SlideShare a Scribd company logo
  • Upload
  • Home
  • Explore
  • Login
  • Signup
SlideShare a Scribd company logo
  • Home
  • Explore
  • Upload
  • Login
  • Signup

We've updated our privacy policy. Click here to review the details. Tap here to review the details.

×
×
×
×
×
×
Balázs Hidasi

Balázs Hidasi

53 Followers
16 SlideShares 0 Clipboards 53 Followers 4 Followings
  • Unblock User Block User
16 SlideShares 0 Clipboards 53 Followers 4 Followings

Personal Information
Contact Details
Tags
recommender systems context-awareness implicit feedback data mining machine learning deep learning factorization context adatbányászat gépi tanulás shifttree tensor factorization matrix factorization idősor osztályozás döntési fa session-based recommendation recurrent neural network negative sampling loss function gated recurrent unit recurrent neural networks neural networks summer school tutorial feature extraction phd thesis startup safary preference modeling scalability continuous context overview crowdrec research kollaboratív szűrés ajánlórendszer kontextus vezéreltség inicializálás tenzor faktorizáció kontextus mátrix faktorizáció item-to-item recommendation itals alternating least squares initialization classification decision tree time series
See more
Presentations (16)
See all
ShiftTree: model based time series classifier (ECML/PKDD 2011 presentation)
10 years ago • 724 Views
ShiftTree: model alapú idősor-osztályozó (ML@BP előadás, 2012)
10 years ago • 354 Views
ShiftTree: model alapú idősor-osztályozó (VK 2009 előadás)
10 years ago • 323 Views
Initialization of matrix factorization (CaRR 2012 presentation)
10 years ago • 736 Views
iTALS: implicit tensor factorization for context-aware recommendations (ECML/PKDD 2012 presentation)
10 years ago • 635 Views
Context-aware similarities within the factorization framework (CaRR 2013 presentation)
10 years ago • 1177 Views
Az implicit ajánlási probléma és néhány megoldása (BME TMIT szeminárium előadás, 2012)
10 years ago • 382 Views
Utilizing additional information in factorization methods (research overview, April 2014)
8 years ago • 626 Views
Approximate modeling of continuous context in factorization algorithms (CaRR14 presentation)
8 years ago • 1364 Views
Context-aware preference modeling with factorization
7 years ago • 1656 Views
Deep learning: the future of recommendations
6 years ago • 15066 Views
Deep learning to the rescue - solving long standing problems of recommender systems
6 years ago • 13549 Views
Context aware factorization methods for implicit feedback based recommendation problems (HUN)
6 years ago • 523 Views
Parallel Recurrent Neural Network Architectures for Feature-rich Session-based Recommendations
6 years ago • 2266 Views
Deep Learning in Recommender Systems - RecSys Summer School 2017
5 years ago • 11071 Views
GRU4Rec v2 - Recurrent Neural Networks with Top-k Gains for Session-based Recommendations
4 years ago • 3072 Views
Likes (2)
Deep Learning for Recommender Systems RecSys2017 Tutorial
Alexandros Karatzoglou • 5 years ago
Deep Learning for Recommender Systems - Budapest RecSys Meetup
Alexandros Karatzoglou • 6 years ago
  • Activity
  • About

Presentations (16)
See all
ShiftTree: model based time series classifier (ECML/PKDD 2011 presentation)
10 years ago • 724 Views
ShiftTree: model alapú idősor-osztályozó (ML@BP előadás, 2012)
10 years ago • 354 Views
ShiftTree: model alapú idősor-osztályozó (VK 2009 előadás)
10 years ago • 323 Views
Initialization of matrix factorization (CaRR 2012 presentation)
10 years ago • 736 Views
iTALS: implicit tensor factorization for context-aware recommendations (ECML/PKDD 2012 presentation)
10 years ago • 635 Views
Context-aware similarities within the factorization framework (CaRR 2013 presentation)
10 years ago • 1177 Views
Az implicit ajánlási probléma és néhány megoldása (BME TMIT szeminárium előadás, 2012)
10 years ago • 382 Views
Utilizing additional information in factorization methods (research overview, April 2014)
8 years ago • 626 Views
Approximate modeling of continuous context in factorization algorithms (CaRR14 presentation)
8 years ago • 1364 Views
Context-aware preference modeling with factorization
7 years ago • 1656 Views
Deep learning: the future of recommendations
6 years ago • 15066 Views
Deep learning to the rescue - solving long standing problems of recommender systems
6 years ago • 13549 Views
Context aware factorization methods for implicit feedback based recommendation problems (HUN)
6 years ago • 523 Views
Parallel Recurrent Neural Network Architectures for Feature-rich Session-based Recommendations
6 years ago • 2266 Views
Deep Learning in Recommender Systems - RecSys Summer School 2017
5 years ago • 11071 Views
GRU4Rec v2 - Recurrent Neural Networks with Top-k Gains for Session-based Recommendations
4 years ago • 3072 Views
Likes (2)
Deep Learning for Recommender Systems RecSys2017 Tutorial
Alexandros Karatzoglou • 5 years ago
Deep Learning for Recommender Systems - Budapest RecSys Meetup
Alexandros Karatzoglou • 6 years ago
Tags
recommender systems context-awareness implicit feedback data mining machine learning deep learning factorization context adatbányászat gépi tanulás shifttree tensor factorization matrix factorization idősor osztályozás döntési fa session-based recommendation recurrent neural network negative sampling loss function gated recurrent unit recurrent neural networks neural networks summer school tutorial feature extraction phd thesis startup safary preference modeling scalability continuous context overview crowdrec research kollaboratív szűrés ajánlórendszer kontextus vezéreltség inicializálás tenzor faktorizáció kontextus mátrix faktorizáció item-to-item recommendation itals alternating least squares initialization classification decision tree time series
See more

Modal header

  • About
  • Support
  • Terms
  • Privacy
  • Copyright
  • Cookie Preferences
  • Do not sell or share my personal information
English
Current Language: English
Español
Português
Français
Deutsch

© 2023 SlideShare from Scribd

We've updated our privacy policy.

We’ve updated our privacy policy so that we are compliant with changing global privacy regulations and to provide you with insight into the limited ways in which we use your data.

You can read the details below. By accepting, you agree to the updated privacy policy.

Thank you!

View updated privacy policy
We've encountered a problem, please try again.