Tags
recommender systems
context-awareness
implicit feedback
data mining
machine learning
deep learning
factorization
context
adatbányászat
gépi tanulás
shifttree
tensor factorization
matrix factorization
idősor
osztályozás
döntési fa
session-based recommendation
recurrent neural network
negative sampling
loss function
gated recurrent unit
recurrent neural networks
neural networks
summer school
tutorial
feature extraction
phd thesis
startup safary
preference modeling
scalability
continuous context
overview
crowdrec
research
kollaboratív szűrés
ajánlórendszer
kontextus vezéreltség
inicializálás
tenzor faktorizáció
kontextus
mátrix faktorizáció
item-to-item recommendation
itals
alternating least squares
initialization
classification
decision tree
time series
See more
Presentations
(16)
See all
Likes
(2)
Deep Learning for Recommender Systems RecSys2017 Tutorial
Alexandros Karatzoglou
•
5 years ago
Deep Learning for Recommender Systems - Budapest RecSys Meetup
Alexandros Karatzoglou
•
6 years ago
Presentations
(16)
See all
Likes
(2)
Deep Learning for Recommender Systems RecSys2017 Tutorial
Alexandros Karatzoglou
•
5 years ago
Deep Learning for Recommender Systems - Budapest RecSys Meetup
Alexandros Karatzoglou
•
6 years ago
Tags
recommender systems
context-awareness
implicit feedback
data mining
machine learning
deep learning
factorization
context
adatbányászat
gépi tanulás
shifttree
tensor factorization
matrix factorization
idősor
osztályozás
döntési fa
session-based recommendation
recurrent neural network
negative sampling
loss function
gated recurrent unit
recurrent neural networks
neural networks
summer school
tutorial
feature extraction
phd thesis
startup safary
preference modeling
scalability
continuous context
overview
crowdrec
research
kollaboratív szűrés
ajánlórendszer
kontextus vezéreltség
inicializálás
tenzor faktorizáció
kontextus
mátrix faktorizáció
item-to-item recommendation
itals
alternating least squares
initialization
classification
decision tree
time series
See more