecture Slides
Advanced Microeconomics - Lecture SlidesAdvanced Microeconomics - Lecture Slides
Advanced Microeconomics - Lecture Slides
 
PRML 4.1 Discriminant Function
PRML 4.1 Discriminant FunctionPRML 4.1 Discriminant Function
PRML 4.1 Discriminant Function
 

Similar to Convex Hull Approximation of Nearly Optimal Lasso Solutions

Design and Analysis of Algorithms Lecture Notes
Design and Analysis of Algorithms Lecture NotesDesign and Analysis of Algorithms Lecture Notes
Design and Analysis of Algorithms Lecture Notes
Sreedhar Chowdam
 
LINEAR PROGRAMMING
LINEAR PROGRAMMINGLINEAR PROGRAMMING
LINEAR PROGRAMMING
rashi9
 
cutnpeel_wsdm2022_slide.pdf
cutnpeel_wsdm2022_slide.pdfcutnpeel_wsdm2022_slide.pdf
cutnpeel_wsdm2022_slide.pdf
HyeonjeongShin6
 
Greedy algorithm
Greedy algorithmGreedy algorithm
Paris Data Geeks
Paris Data GeeksParis Data Geeks
Paris Data Geeks
MapR Technologies
 
Methods of Manifold Learning for Dimension Reduction of Large Data Sets
Methods of Manifold Learning for Dimension Reduction of Large Data SetsMethods of Manifold Learning for Dimension Reduction of Large Data Sets
Methods of Manifold Learning for Dimension Reduction of Large Data Sets
Ryan B Harvey, CSDP, CSM
 
Real-Time Big Data Stream Analytics
Real-Time Big Data Stream AnalyticsReal-Time Big Data Stream Analytics
Real-Time Big Data Stream Analytics
Albert Bifet
 
Counting trees.pptx
Counting trees.pptxCounting trees.pptx
Counting trees.pptx
mdshafiullah18
 
Undecidable Problems and Approximation Algorithms
Undecidable Problems and Approximation AlgorithmsUndecidable Problems and Approximation Algorithms
Undecidable Problems and Approximation Algorithms
Muthu Vinayagam
 
Recursion
RecursionRecursion
Recursion
Malainine Zaid
 
5163147.ppt
5163147.ppt5163147.ppt
5163147.ppt
Mayurkumarpatil1
 
Unit 5
Unit 5Unit 5
Unit 5
guna287176
 
Derivative Free Optimization and Robust Optimization
Derivative Free Optimization and Robust OptimizationDerivative Free Optimization and Robust Optimization
Derivative Free Optimization and Robust Optimization
SSA KPI
 
Decision Tree.pptx
Decision Tree.pptxDecision Tree.pptx
Decision Tree.pptx
Ramakrishna Reddy Bijjam
 
Introduction to Big Data Science
Introduction to Big Data ScienceIntroduction to Big Data Science
Introduction to Big Data Science
Albert Bifet
 
DAA Notes.pdf
DAA Notes.pdfDAA Notes.pdf
DAA Notes.pdf
SauravPawar14
 
Optimization (DLAI D4L1 2017 UPC Deep Learning for Artificial Intelligence)
Optimization (DLAI D4L1 2017 UPC Deep Learning for Artificial Intelligence)Optimization (DLAI D4L1 2017 UPC Deep Learning for Artificial Intelligence)
Optimization (DLAI D4L1 2017 UPC Deep Learning for Artificial Intelligence)
Universitat Politècnica de Catalunya
 

Similar to Convex Hull Approximation of Nearly Optimal Lasso Solutions (20)

Lecture1
Lecture1Lecture1
Lecture1
 
Design and Analysis of Algorithms Lecture Notes
Design and Analysis of Algorithms Lecture NotesDesign and Analysis of Algorithms Lecture Notes
Design and Analysis of Algorithms Lecture Notes
 
LINEAR PROGRAMMING
LINEAR PROGRAMMINGLINEAR PROGRAMMING
LINEAR PROGRAMMING
 
cutnpeel_wsdm2022_slide.pdf
cutnpeel_wsdm2022_slide.pdfcutnpeel_wsdm2022_slide.pdf
cutnpeel_wsdm2022_slide.pdf
 
Greedy algorithm
Greedy algorithmGreedy algorithm
Greedy algorithm
 
Mit6 094 iap10_lec03
Mit6 094 iap10_lec03Mit6 094 iap10_lec03
Mit6 094 iap10_lec03
 
Paris Data Geeks
Paris Data GeeksParis Data Geeks
Paris Data Geeks
 
Methods of Manifold Learning for Dimension Reduction of Large Data Sets
Methods of Manifold Learning for Dimension Reduction of Large Data SetsMethods of Manifold Learning for Dimension Reduction of Large Data Sets
Methods of Manifold Learning for Dimension Reduction of Large Data Sets
 
Real-Time Big Data Stream Analytics
Real-Time Big Data Stream AnalyticsReal-Time Big Data Stream Analytics
Real-Time Big Data Stream Analytics
 
Counting trees.pptx
Counting trees.pptxCounting trees.pptx
Counting trees.pptx
 
Undecidable Problems and Approximation Algorithms
Undecidable Problems and Approximation AlgorithmsUndecidable Problems and Approximation Algorithms
Undecidable Problems and Approximation Algorithms
 
Recursion
RecursionRecursion
Recursion
 
5163147.ppt
5163147.ppt5163147.ppt
5163147.ppt
 
Unit 5
Unit 5Unit 5
Unit 5
 
Unit 5
Unit 5Unit 5
Unit 5
 
Derivative Free Optimization and Robust Optimization
Derivative Free Optimization and Robust OptimizationDerivative Free Optimization and Robust Optimization
Derivative Free Optimization and Robust Optimization
 
Decision Tree.pptx
Decision Tree.pptxDecision Tree.pptx
Decision Tree.pptx
 
Introduction to Big Data Science
Introduction to Big Data ScienceIntroduction to Big Data Science
Introduction to Big Data Science
 
DAA Notes.pdf
DAA Notes.pdfDAA Notes.pdf
DAA Notes.pdf
 
Optimization (DLAI D4L1 2017 UPC Deep Learning for Artificial Intelligence)
Optimization (DLAI D4L1 2017 UPC Deep Learning for Artificial Intelligence)Optimization (DLAI D4L1 2017 UPC Deep Learning for Artificial Intelligence)
Optimization (DLAI D4L1 2017 UPC Deep Learning for Artificial Intelligence)
 

More from Satoshi Hara

Explanation in Machine Learning and Its Reliability
Explanation in Machine Learning and Its ReliabilityExplanation in Machine Learning and Its Reliability
Explanation in Machine Learning and Its Reliability
Satoshi Hara
 
“機械学習の説明”の信頼性
“機械学習の説明”の信頼性“機械学習の説明”の信頼性
“機械学習の説明”の信頼性
Satoshi Hara
 
【論文調査】XAI技術の効能を ユーザ実験で評価する研究
【論文調査】XAI技術の効能を ユーザ実験で評価する研究【論文調査】XAI技術の効能を ユーザ実験で評価する研究
【論文調査】XAI技術の効能を ユーザ実験で評価する研究
Satoshi Hara
 
機械学習で嘘をつく話
機械学習で嘘をつく話機械学習で嘘をつく話
機械学習で嘘をつく話
Satoshi Hara
 
機械学習モデルの判断根拠の説明(Ver.2)
機械学習モデルの判断根拠の説明(Ver.2)機械学習モデルの判断根拠の説明(Ver.2)
機械学習モデルの判断根拠の説明(Ver.2)
Satoshi Hara
 
異常の定義と推定
異常の定義と推定異常の定義と推定
異常の定義と推定
Satoshi Hara
 
Theoretical Linear Convergence of Unfolded ISTA and its Practical Weights and...
Theoretical Linear Convergence of Unfolded ISTA and its Practical Weights and...Theoretical Linear Convergence of Unfolded ISTA and its Practical Weights and...
Theoretical Linear Convergence of Unfolded ISTA and its Practical Weights and...
Satoshi Hara
 
機械学習モデルの判断根拠の説明
機械学習モデルの判断根拠の説明機械学習モデルの判断根拠の説明
機械学習モデルの判断根拠の説明
Satoshi Hara
 
Maximally Invariant Data Perturbation as Explanation
Maximally Invariant Data Perturbation as ExplanationMaximally Invariant Data Perturbation as Explanation
Maximally Invariant Data Perturbation as Explanation
Satoshi Hara
 
アンサンブル木モデル解釈のためのモデル簡略化法
アンサンブル木モデル解釈のためのモデル簡略化法アンサンブル木モデル解釈のためのモデル簡略化法
アンサンブル木モデル解釈のためのモデル簡略化法
Satoshi Hara
 
KDD'17読み会:Anomaly Detection with Robust Deep Autoencoders
KDD'17読み会:Anomaly Detection with Robust Deep AutoencodersKDD'17読み会:Anomaly Detection with Robust Deep Autoencoders
KDD'17読み会:Anomaly Detection with Robust Deep Autoencoders
Satoshi Hara
 

More from Satoshi Hara (11)

Explanation in Machine Learning and Its Reliability
Explanation in Machine Learning and Its ReliabilityExplanation in Machine Learning and Its Reliability
Explanation in Machine Learning and Its Reliability
 
“機械学習の説明”の信頼性
“機械学習の説明”の信頼性“機械学習の説明”の信頼性
“機械学習の説明”の信頼性
 
【論文調査】XAI技術の効能を ユーザ実験で評価する研究
【論文調査】XAI技術の効能を ユーザ実験で評価する研究【論文調査】XAI技術の効能を ユーザ実験で評価する研究
【論文調査】XAI技術の効能を ユーザ実験で評価する研究
 
機械学習で嘘をつく話
機械学習で嘘をつく話機械学習で嘘をつく話
機械学習で嘘をつく話
 
機械学習モデルの判断根拠の説明(Ver.2)
機械学習モデルの判断根拠の説明(Ver.2)機械学習モデルの判断根拠の説明(Ver.2)
機械学習モデルの判断根拠の説明(Ver.2)
 
異常の定義と推定
異常の定義と推定異常の定義と推定
異常の定義と推定
 
Theoretical Linear Convergence of Unfolded ISTA and its Practical Weights and...
Theoretical Linear Convergence of Unfolded ISTA and its Practical Weights and...Theoretical Linear Convergence of Unfolded ISTA and its Practical Weights and...
Theoretical Linear Convergence of Unfolded ISTA and its Practical Weights and...
 
機械学習モデルの判断根拠の説明
機械学習モデルの判断根拠の説明機械学習モデルの判断根拠の説明
機械学習モデルの判断根拠の説明
 
Maximally Invariant Data Perturbation as Explanation
Maximally Invariant Data Perturbation as ExplanationMaximally Invariant Data Perturbation as Explanation
Maximally Invariant Data Perturbation as Explanation
 
アンサンブル木モデル解釈のためのモデル簡略化法
アンサンブル木モデル解釈のためのモデル簡略化法アンサンブル木モデル解釈のためのモデル簡略化法
アンサンブル木モデル解釈のためのモデル簡略化法
 
KDD'17読み会:Anomaly Detection with Robust Deep Autoencoders
KDD'17読み会:Anomaly Detection with Robust Deep AutoencodersKDD'17読み会:Anomaly Detection with Robust Deep Autoencoders
KDD'17読み会:Anomaly Detection with Robust Deep Autoencoders
 

Recently uploaded

Smart TV Buyer Insights Survey 2024 by 91mobiles.pdf
Smart TV Buyer Insights Survey 2024 by 91mobiles.pdfSmart TV Buyer Insights Survey 2024 by 91mobiles.pdf
Smart TV Buyer Insights Survey 2024 by 91mobiles.pdf
91mobiles
 
Accelerate your Kubernetes clusters with Varnish Caching
Accelerate your Kubernetes clusters with Varnish CachingAccelerate your Kubernetes clusters with Varnish Caching
Accelerate your Kubernetes clusters with Varnish Caching
Thijs Feryn
 
DevOps and Testing slides at DASA Connect
DevOps and Testing slides at DASA ConnectDevOps and Testing slides at DASA Connect
DevOps and Testing slides at DASA Connect
Kari Kakkonen
 
Essentials of Automations: Optimizing FME Workflows with Parameters
Essentials of Automations: Optimizing FME Workflows with ParametersEssentials of Automations: Optimizing FME Workflows with Parameters
Essentials of Automations: Optimizing FME Workflows with Parameters
Safe Software
 
Empowering NextGen Mobility via Large Action Model Infrastructure (LAMI): pav...
Empowering NextGen Mobility via Large Action Model Infrastructure (LAMI): pav...Empowering NextGen Mobility via Large Action Model Infrastructure (LAMI): pav...
Empowering NextGen Mobility via Large Action Model Infrastructure (LAMI): pav...
Thierry Lestable
 
Dev Dives: Train smarter, not harder – active learning and UiPath LLMs for do...
Dev Dives: Train smarter, not harder – active learning and UiPath LLMs for do...Dev Dives: Train smarter, not harder – active learning and UiPath LLMs for do...
Dev Dives: Train smarter, not harder – active learning and UiPath LLMs for do...
UiPathCommunity
 
State of ICS and IoT Cyber Threat Landscape Report 2024 preview
State of ICS and IoT Cyber Threat Landscape Report 2024 previewState of ICS and IoT Cyber Threat Landscape Report 2024 preview
State of ICS and IoT Cyber Threat Landscape Report 2024 preview
Prayukth K V
 
Securing your Kubernetes cluster_ a step-by-step guide to success !
Securing your Kubernetes cluster_ a step-by-step guide to success !Securing your Kubernetes cluster_ a step-by-step guide to success !
Securing your Kubernetes cluster_ a step-by-step guide to success !
KatiaHIMEUR1
 
UiPath Test Automation using UiPath Test Suite series, part 4
UiPath Test Automation using UiPath Test Suite series, part 4UiPath Test Automation using UiPath Test Suite series, part 4
UiPath Test Automation using UiPath Test Suite series, part 4
DianaGray10
 
Monitoring Java Application Security with JDK Tools and JFR Events
Monitoring Java Application Security with JDK Tools and JFR EventsMonitoring Java Application Security with JDK Tools and JFR Events
Monitoring Java Application Security with JDK Tools and JFR Events
Ana-Maria Mihalceanu
 
GDG Cloud Southlake #33: Boule & Rebala: Effective AppSec in SDLC using Deplo...
GDG Cloud Southlake #33: Boule & Rebala: Effective AppSec in SDLC using Deplo...GDG Cloud Southlake #33: Boule & Rebala: Effective AppSec in SDLC using Deplo...
GDG Cloud Southlake #33: Boule & Rebala: Effective AppSec in SDLC using Deplo...
James Anderson
 
FIDO Alliance Osaka Seminar: Passkeys at Amazon.pdf
FIDO Alliance Osaka Seminar: Passkeys at Amazon.pdfFIDO Alliance Osaka Seminar: Passkeys at Amazon.pdf
FIDO Alliance Osaka Seminar: Passkeys at Amazon.pdf
FIDO Alliance
 
Epistemic Interaction - tuning interfaces to provide information for AI support
Epistemic Interaction - tuning interfaces to provide information for AI supportEpistemic Interaction - tuning interfaces to provide information for AI support
Epistemic Interaction - tuning interfaces to provide information for AI support
Alan Dix
 
FIDO Alliance Osaka Seminar: The WebAuthn API and Discoverable Credentials.pdf
FIDO Alliance Osaka Seminar: The WebAuthn API and Discoverable Credentials.pdfFIDO Alliance Osaka Seminar: The WebAuthn API and Discoverable Credentials.pdf
FIDO Alliance Osaka Seminar: The WebAuthn API and Discoverable Credentials.pdf
FIDO Alliance
 
PHP Frameworks: I want to break free (IPC Berlin 2024)
PHP Frameworks: I want to break free (IPC Berlin 2024)PHP Frameworks: I want to break free (IPC Berlin 2024)
PHP Frameworks: I want to break free (IPC Berlin 2024)
Ralf Eggert
 
Quantum Computing: Current Landscape and the Future Role of APIs
Quantum Computing: Current Landscape and the Future Role of APIsQuantum Computing: Current Landscape and the Future Role of APIs
Quantum Computing: Current Landscape and the Future Role of APIs
Vlad Stirbu
 
When stars align: studies in data quality, knowledge graphs, and machine lear...
When stars align: studies in data quality, knowledge graphs, and machine lear...When stars align: studies in data quality, knowledge graphs, and machine lear...
When stars align: studies in data quality, knowledge graphs, and machine lear...
Elena Simperl
 
GenAISummit 2024 May 28 Sri Ambati Keynote: AGI Belongs to The Community in O...
GenAISummit 2024 May 28 Sri Ambati Keynote: AGI Belongs to The Community in O...GenAISummit 2024 May 28 Sri Ambati Keynote: AGI Belongs to The Community in O...
GenAISummit 2024 May 28 Sri Ambati Keynote: AGI Belongs to The Community in O...
Sri Ambati
 
By Design, not by Accident - Agile Venture Bolzano 2024
By Design, not by Accident - Agile Venture Bolzano 2024By Design, not by Accident - Agile Venture Bolzano 2024
By Design, not by Accident - Agile Venture Bolzano 2024
Pierluigi Pugliese
 
Key Trends Shaping the Future of Infrastructure.pdf
Key Trends Shaping the Future of Infrastructure.pdfKey Trends Shaping the Future of Infrastructure.pdf
Key Trends Shaping the Future of Infrastructure.pdf
Cheryl Hung
 

Recently uploaded (20)

Smart TV Buyer Insights Survey 2024 by 91mobiles.pdf
Smart TV Buyer Insights Survey 2024 by 91mobiles.pdfSmart TV Buyer Insights Survey 2024 by 91mobiles.pdf
Smart TV Buyer Insights Survey 2024 by 91mobiles.pdf
 
Accelerate your Kubernetes clusters with Varnish Caching
Accelerate your Kubernetes clusters with Varnish CachingAccelerate your Kubernetes clusters with Varnish Caching
Accelerate your Kubernetes clusters with Varnish Caching
 
DevOps and Testing slides at DASA Connect
DevOps and Testing slides at DASA ConnectDevOps and Testing slides at DASA Connect
DevOps and Testing slides at DASA Connect
 
Essentials of Automations: Optimizing FME Workflows with Parameters
Essentials of Automations: Optimizing FME Workflows with ParametersEssentials of Automations: Optimizing FME Workflows with Parameters
Essentials of Automations: Optimizing FME Workflows with Parameters
 
Empowering NextGen Mobility via Large Action Model Infrastructure (LAMI): pav...
Empowering NextGen Mobility via Large Action Model Infrastructure (LAMI): pav...Empowering NextGen Mobility via Large Action Model Infrastructure (LAMI): pav...
Empowering NextGen Mobility via Large Action Model Infrastructure (LAMI): pav...
 
Dev Dives: Train smarter, not harder – active learning and UiPath LLMs for do...
Dev Dives: Train smarter, not harder – active learning and UiPath LLMs for do...Dev Dives: Train smarter, not harder – active learning and UiPath LLMs for do...
Dev Dives: Train smarter, not harder – active learning and UiPath LLMs for do...
 
State of ICS and IoT Cyber Threat Landscape Report 2024 preview
State of ICS and IoT Cyber Threat Landscape Report 2024 previewState of ICS and IoT Cyber Threat Landscape Report 2024 preview
State of ICS and IoT Cyber Threat Landscape Report 2024 preview
 
Securing your Kubernetes cluster_ a step-by-step guide to success !
Securing your Kubernetes cluster_ a step-by-step guide to success !Securing your Kubernetes cluster_ a step-by-step guide to success !
Securing your Kubernetes cluster_ a step-by-step guide to success !
 
UiPath Test Automation using UiPath Test Suite series, part 4
UiPath Test Automation using UiPath Test Suite series, part 4UiPath Test Automation using UiPath Test Suite series, part 4
UiPath Test Automation using UiPath Test Suite series, part 4
 
Monitoring Java Application Security with JDK Tools and JFR Events
Monitoring Java Application Security with JDK Tools and JFR EventsMonitoring Java Application Security with JDK Tools and JFR Events
Monitoring Java Application Security with JDK Tools and JFR Events
 
GDG Cloud Southlake #33: Boule & Rebala: Effective AppSec in SDLC using Deplo...
GDG Cloud Southlake #33: Boule & Rebala: Effective AppSec in SDLC using Deplo...GDG Cloud Southlake #33: Boule & Rebala: Effective AppSec in SDLC using Deplo...
GDG Cloud Southlake #33: Boule & Rebala: Effective AppSec in SDLC using Deplo...
 
FIDO Alliance Osaka Seminar: Passkeys at Amazon.pdf
FIDO Alliance Osaka Seminar: Passkeys at Amazon.pdfFIDO Alliance Osaka Seminar: Passkeys at Amazon.pdf
FIDO Alliance Osaka Seminar: Passkeys at Amazon.pdf
 
Epistemic Interaction - tuning interfaces to provide information for AI support
Epistemic Interaction - tuning interfaces to provide information for AI supportEpistemic Interaction - tuning interfaces to provide information for AI support
Epistemic Interaction - tuning interfaces to provide information for AI support
 
FIDO Alliance Osaka Seminar: The WebAuthn API and Discoverable Credentials.pdf
FIDO Alliance Osaka Seminar: The WebAuthn API and Discoverable Credentials.pdfFIDO Alliance Osaka Seminar: The WebAuthn API and Discoverable Credentials.pdf
FIDO Alliance Osaka Seminar: The WebAuthn API and Discoverable Credentials.pdf
 
PHP Frameworks: I want to break free (IPC Berlin 2024)
PHP Frameworks: I want to break free (IPC Berlin 2024)PHP Frameworks: I want to break free (IPC Berlin 2024)
PHP Frameworks: I want to break free (IPC Berlin 2024)
 
Quantum Computing: Current Landscape and the Future Role of APIs
Quantum Computing: Current Landscape and the Future Role of APIsQuantum Computing: Current Landscape and the Future Role of APIs
Quantum Computing: Current Landscape and the Future Role of APIs
 
When stars align: studies in data quality, knowledge graphs, and machine lear...
When stars align: studies in data quality, knowledge graphs, and machine lear...When stars align: studies in data quality, knowledge graphs, and machine lear...
When stars align: studies in data quality, knowledge graphs, and machine lear...
 
GenAISummit 2024 May 28 Sri Ambati Keynote: AGI Belongs to The Community in O...
GenAISummit 2024 May 28 Sri Ambati Keynote: AGI Belongs to The Community in O...GenAISummit 2024 May 28 Sri Ambati Keynote: AGI Belongs to The Community in O...
GenAISummit 2024 May 28 Sri Ambati Keynote: AGI Belongs to The Community in O...
 
By Design, not by Accident - Agile Venture Bolzano 2024
By Design, not by Accident - Agile Venture Bolzano 2024By Design, not by Accident - Agile Venture Bolzano 2024
By Design, not by Accident - Agile Venture Bolzano 2024
 
Key Trends Shaping the Future of Infrastructure.pdf
Key Trends Shaping the Future of Infrastructure.pdfKey Trends Shaping the Future of Infrastructure.pdf
Key Trends Shaping the Future of Infrastructure.pdf
 

Convex Hull Approximation of Nearly Optimal Lasso Solutions

  • 1. Convex Hull Approximation of Nearly Optimal Lasso Solutions 1 Satoshi Hara Takanori Maehara PRICAI’19
  • 2. Background Lasso and Enumeration n Lasso Typical approach for feature selection min $ 1 2 '( − * + + - ( . =: 1 ( , ', * ∈ ℝ5 ×7×ℝ5 n Enumeration for feature selection [Hara & Maehara, AAAI’17] • Helpful for gaining more insights of data. 2 Ordinary Lasso • One global optimum, i.e., one feature set, is obtained. Enumeration of Lasso • Several possible solutions, i.e., multiple feature sets, are obtained. I found one feature set that is helpful for predicting energy consumption. Found: {Wall Area, Glazing Area} I found several feature sets that are helpful for predicting energy consumption. Found: {Wall Area, Glazing Area}, {Wall Area, Overall Height}, {Roof Area, Glazing Area}, …
  • 3. Background Lasso and Enumeration n Example Lasso Enumeration for 20Newsdata • Identifying relevant words for article classification. 3 Selected words in Lasso solution adb apple bios bus cable com controller dos drivers duo fpu gateway ibm ide mac motherboard simm vlb vram windows
  • 4. Background Lasso and Enumeration n Example Lasso Enumeration for 20Newsdata • Identifying relevant words for article classification. 4 Selected words in Lasso solution adb apple bios bus cable com controller dos drivers duo fpu gateway ibm ide mac motherboard simm vlb vram windows Model7 Remove motherboard cable adb drivers Model8 Remove motherboard cable adb drivers Model9 Remove motherboard cable adb drivers Model4 Remove motherboard cable adb drivers Model5 Remove motherboard cable adb drivers Model6 Remove motherboard cable adb drivers Model1 Remove motherboard cable adb drivers Model2 Remove motherboard cable adb drivers Model3 Remove motherboard cable adb drivers Enumerated Models
  • 5. Background Lasso and Enumeration n Example Lasso Enumeration for 20Newsdata • Identifying relevant words for article classification. 5 Selected words in Lasso solution adb apple bios bus cable com controller dos drivers duo fpu gateway ibm ide mac motherboard simm vlb vram windows Model7 Remove motherboard cable adb drivers Model8 Remove motherboard cable adb drivers Model9 Remove motherboard cable adb drivers Model4 Remove motherboard cable adb drivers Model5 Remove motherboard cable adb drivers Model6 Remove motherboard cable adb drivers Model1 Remove motherboard cable adb drivers Model2 Remove motherboard cable adb drivers Model3 Remove motherboard cable adb drivers Enumerated Models Drawback of Enumeration Enumerated models can be just a combination of a few representative patterns. Exponentially many combinations of similar models can be found. These similar models are not helpful for gaining insights.
  • 6. Goal of This Study n Goal Find small numbers of diverse models. large numbers similar n Overview of the Proposed Approach • Define a set of good models. ! " ≔ $: & $ ≤ " • Find vertices of ! " . Vertices = sparse models Vertices are distinct -> diversity 6 ! !Enumeration " "
  • 7. Outline n Background and Overview n Problem Formulation n Proposed Method n Experiments n Summary 7
  • 8. Properties of ! " n ! " ≔ $: & $ ≔ ' ( )$ − + ( + - $ ' ≤ " • A set of models with sufficiently small Lasso objectives. 1. ! " consists of smooth boundaries and non-smooth vertices. • Smooth boundaries = dense models • Non-smooth vertices = sparse models 2. A convex hull of the set of vertices / can approximate ! " well. • conv / ≈ ! " 8
  • 9. Problem Approximation of ! " n Our Approach Approximate !(") by a set of % points & = () )*+ , . n To attain good approximation, the vertices - of !(") should be selected as &. 9
  • 10. Problem Approximation of ! " n Our Approach Approximate !(") by a set of % points & = () )*+ , . n Question How to measure the approximation quality? 10 !(") How similar they are? We use Hausdorff distance. & = () )*+ ,
  • 11. Problem Approximation of ! " n Def. Hausdorff distance between the two sets. • Maximum margin in the non-overlapping region. #$ %, %′ ≔ max sup /∈1 inf /5∈15 6 − 68 , sup /8∈18 inf /∈1 6 − 68 n We measure the approximation quality by using #$. Problem Minimization of Hausdorff distance min 9 #$ conv = , !(") , s. t. = ≤ C 11 % %′ !(") conv =Measure #$ = = EF FGH I
  • 12. Outline n Background and Overview n Problem Formulation n Proposed Method n Experiments n Summary 12
  • 13. Method Sampling + Greedy Selection n Step1 Sampling points from the boundary of ! " n Step2 Greedily select # points to minimize $%. 13 Step1 Sampling Step2 Greedy Selection
  • 14. Step1 Sampling n Note Want to sample vertices as much as possible. n Proposed Sampling Method • Take a random direction. • Find an “edge” of ! " at that direction. 14 This method can sample vertices with high probabilities.
  • 15. Step1 Sampling n Finding an “edge” max$ %&', s. t. ' ∈ -(/) (%: random direction) n Finding an “edge” by binary search • Dual Problem min 345 max $ %&' − 7(8 ' − /) • Find ' that satisfies 8 ' = / by finding optimal 7 by using binary search. 15 solvable with Lasso solvers large 7 small 7 optimal 7
  • 16. Method Sampling + Greedy Selection n Step1 Sampling points from the boundary of ! " n Step2 Greedily select # points to minimize $%. 16 Step1 Sampling Step2 Greedy Selection
  • 17. Step2 Greedy Selection n Original Problem min $ %& conv * , ,(.) , s. t. * ≤ 4 n Approximate , . with the sampled points 5. • , . ≈ conv 5 min $⊆8 %& conv * , conv 5 , s. t. * ≤ 4 • Remark %& conv * , conv 5 = max <∈8 min <>∈?@AB $ C − C′ 17 ,(.) conv(5) conv *Measure %& ≈
  • 18. Step2 Greedy Selection n The problem is NP-hard in general. • min $⊆& '( conv , , conv . , s. t. , ≤ 3 n Our Approach Greedy Selection • Initialization step Select one point 4 ∈ . , 6 ← 4 , . ← . ∖ {4}, and ; ← 1 • While ; < 3 >4 ∈ max A∈& min AB∈CDEF $ G 4 − 4′ , JK6 ← , J ∪ >4 , . ← . ∖ { >4}, and ; ← ; + 1 18 conv(.) conv(,) Greedily add one point to , that minimizes the objective.
  • 19. Step2 Greedy Selection n The problem is NP-hard in general. • min $⊆& '( conv , , conv . , s. t. , ≤ 3 n Our Approach Greedy Selection • Initialization step Select one point 4 ∈ . , 6 ← 4 , . ← . ∖ {4}, and ; ← 1 • While ; < 3 >4 ∈ max A∈& min AB∈CDEF $ G 4 − 4′ , JK6 ← , J ∪ >4 , . ← . ∖ { >4}, and ; ← ; + 1 19 conv(.) conv(,) Greedily add one point to , that minimizes the objective.
  • 20. Step2 Greedy Selection n The problem is NP-hard in general. • min $⊆& '( conv , , conv . , s. t. , ≤ 3 n Our Approach Greedy Selection • Initialization step Select one point 4 ∈ . , 6 ← 4 , . ← . ∖ {4}, and ; ← 1 • While ; < 3 >4 ∈ max A∈& min AB∈CDEF $ G 4 − 4′ , JK6 ← , J ∪ >4 , . ← . ∖ { >4}, and ; ← ; + 1 20 conv(.) conv(,) Greedily add one point to , that minimizes the objective.
  • 21. Step2 Greedy Selection n The problem is NP-hard in general. • min $⊆& '( conv , , conv . , s. t. , ≤ 3 n Our Approach Greedy Selection • Initialization step Select one point 4 ∈ . , 6 ← 4 , . ← . ∖ {4}, and ; ← 1 • While ; < 3 >4 ∈ max A∈& min AB∈CDEF $ G 4 − 4′ , JK6 ← , J ∪ >4 , . ← . ∖ { >4}, and ; ← ; + 1 21 conv(.) conv(,) Greedily add one point to , that minimizes the objective.
  • 22. Step2 Greedy Selection n Details of computing !" ∈ max '∈( min '+∈,-./ 0 1 " − "′ n 1. Computing min Quadratic Programming (QP) • min '+∈,-./ 0 1 " − "′ ⇔ min 5 " − 6 7 8797 , s. t. 8 ≥ 0, 6 7 87 = 1 n 2. Computing max Lazy Update • A naïve implementation requires searching over all " ∈ B. • By using a monotonicity of the Hausdorff distance, we can skip redundant computations and accelerate the search. 22
  • 23. Method Sampling + Greedy Selection n Step1 Sampling points from the boundary of ! " • Sampling random directions + Lasso + Binary Search n Step2 Greedily select # points to minimize $%. • Greedy selection 23 Step1 Sampling Step2 Greedy Selection
  • 24. Outline n Background and Overview n Problem Formulation n Proposed Method n Experiments n Summary 24
  • 25. Synthetic Experiment Visualization of ! " and # n Synthetic Problems • 2D ver. $ = 1 1 1 1 + 1/40 , , = 1 1 • 3D ver. $ = 1 1 1 1 1 + 1/40 1 1 1 1 + 2/40 , , = 1 1 1 n Results 25 2D ver. 3D ver. Hausdorff dist. 2D ver. 3D ver.
  • 26. Synthetic Experiment High-dimensional Data n Synthetic data • ! = #$% + ' • % ∼ ) 0, , , ,-. = exp −0.1|6 − 7| • dimensionality of % = 100 n Result • Huadorff dist. decreases as 8 increases. • Huadorff dist. decreases as the sampling size 9 increases. The effect is marginal, though. In practice, 9 ≈ 1,000 would suffice. 26
  • 27. Real-Data Experiment Diversity verification n Data: 20Newsgroups • Classification of news articles into two categories. (ibm or mac) • Feature selection = Identification of important words. ! ∈ ℝ$$%&': tf-idf weighted bag-of-words ( ∈ {0, 1}: categories of articles # of data: 1168 n Model • Linear logistic regression + ℓ$ n Baseline Methods [Hara & Maehara, AAAI’17] • Enumeration Exact enumeration of top-K models • Heuristic Skip similar models while enumeration. 27
  • 28. Real-Data Experiment Diversity verification n Comparison of the found 500 models n Visualization with PCA • Projected found models with PCA. • The proposed method attained the largest diversity. 28 Found Words Enumeration 39 Heuristic 63 Proposed 889 apple macs macintosh Enumeration ✘ ✘ Heuristic ✘ Proposed Baseline methods found combinations of a few representative patterns only. Baseline methods missed some important words.
  • 29. Summary n Our Goal • Find small numbers of diverse models for Lasso. n Our Method • Find “vertices” of a set of models ! " ≔ $: & $ ≤ " • Problem: Hausdorff distance minimization. • Method: Sampling + Greedy Selection n Verified the effectiveness of the proposed method. • The proposed method could find points that can well approximate ! " . obtain diverse models than the existing enumeration methods. 29 GitHub: /sato9hara/LassoHull