SlideShare a Scribd company logo
Circles and Tangents with Geometry Expressions

CIRCLES AND TANGENTS WITH GEOMETRY EXPRESSIONS ..................................................................... 1


INTRODUCTION ................................................................................................................................................. 2

Circle common tangents........................................................................................................................................................... 3
  Example 1:    Location of intersection of common tangents............................................................................................. 4
  Example 2:    Cyclic Trapezium defined by common tangents of 2 circles...................................................................... 5
  Example 3:    Triangle formed by the intersection of the interior common tangents of two circles................................. 7
  Example 4:    Locus of centers of common tangents to two circles .................................................................................. 8
  Example 5:    Length of the common tangent to two tangential circles ............................................................................ 9
  Example 6:    Tangents to the Radical Axis of a Pair of Circles ..................................................................................... 10

Arbelos ................................................................................................................................................................................... 11
  Example 7:           Various Circles in an Equilateral Triangle................................................................................................ 12
  Example 8:           Two circles inside a circle twice the radius, then a third .......................................................................... 14
  Example 9:           A theorem old in Pappus’ time.................................................................................................................. 19
  Example 10:            Another Family of Tangential Circles..................................................................................................... 22
  Example 11:            Yet Another Family of Circles ................................................................................................................ 25
  Example 12:            Archimedes Twins................................................................................................................................... 28
  Example 13:            Squeezing a circle between two circles................................................................................................... 29




                                                                                               1
C I R C L E S       A N D   T R I A N G L E S   W I T H   G E O M E T R Y   E X P R E S S I O N S




Introduction
Geometry Expressions automatically generates algebraic expressions from geometric
figures. For example in the diagram below, the user has specified that the triangle is right
and has short sides length a and b. The system has calculated an expression for the length
of the altitude:



                                B

                                                                  b


                                            a·b
                a                      ⇒    2     2
                                           a +b



                                                                                            C


                                      D
        A




We present a collection of worked examples using Geometry Expressions. In most
cases, a diagram is presented with little comment. It is hoped that these diagrams are
sufficiently self explanatory that the reader will be able to create them himself.

The goal of these examples is to demonstrate the sort of problems which the software is
capable of handling, and to suggest avenues of further exploration for the reader.

The examples are clustered by theme.




                                                      2
Circle common tangents
The following set of examples explores some properties of the common tangents of pairs
of circles.




                                          3
C I R C L E S   A N D   T R I A N G L E S          W I T H         G E O M E T R Y        E X P R E S S I O N S



Example 1:           Location of intersection of common tangents
Circles AB and CD have radii r and s respectively. If the centers of the circles are a apart,
and E is the intersection of the interior common tangent with the line joining the two
centers, what are the lengths AE and CE?



                                     B

                                                                                                      D


                                 r
                                                                                                  s


                         A
                                                                       F                                  C

                                             a·r                                          a·s
                                         ⇒                                            ⇒
                                             r+s                                          r+s
                                                                   a


                                                                                              E




How about the exterior common tangent?


                                 B




                             r

                                                                                      D

                                                                              s
                         A
                                                                                  C
                                                                                                                  F



                                                     a                                    E
                                                                                                      -a·s

                                                            -a·r                                  ⇒ -r+s

                                                         ⇒ -r+s                                       | s<r

                                                           | s<r




                                                             4
Example 2:           Cyclic Trapezium defined by common tangents
of 2 circles
Given circles radii r and s and distance a apart, what is the altitude of the trapezium
formed by joining the intersections of the 4 common tangents with one of the circles?



                                       2·r·s
                                   ⇒
                                        a
                               B

                                                                          2·r·s
                                               G                      ⇒
                                                                           a


                           r                                                           D
                                                                  I
                                                                               s


                       A                                                           C




                                                       a         H
                                                                                       E


                                               J


                               F




Notice that this is symmetrical in r and s, and hence the trapezium in circle AB has the
same altitude.




                                                   5
C I R C L E S    A N D       T R I A N G L E S               W I T H      G E O M E T R Y        E X P R E S S I O N S

Look at the ratio of the areas of the trapezia in the previous diagram:


                         2      2 2         2       2   2 2           2
                       2·r ·s· a -r -2·r·s-s +2·r ·s· a -r +2·r·s-s
                z1 ⇒
                                                2
                                                a
                                                                                           2    2 2         2       2       2 2       2
                                                                                       2·r·s · a -r -2·r·s-s +2·r·s · a -r +2·r·s-s
                                            B                                   z2 ⇒
                                                                                                                2
                                                                                                                a

                                                                 G



                                        r                                                                                    D
                                                                                                        I
                                                                                                                    s


                                  A                                                                                     C




                                                                               a                       H
                                                                                                                             E


                                                                 J


                                            F
                                                        z1       r
                                                             ⇒
                                                        z2       s




Notice that the ratio of trapezium areas is the same as the ratio of radii.




                                                                      6
Example 3:           Triangle formed by the intersection of the
interior common tangents of two circles
Notice that if A is the area of the triangle formed by the centers of the circles, then area
STU is:

                 2rstA
         (r + s )( s + t )(r + t )

                                                                               D




                                                                           s

                   r·s·t· a+b+c · a+b-c · a-b+c · -a+b+c       P
               ⇒                                                               C
                            2·(r+s)·(r+t)·(s+t)
                                                                                               I




                                                                       G
                                                                                   O
                                                  c        W


                   B                                                                               a

                                         K                                                 X



                       r
                                                                                                       F
                                                                                               M               H

                                                                                                   t
                        A
                                                                                       J
                                                                           Y                               E
                                                      Q


                                                                   b

                                                                                           L


                                        N




Notice that this ratio is independent of the size of a,b, and c.



                                                               7
C I R C L E S    A N D            T R I A N G L E S        W I T H              G E O M E T R Y               E X P R E S S I O N S



Example 4:        Locus of centers of common tangents to two
circles
W take the locus as the radius r of the left circle varies. The midpoints of all four
common tangents lie on the same fourth order curve

                      4           2   2       4   3    2    4   2   2       2     2   2   2       2       2         3    2
                 ⇒ 4·X +8·X ·Y +4·Y -12·X ·a-12·X·Y ·a+a -a ·s +Y · 4·a -4·s +X · 13·a -4·s +X· -6·a +4·a·s =0




                                                                                                      D
                                                                                              G

                                                                K
                          B
                                          E                                                           s

                              r
                                                                L
                              A       (0,0)                                                           (a,0) C

                                                                M

                                          H
                          I

                                                                R
                                                                                          F
                                                                                                      J




We can use Maple to solve for the intersections with the x axis:

> subs(Y=0,4*X^4+8*Y^2*X^2+4*Y^4-12*a*X^3-
12*a*Y^2*X+a^4-s^2*a^2+(4*a^2-4*s^2)*Y^2+(13*a^2-
4*s^2)*X^2+(-6*a^3+4*s^2*a)*X );
                4 X 4 - 12 a X 3 + a 4 - s 2 a 2 + (13 a 2 - 4 s 2) X 2 + (-6 a 3 + 4 s 2 a) X

> solve(%,X);
                                                                            1 1
                                                      a - s, a + s,          a, a
                                                                            2 2




                                                                        8
Example 5:          Length of the common tangent to two
tangential circles
A succinct formula:


                               ⇒ 2· r· s
                          B




                                                   D
                      r

                                           s


                  A                            C




                                9
C I R C L E S   A N D   T R I A N G L E S                W I T H         G E O M E T R Y                   E X P R E S S I O N S



Example 6:           Tangents to the Radical Axis of a Pair of Circles
The radical axis of a pair of circles is the line joining the points of intersection. The
lengths of tangents from a given point on this axis to the two circles are the same.



                             4       2   2   2 2    4    4   2   2       2
                            a +4·a ·b -2·a ·r +r +s +s · -2·a -2·r
                        ⇒
                                                   2·a                           F        4    2       2   2 2       4   4   2   2   2
                                                                                         a +4·a ·b -2·a ·r +r +s +s · -2·a -2·r
                                                                                     ⇒
                                                                                                                 2·a
                        B



                                                                                              D
                                                                                                                                 H
                                                                             b

                            r
                                                                             G

                                                                                                   s
                                                                     a


                                 A                                                                               C




                                                                             E




                                                                 10
Arbelos
A set of examples studying circles squeezed between other circles.




                                           11
C I R C L E S   A N D   T R I A N G L E S        W I T H          G E O M E T R Y   E X P R E S S I O N S



Example 7:           Various Circles in an Equilateral Triangle
We look at the radii of various circles in an equilateral triangle:




                                                              A


                                                          G
                                            3·a
                                            18            F


                                                     E

                             a
                                                                                    a




                                    a
                                   2· 3              D




                  B
                                                                                           C



                                                      a




                                                         12
A
                                             I
                                  3·a        H
                                  54         G


                                             F


                                        E


                   a
                                                  a




                                        D




         B
                                                      C



                                         a

What would the next length in the sequence be?




                                            13
C I R C L E S   A N D   T R I A N G L E S   W I T H     G E O M E T R Y   E X P R E S S I O N S



Example 8:              Two circles inside a circle twice the radius,
then a third


                                                               D
                                      H


                                2·r
                                3                              r

                            G


                                                                   C




                                               E
            B



                        r
                                                                   2·r
                                      A




                                                                                    F




                                                   14
And if we keep on going:



                               2·r                   r
                               3                     3
                                                 F
                                  H                      2·r
                                           J
                                                         11
                                                         L
                                                 I                           r
                                                             K               9
                                                                       M N
                               G                                             D


                                           2·r
                                                                   r
                      B




                                                               C
                           r


                                      E

                     A




                                      15
C I R C L E S   A N D   T R I A N G L E S   W I T H              G E O M E T R Y                E X P R E S S I O N S

The general case looks like this:


                                                                                  1
                                                                         1   1     -1     1
                                                                            + +2·      +
                                                                         2·r x        2 2·r·x
                                                                                  2·r

                                            B

                           F
                                                x                            G
                                                        A                             H


                                                                     D




                                                                              r
                                    2·r




                                                                                      C




                                                    E




We can copy this expression into Maple to generate the above sequence:

> 1/(1/2*1/r+1/x+2*sqrt(-1/2*1/(r^2)+1/2/x/r));
                                                            1
                                 1 1 1                               1     2
                                     + +                        −2       +
                                 2 r  x                              r 2   xr

> subs(r=1,%);




                                                            16
1
                                  1 1                   2
                                   + +           −2 +
                                  2 x                   x
> f:=x->1/(1/2+1/x+sqrt(-2+2/x));
                                                  1
                             f := x →
                                        1 1                  2
                                         + +          −2 +
                                        2 x                  x
> f(1);
                                            2
                                            3
> f(2/3);
                                            1
                                            3
> f(1/3);
                                             2
                                            11
> f(2/11);
                                            1
                                            9
> f(1/9);
                                             2
                                            27
> f(2/27);
                                             1
                                            19
>
A little analysis of the series can lead us to postulate the formula 2/(n^2+2) for the n’th
circle:

Let’s feed the n-1th term into Maple:

> f(2/((n-1)^2+2));




                                            17
C I R C L E S   A N D   T R I A N G L E S   W I T H   G E O M E T R Y   E X P R E S S I O N S

                                                  1
                                 3 1
                                  + ( n − 1 )2 +           ( n − 1 )2
                                 2 2
In order to get the expression to simplify, we make the assumption that n>1:

> assume(n>1);
> simplify(f(2/((n-1)^2+2)));
                                                   1
                                            2
                                                2 + n~ 2
We see that this is the next term in the series. By induction, we have shown that the n’th
                     2
circle has radius
                  2 + n2




                                                 18
Example 9:             A theorem old in Pappus’ time
A theorem which was old in Pappus’ days (3rd century AD) relates the radii to height of
the circles in figures like the above:




                           2·r                       r
                           3                         3
                                                                 2·r
                                             F
                               H                                 11
                                       J

                                                 I       L
                                                                 K

                                                                               4·r   12·r
                           G                                               D   3     11

                                       2·r

                   B                                                   r




           4·r                                               C
                       r
            3

                                   E


                   A




                                                 19
C I R C L E S   A N D   T R I A N G L E S      W I T H   G E O M E T R Y   E X P R E S S I O N S

Applying the general model, we get a formula:




                              B

                                                                     E
                                                             F
                                                                 x


                                        2·r

                                                         D
                            ⇒ 2· x · 2·r-2·x

                                                                 r
                                                    A                       C




Again, we can copy this into Maple for analysis:

                                         2 x        2r−2x
> subs(x=2/(n^2+2),r=1,%);


                                                    20
1                   4
                          2 2                       2−
                                     2 + n~ 2            2 + n~ 2
> simplify(%);
                                              n~
                                        4
                                            2 + n~ 2
We see that the height above the centerline for these circles is the radius multiplied by 2n.




                                             21
C I R C L E S    A N D   T R I A N G L E S   W I T H         G E O M E T R Y       E X P R E S S I O N S



Example 10: Another Family of Tangential Circles




                                    A          C                 B




                                                                                              N
                D                                                                            M
                                                   F                                               a
                                                                                         K
                                                                                    L              14
                3·a
                 2              a                                                   J        3·a
                                                   E                           I
                                                                         H                   31
                                                                     G
                                                                                   3·a
                                                                                   22
                                                                         a
                                                                         5
                                                       3·a
                                                       10




                                                       22
We can follow through a similar analysis to the previous section:




                                                             1
                                          1        1             -2            1
                                               +       +2·                +
                                         3·a       x                  2       3·a·x
                                                             3·a

                                     F
                                               G
                                 x                           H
                                E
                                                                  D


              B


                                                                          a



                          3·a
                          2
                                                                               C

                                         A




> f:=x->1/(1/3+1/x+2/3*sqrt(-6+3/x));
                                                                  1
                              f := x →
                                         1 1 2                                            3
                                          + +                                      −6 +
                                         3 x 3                                            x
> f(1);
                                            1
                                         4 2
                                          + I 3
                                         3 3

                                                   23
C I R C L E S   A N D   T R I A N G L E S   W I T H   G E O M E T R Y   E X P R E S S I O N S

> f(3/10);
                                                  1
                                                  5
> f(%);
                                                  3
                                                 22
>



> assume(n>1);
> simplify(f(3/((n-1)^2+6)));
                                                   1
                                            3
                                                6 + n~ 2
> simplify(%);




                                                 24
Example 11: Yet Another Family of Circles
We generalize the situation from a couple of examples ago. We look at the family
generated by two circles of radius a and b inside a circle of radius a+b:

                                                                                  a·b·(a+b)
                                        a·b·(a+b)                                  2         2
                                                                                  a +a·b+b
                                         2          2
                                       4·a +a·b+b                    H

                                                        J
               a·b·(a+b)
                2          2
           9·a +a·b+b
                                   L                I
                                                                              G
   a·b·(a+b)                                                                                         a+b
                               K                                                                     F
     2          2
  16·a +a·b+b       N                                                                            a

                    M          B
                                                                                             D




                                                                                                 C




                                                                 E
                                             A



                                                                                       b




The pattern is pretty obvious this time: the radius of the nth circle is:

                                                              ab(a + b)
                                                            n a 2 + ab + b 2
                                                             2




                                                                         25
C I R C L E S   A N D      T R I A N G L E S          W I T H       G E O M E T R Y   E X P R E S S I O N S

To prove this, we derive the formula for the general circle radius x, and analyze in Maple:

                               1
                1 1 1        1     1       1
                 + -    +2·    -       -
                b x a+b     b·x b·(a+b) x·(a+b)
                                                           H

                                                  J

                                                               x
                                        I
                                                                    G
                                                                                           a+b
                                                                                           F



                   B




                                                       E

                                    A



                                                                            b




Now we try feeding in one of the circle radii into this formula in maple (first making the
assumption that the radii are positive (along with n>1 for later use):

> assume(a>0,b>0,n>1);
> f:=x->1/(1/b+1/x-1/(a+b)+2*sqrt(1/(x*b)-1/((a+b)*b)-
1/((a+b)*x)));
                                                                        1
           f := x →
                            1 1  1                                   1      1         1
                             + −    +2                                 −         −
                            b x a+b                                 x b (a + b) b (a + b) x

                                                               26
> f((a+b)*b*a/(9*a^2+b*a+b^2));
       1   2         2
           9 a~ + b~ a~ + b~          1
   1/
      b~ + ( a~ + b~ ) b~ a~ − a~ + b~
     
     
              9 a~ 2 + b~ a~ + b~ 2         1          9 a~ 2 + b~ a~ + b~ 2   
                                                                               
        +2                          −                −                         
               ( a~ + b~ ) b~ 2 a~    ( a~ + b~ ) b~    ( a~ + b~ ) 2 b~ a~    
                                                                               
> simplify(%);
                                     ( a~ + b~ ) b~ a~
                                   16 a~ 2 + b~ a~ + b~ 2
Let’s try the general case, feeding in the formula for the n-1st radius:

> simplify(f((a+b)*b*a/((n-1)^2*a^2+b*a+b^2)));
                                     b~ a~ ( a~ + b~ )
                                  b~ a~ + a~ 2 n~ 2 + b~ 2
By induction, we have proved the general result.




                                              27
C I R C L E S   A N D   T R I A N G L E S       W I T H       G E O M E T R Y   E X P R E S S I O N S



Example 12: Archimedes Twins
The given circles are mutually tangential with radius a, b and a+b. Archimedes twins are
the circles tangential to the common tangent of the inner circles. We see from the
symmetry of the radius expression that they are congruent.



                                            a·b
                                       ⇒
                                            a+b
                            a+b
                                                                       a·b
                                                                   ⇒
                                                                       a+b
                                            I

                                                               K


                              a


                                                          b
                               A
                                        E
                                                                   C




                                                     28
Example 13: Squeezing a circle between two circles
Take a circle radius 2a centered at (a,0) and a circle radius 4a centered at (-a,0). Now look
at the locus of the center of the circle tangent to both.

                                             B



                                                          E

                                                 F    t
                                       4·a




                      2   2    2
                  72·a -8·x -9·y =0                                 2·a
                                      A (-a,0)                            D
                                                          (a,0) C




It’s an ellipse. From the drawing we can see that the semi major axis in the x direction is
3a. What is the semi major axis in the y direction?




                                                     29

More Related Content

What's hot

Commonwealth Emath Paper1_printed
Commonwealth Emath Paper1_printedCommonwealth Emath Paper1_printed
Commonwealth Emath Paper1_printedFelicia Shirui
 
Trig Review Sheet Answers
Trig Review Sheet AnswersTrig Review Sheet Answers
Trig Review Sheet Answersbwlomas
 
Chapter9 trignometry
Chapter9 trignometryChapter9 trignometry
Chapter9 trignometryRagulan Dev
 
Sarigiannis biological connectivity in cra
Sarigiannis biological connectivity in craSarigiannis biological connectivity in cra
Sarigiannis biological connectivity in craenvelab
 
White-box texting of (ATL) model transformations
White-box texting of (ATL) model transformationsWhite-box texting of (ATL) model transformations
White-box texting of (ATL) model transformationsJordi Cabot
 
Cylindrical and spherical coordinates
Cylindrical and spherical coordinatesCylindrical and spherical coordinates
Cylindrical and spherical coordinatesTarun Gehlot
 
Module 9 Lines And Plane In 3 D
Module 9 Lines And Plane In 3 DModule 9 Lines And Plane In 3 D
Module 9 Lines And Plane In 3 Dguestcc333c
 
Test 1 february 2010 page 3 answer
Test 1 february 2010 page 3  answerTest 1 february 2010 page 3  answer
Test 1 february 2010 page 3 answerNurhasanah Shafei
 
Solidmodelling
SolidmodellingSolidmodelling
SolidmodellingGopi Chand
 
Pri of phs 9th
Pri of phs 9thPri of phs 9th
Pri of phs 9th
roctaiwan101
 
Module 15 Plan And Elevation
Module 15 Plan And ElevationModule 15 Plan And Elevation
Module 15 Plan And Elevationguestcc333c
 
Lesson 17: The Mean Value Theorem
Lesson 17: The Mean Value TheoremLesson 17: The Mean Value Theorem
Lesson 17: The Mean Value Theorem
Matthew Leingang
 

What's hot (18)

Commonwealth Emath Paper1_printed
Commonwealth Emath Paper1_printedCommonwealth Emath Paper1_printed
Commonwealth Emath Paper1_printed
 
Trig Review Sheet Answers
Trig Review Sheet AnswersTrig Review Sheet Answers
Trig Review Sheet Answers
 
Chapter9 trignometry
Chapter9 trignometryChapter9 trignometry
Chapter9 trignometry
 
Similarity
SimilaritySimilarity
Similarity
 
MODELOS DE CASAS III
MODELOS DE CASAS IIIMODELOS DE CASAS III
MODELOS DE CASAS III
 
Sarigiannis biological connectivity in cra
Sarigiannis biological connectivity in craSarigiannis biological connectivity in cra
Sarigiannis biological connectivity in cra
 
White-box texting of (ATL) model transformations
White-box texting of (ATL) model transformationsWhite-box texting of (ATL) model transformations
White-box texting of (ATL) model transformations
 
Cylindrical and spherical coordinates
Cylindrical and spherical coordinatesCylindrical and spherical coordinates
Cylindrical and spherical coordinates
 
Module 9 Lines And Plane In 3 D
Module 9 Lines And Plane In 3 DModule 9 Lines And Plane In 3 D
Module 9 Lines And Plane In 3 D
 
006 hyperbola
006 hyperbola006 hyperbola
006 hyperbola
 
Test 1 february 2010 page 3 answer
Test 1 february 2010 page 3  answerTest 1 february 2010 page 3  answer
Test 1 february 2010 page 3 answer
 
Solidmodelling
SolidmodellingSolidmodelling
Solidmodelling
 
Pri of phs 9th
Pri of phs 9thPri of phs 9th
Pri of phs 9th
 
Haser
HaserHaser
Haser
 
Module 15 Plan And Elevation
Module 15 Plan And ElevationModule 15 Plan And Elevation
Module 15 Plan And Elevation
 
Hfc c he example of hfc
Hfc c he example of hfcHfc c he example of hfc
Hfc c he example of hfc
 
Day 05
Day 05Day 05
Day 05
 
Lesson 17: The Mean Value Theorem
Lesson 17: The Mean Value TheoremLesson 17: The Mean Value Theorem
Lesson 17: The Mean Value Theorem
 

Similar to Circles and tangents with geometry expressions

Chapter 4 bj ts dc biasing
Chapter 4 bj ts dc biasingChapter 4 bj ts dc biasing
Chapter 4 bj ts dc biasing
Amirul Faiz Amil Azman
 
Students module 1 PMR
Students module 1 PMRStudents module 1 PMR
Students module 1 PMRroszelan
 
Cfd01 external aerodynamics_mahindra_navistar
Cfd01 external aerodynamics_mahindra_navistarCfd01 external aerodynamics_mahindra_navistar
Cfd01 external aerodynamics_mahindra_navistarAnand Kumar Chinni
 
Scott findlay critical habitat and recovery
Scott findlay critical habitat and recoveryScott findlay critical habitat and recovery
Scott findlay critical habitat and recoverySustainable Prosperity
 
Flambeau Flowage basemap
Flambeau Flowage basemapFlambeau Flowage basemap
Flambeau Flowage basemap
dianedaulton
 
Actividad 4
Actividad 4Actividad 4
Actividad 4Johny07
 
Physics Worksheet
Physics WorksheetPhysics Worksheet
Physics Worksheet
jjlendaya
 
Algorithm for Multi-Path Hop-By-Hop Routing
Algorithm for Multi-Path Hop-By-Hop RoutingAlgorithm for Multi-Path Hop-By-Hop Routing
Algorithm for Multi-Path Hop-By-Hop Routing
Jens Oberender
 
European Microwave PLL Class
European Microwave PLL ClassEuropean Microwave PLL Class
European Microwave PLL Class
edrucker1
 
Unfcc iwmi cc_2012
Unfcc iwmi cc_2012Unfcc iwmi cc_2012
Unfcc iwmi cc_2012fredkizito
 
Dunman High Emath Paper2_printed
Dunman High Emath Paper2_printedDunman High Emath Paper2_printed
Dunman High Emath Paper2_printedFelicia Shirui
 
Using Clickers For Instant Feedback Robin Brekke
Using Clickers For Instant Feedback Robin BrekkeUsing Clickers For Instant Feedback Robin Brekke
Using Clickers For Instant Feedback Robin Brekke
John Dorner
 
Implementing the Water, Climate and Development Programme in Africa by Andrew...
Implementing the Water, Climate and Development Programme in Africa by Andrew...Implementing the Water, Climate and Development Programme in Africa by Andrew...
Implementing the Water, Climate and Development Programme in Africa by Andrew...
Global Water Partnership
 

Similar to Circles and tangents with geometry expressions (15)

Chapter 4 bj ts dc biasing
Chapter 4 bj ts dc biasingChapter 4 bj ts dc biasing
Chapter 4 bj ts dc biasing
 
Students module 1 PMR
Students module 1 PMRStudents module 1 PMR
Students module 1 PMR
 
Cfd01 external aerodynamics_mahindra_navistar
Cfd01 external aerodynamics_mahindra_navistarCfd01 external aerodynamics_mahindra_navistar
Cfd01 external aerodynamics_mahindra_navistar
 
Scott findlay critical habitat and recovery
Scott findlay critical habitat and recoveryScott findlay critical habitat and recovery
Scott findlay critical habitat and recovery
 
Flambeau Flowage basemap
Flambeau Flowage basemapFlambeau Flowage basemap
Flambeau Flowage basemap
 
Actividad 4
Actividad 4Actividad 4
Actividad 4
 
Physics Worksheet
Physics WorksheetPhysics Worksheet
Physics Worksheet
 
Algorithm for Multi-Path Hop-By-Hop Routing
Algorithm for Multi-Path Hop-By-Hop RoutingAlgorithm for Multi-Path Hop-By-Hop Routing
Algorithm for Multi-Path Hop-By-Hop Routing
 
European Microwave PLL Class
European Microwave PLL ClassEuropean Microwave PLL Class
European Microwave PLL Class
 
Hidro
HidroHidro
Hidro
 
Unfcc iwmi cc_2012
Unfcc iwmi cc_2012Unfcc iwmi cc_2012
Unfcc iwmi cc_2012
 
Developing and Assessing Teacher Effectiveness
Developing and Assessing Teacher EffectivenessDeveloping and Assessing Teacher Effectiveness
Developing and Assessing Teacher Effectiveness
 
Dunman High Emath Paper2_printed
Dunman High Emath Paper2_printedDunman High Emath Paper2_printed
Dunman High Emath Paper2_printed
 
Using Clickers For Instant Feedback Robin Brekke
Using Clickers For Instant Feedback Robin BrekkeUsing Clickers For Instant Feedback Robin Brekke
Using Clickers For Instant Feedback Robin Brekke
 
Implementing the Water, Climate and Development Programme in Africa by Andrew...
Implementing the Water, Climate and Development Programme in Africa by Andrew...Implementing the Water, Climate and Development Programme in Africa by Andrew...
Implementing the Water, Climate and Development Programme in Africa by Andrew...
 

More from Tarun Gehlot

Materials 11-01228
Materials 11-01228Materials 11-01228
Materials 11-01228
Tarun Gehlot
 
Binary relations
Binary relationsBinary relations
Binary relations
Tarun Gehlot
 
Continuity and end_behavior
Continuity and  end_behaviorContinuity and  end_behavior
Continuity and end_behavior
Tarun Gehlot
 
Continuity of functions by graph (exercises with detailed solutions)
Continuity of functions by graph   (exercises with detailed solutions)Continuity of functions by graph   (exercises with detailed solutions)
Continuity of functions by graph (exercises with detailed solutions)
Tarun Gehlot
 
Factoring by the trial and-error method
Factoring by the trial and-error methodFactoring by the trial and-error method
Factoring by the trial and-error method
Tarun Gehlot
 
Introduction to finite element analysis
Introduction to finite element analysisIntroduction to finite element analysis
Introduction to finite element analysis
Tarun Gehlot
 
Finite elements : basis functions
Finite elements : basis functionsFinite elements : basis functions
Finite elements : basis functions
Tarun Gehlot
 
Finite elements for 2‐d problems
Finite elements  for 2‐d problemsFinite elements  for 2‐d problems
Finite elements for 2‐d problems
Tarun Gehlot
 
Error analysis statistics
Error analysis   statisticsError analysis   statistics
Error analysis statistics
Tarun Gehlot
 
Matlab commands
Matlab commandsMatlab commands
Matlab commands
Tarun Gehlot
 
Introduction to matlab
Introduction to matlabIntroduction to matlab
Introduction to matlab
Tarun Gehlot
 
Linear approximations and_differentials
Linear approximations and_differentialsLinear approximations and_differentials
Linear approximations and_differentials
Tarun Gehlot
 
Local linear approximation
Local linear approximationLocal linear approximation
Local linear approximation
Tarun Gehlot
 
Interpolation functions
Interpolation functionsInterpolation functions
Interpolation functions
Tarun Gehlot
 
Propeties of-triangles
Propeties of-trianglesPropeties of-triangles
Propeties of-triangles
Tarun Gehlot
 
Gaussian quadratures
Gaussian quadraturesGaussian quadratures
Gaussian quadratures
Tarun Gehlot
 
Basics of set theory
Basics of set theoryBasics of set theory
Basics of set theory
Tarun Gehlot
 
Numerical integration
Numerical integrationNumerical integration
Numerical integration
Tarun Gehlot
 
Applications of set theory
Applications of  set theoryApplications of  set theory
Applications of set theory
Tarun Gehlot
 
Miscellneous functions
Miscellneous  functionsMiscellneous  functions
Miscellneous functions
Tarun Gehlot
 

More from Tarun Gehlot (20)

Materials 11-01228
Materials 11-01228Materials 11-01228
Materials 11-01228
 
Binary relations
Binary relationsBinary relations
Binary relations
 
Continuity and end_behavior
Continuity and  end_behaviorContinuity and  end_behavior
Continuity and end_behavior
 
Continuity of functions by graph (exercises with detailed solutions)
Continuity of functions by graph   (exercises with detailed solutions)Continuity of functions by graph   (exercises with detailed solutions)
Continuity of functions by graph (exercises with detailed solutions)
 
Factoring by the trial and-error method
Factoring by the trial and-error methodFactoring by the trial and-error method
Factoring by the trial and-error method
 
Introduction to finite element analysis
Introduction to finite element analysisIntroduction to finite element analysis
Introduction to finite element analysis
 
Finite elements : basis functions
Finite elements : basis functionsFinite elements : basis functions
Finite elements : basis functions
 
Finite elements for 2‐d problems
Finite elements  for 2‐d problemsFinite elements  for 2‐d problems
Finite elements for 2‐d problems
 
Error analysis statistics
Error analysis   statisticsError analysis   statistics
Error analysis statistics
 
Matlab commands
Matlab commandsMatlab commands
Matlab commands
 
Introduction to matlab
Introduction to matlabIntroduction to matlab
Introduction to matlab
 
Linear approximations and_differentials
Linear approximations and_differentialsLinear approximations and_differentials
Linear approximations and_differentials
 
Local linear approximation
Local linear approximationLocal linear approximation
Local linear approximation
 
Interpolation functions
Interpolation functionsInterpolation functions
Interpolation functions
 
Propeties of-triangles
Propeties of-trianglesPropeties of-triangles
Propeties of-triangles
 
Gaussian quadratures
Gaussian quadraturesGaussian quadratures
Gaussian quadratures
 
Basics of set theory
Basics of set theoryBasics of set theory
Basics of set theory
 
Numerical integration
Numerical integrationNumerical integration
Numerical integration
 
Applications of set theory
Applications of  set theoryApplications of  set theory
Applications of set theory
 
Miscellneous functions
Miscellneous  functionsMiscellneous  functions
Miscellneous functions
 

Circles and tangents with geometry expressions

  • 1. Circles and Tangents with Geometry Expressions CIRCLES AND TANGENTS WITH GEOMETRY EXPRESSIONS ..................................................................... 1 INTRODUCTION ................................................................................................................................................. 2 Circle common tangents........................................................................................................................................................... 3 Example 1: Location of intersection of common tangents............................................................................................. 4 Example 2: Cyclic Trapezium defined by common tangents of 2 circles...................................................................... 5 Example 3: Triangle formed by the intersection of the interior common tangents of two circles................................. 7 Example 4: Locus of centers of common tangents to two circles .................................................................................. 8 Example 5: Length of the common tangent to two tangential circles ............................................................................ 9 Example 6: Tangents to the Radical Axis of a Pair of Circles ..................................................................................... 10 Arbelos ................................................................................................................................................................................... 11 Example 7: Various Circles in an Equilateral Triangle................................................................................................ 12 Example 8: Two circles inside a circle twice the radius, then a third .......................................................................... 14 Example 9: A theorem old in Pappus’ time.................................................................................................................. 19 Example 10: Another Family of Tangential Circles..................................................................................................... 22 Example 11: Yet Another Family of Circles ................................................................................................................ 25 Example 12: Archimedes Twins................................................................................................................................... 28 Example 13: Squeezing a circle between two circles................................................................................................... 29 1
  • 2. C I R C L E S A N D T R I A N G L E S W I T H G E O M E T R Y E X P R E S S I O N S Introduction Geometry Expressions automatically generates algebraic expressions from geometric figures. For example in the diagram below, the user has specified that the triangle is right and has short sides length a and b. The system has calculated an expression for the length of the altitude: B b a·b a ⇒ 2 2 a +b C D A We present a collection of worked examples using Geometry Expressions. In most cases, a diagram is presented with little comment. It is hoped that these diagrams are sufficiently self explanatory that the reader will be able to create them himself. The goal of these examples is to demonstrate the sort of problems which the software is capable of handling, and to suggest avenues of further exploration for the reader. The examples are clustered by theme. 2
  • 3. Circle common tangents The following set of examples explores some properties of the common tangents of pairs of circles. 3
  • 4. C I R C L E S A N D T R I A N G L E S W I T H G E O M E T R Y E X P R E S S I O N S Example 1: Location of intersection of common tangents Circles AB and CD have radii r and s respectively. If the centers of the circles are a apart, and E is the intersection of the interior common tangent with the line joining the two centers, what are the lengths AE and CE? B D r s A F C a·r a·s ⇒ ⇒ r+s r+s a E How about the exterior common tangent? B r D s A C F a E -a·s -a·r ⇒ -r+s ⇒ -r+s | s<r | s<r 4
  • 5. Example 2: Cyclic Trapezium defined by common tangents of 2 circles Given circles radii r and s and distance a apart, what is the altitude of the trapezium formed by joining the intersections of the 4 common tangents with one of the circles? 2·r·s ⇒ a B 2·r·s G ⇒ a r D I s A C a H E J F Notice that this is symmetrical in r and s, and hence the trapezium in circle AB has the same altitude. 5
  • 6. C I R C L E S A N D T R I A N G L E S W I T H G E O M E T R Y E X P R E S S I O N S Look at the ratio of the areas of the trapezia in the previous diagram: 2 2 2 2 2 2 2 2 2·r ·s· a -r -2·r·s-s +2·r ·s· a -r +2·r·s-s z1 ⇒ 2 a 2 2 2 2 2 2 2 2 2·r·s · a -r -2·r·s-s +2·r·s · a -r +2·r·s-s B z2 ⇒ 2 a G r D I s A C a H E J F z1 r ⇒ z2 s Notice that the ratio of trapezium areas is the same as the ratio of radii. 6
  • 7. Example 3: Triangle formed by the intersection of the interior common tangents of two circles Notice that if A is the area of the triangle formed by the centers of the circles, then area STU is: 2rstA (r + s )( s + t )(r + t ) D s r·s·t· a+b+c · a+b-c · a-b+c · -a+b+c P ⇒ C 2·(r+s)·(r+t)·(s+t) I G O c W B a K X r F M H t A J Y E Q b L N Notice that this ratio is independent of the size of a,b, and c. 7
  • 8. C I R C L E S A N D T R I A N G L E S W I T H G E O M E T R Y E X P R E S S I O N S Example 4: Locus of centers of common tangents to two circles W take the locus as the radius r of the left circle varies. The midpoints of all four common tangents lie on the same fourth order curve 4 2 2 4 3 2 4 2 2 2 2 2 2 2 2 3 2 ⇒ 4·X +8·X ·Y +4·Y -12·X ·a-12·X·Y ·a+a -a ·s +Y · 4·a -4·s +X · 13·a -4·s +X· -6·a +4·a·s =0 D G K B E s r L A (0,0) (a,0) C M H I R F J We can use Maple to solve for the intersections with the x axis: > subs(Y=0,4*X^4+8*Y^2*X^2+4*Y^4-12*a*X^3- 12*a*Y^2*X+a^4-s^2*a^2+(4*a^2-4*s^2)*Y^2+(13*a^2- 4*s^2)*X^2+(-6*a^3+4*s^2*a)*X ); 4 X 4 - 12 a X 3 + a 4 - s 2 a 2 + (13 a 2 - 4 s 2) X 2 + (-6 a 3 + 4 s 2 a) X > solve(%,X); 1 1 a - s, a + s, a, a 2 2 8
  • 9. Example 5: Length of the common tangent to two tangential circles A succinct formula: ⇒ 2· r· s B D r s A C 9
  • 10. C I R C L E S A N D T R I A N G L E S W I T H G E O M E T R Y E X P R E S S I O N S Example 6: Tangents to the Radical Axis of a Pair of Circles The radical axis of a pair of circles is the line joining the points of intersection. The lengths of tangents from a given point on this axis to the two circles are the same. 4 2 2 2 2 4 4 2 2 2 a +4·a ·b -2·a ·r +r +s +s · -2·a -2·r ⇒ 2·a F 4 2 2 2 2 4 4 2 2 2 a +4·a ·b -2·a ·r +r +s +s · -2·a -2·r ⇒ 2·a B D H b r G s a A C E 10
  • 11. Arbelos A set of examples studying circles squeezed between other circles. 11
  • 12. C I R C L E S A N D T R I A N G L E S W I T H G E O M E T R Y E X P R E S S I O N S Example 7: Various Circles in an Equilateral Triangle We look at the radii of various circles in an equilateral triangle: A G 3·a 18 F E a a a 2· 3 D B C a 12
  • 13. A I 3·a H 54 G F E a a D B C a What would the next length in the sequence be? 13
  • 14. C I R C L E S A N D T R I A N G L E S W I T H G E O M E T R Y E X P R E S S I O N S Example 8: Two circles inside a circle twice the radius, then a third D H 2·r 3 r G C E B r 2·r A F 14
  • 15. And if we keep on going: 2·r r 3 3 F H 2·r J 11 L I r K 9 M N G D 2·r r B C r E A 15
  • 16. C I R C L E S A N D T R I A N G L E S W I T H G E O M E T R Y E X P R E S S I O N S The general case looks like this: 1 1 1 -1 1 + +2· + 2·r x 2 2·r·x 2·r B F x G A H D r 2·r C E We can copy this expression into Maple to generate the above sequence: > 1/(1/2*1/r+1/x+2*sqrt(-1/2*1/(r^2)+1/2/x/r)); 1 1 1 1 1 2 + + −2 + 2 r x r 2 xr > subs(r=1,%); 16
  • 17. 1 1 1 2 + + −2 + 2 x x > f:=x->1/(1/2+1/x+sqrt(-2+2/x)); 1 f := x → 1 1 2 + + −2 + 2 x x > f(1); 2 3 > f(2/3); 1 3 > f(1/3); 2 11 > f(2/11); 1 9 > f(1/9); 2 27 > f(2/27); 1 19 > A little analysis of the series can lead us to postulate the formula 2/(n^2+2) for the n’th circle: Let’s feed the n-1th term into Maple: > f(2/((n-1)^2+2)); 17
  • 18. C I R C L E S A N D T R I A N G L E S W I T H G E O M E T R Y E X P R E S S I O N S 1 3 1 + ( n − 1 )2 + ( n − 1 )2 2 2 In order to get the expression to simplify, we make the assumption that n>1: > assume(n>1); > simplify(f(2/((n-1)^2+2))); 1 2 2 + n~ 2 We see that this is the next term in the series. By induction, we have shown that the n’th 2 circle has radius 2 + n2 18
  • 19. Example 9: A theorem old in Pappus’ time A theorem which was old in Pappus’ days (3rd century AD) relates the radii to height of the circles in figures like the above: 2·r r 3 3 2·r F H 11 J I L K 4·r 12·r G D 3 11 2·r B r 4·r C r 3 E A 19
  • 20. C I R C L E S A N D T R I A N G L E S W I T H G E O M E T R Y E X P R E S S I O N S Applying the general model, we get a formula: B E F x 2·r D ⇒ 2· x · 2·r-2·x r A C Again, we can copy this into Maple for analysis: 2 x 2r−2x > subs(x=2/(n^2+2),r=1,%); 20
  • 21. 1 4 2 2 2− 2 + n~ 2 2 + n~ 2 > simplify(%); n~ 4 2 + n~ 2 We see that the height above the centerline for these circles is the radius multiplied by 2n. 21
  • 22. C I R C L E S A N D T R I A N G L E S W I T H G E O M E T R Y E X P R E S S I O N S Example 10: Another Family of Tangential Circles A C B N D M F a K L 14 3·a 2 a J 3·a E I H 31 G 3·a 22 a 5 3·a 10 22
  • 23. We can follow through a similar analysis to the previous section: 1 1 1 -2 1 + +2· + 3·a x 2 3·a·x 3·a F G x H E D B a 3·a 2 C A > f:=x->1/(1/3+1/x+2/3*sqrt(-6+3/x)); 1 f := x → 1 1 2 3 + + −6 + 3 x 3 x > f(1); 1 4 2 + I 3 3 3 23
  • 24. C I R C L E S A N D T R I A N G L E S W I T H G E O M E T R Y E X P R E S S I O N S > f(3/10); 1 5 > f(%); 3 22 > > assume(n>1); > simplify(f(3/((n-1)^2+6))); 1 3 6 + n~ 2 > simplify(%); 24
  • 25. Example 11: Yet Another Family of Circles We generalize the situation from a couple of examples ago. We look at the family generated by two circles of radius a and b inside a circle of radius a+b: a·b·(a+b) a·b·(a+b) 2 2 a +a·b+b 2 2 4·a +a·b+b H J a·b·(a+b) 2 2 9·a +a·b+b L I G a·b·(a+b) a+b K F 2 2 16·a +a·b+b N a M B D C E A b The pattern is pretty obvious this time: the radius of the nth circle is: ab(a + b) n a 2 + ab + b 2 2 25
  • 26. C I R C L E S A N D T R I A N G L E S W I T H G E O M E T R Y E X P R E S S I O N S To prove this, we derive the formula for the general circle radius x, and analyze in Maple: 1 1 1 1 1 1 1 + - +2· - - b x a+b b·x b·(a+b) x·(a+b) H J x I G a+b F B E A b Now we try feeding in one of the circle radii into this formula in maple (first making the assumption that the radii are positive (along with n>1 for later use): > assume(a>0,b>0,n>1); > f:=x->1/(1/b+1/x-1/(a+b)+2*sqrt(1/(x*b)-1/((a+b)*b)- 1/((a+b)*x))); 1 f := x → 1 1 1 1 1 1 + − +2 − − b x a+b x b (a + b) b (a + b) x 26
  • 27. > f((a+b)*b*a/(9*a^2+b*a+b^2));  1 2 2 9 a~ + b~ a~ + b~ 1 1/  b~ + ( a~ + b~ ) b~ a~ − a~ + b~   9 a~ 2 + b~ a~ + b~ 2 1 9 a~ 2 + b~ a~ + b~ 2   +2 − −  ( a~ + b~ ) b~ 2 a~ ( a~ + b~ ) b~ ( a~ + b~ ) 2 b~ a~   > simplify(%); ( a~ + b~ ) b~ a~ 16 a~ 2 + b~ a~ + b~ 2 Let’s try the general case, feeding in the formula for the n-1st radius: > simplify(f((a+b)*b*a/((n-1)^2*a^2+b*a+b^2))); b~ a~ ( a~ + b~ ) b~ a~ + a~ 2 n~ 2 + b~ 2 By induction, we have proved the general result. 27
  • 28. C I R C L E S A N D T R I A N G L E S W I T H G E O M E T R Y E X P R E S S I O N S Example 12: Archimedes Twins The given circles are mutually tangential with radius a, b and a+b. Archimedes twins are the circles tangential to the common tangent of the inner circles. We see from the symmetry of the radius expression that they are congruent. a·b ⇒ a+b a+b a·b ⇒ a+b I K a b A E C 28
  • 29. Example 13: Squeezing a circle between two circles Take a circle radius 2a centered at (a,0) and a circle radius 4a centered at (-a,0). Now look at the locus of the center of the circle tangent to both. B E F t 4·a 2 2 2 72·a -8·x -9·y =0 2·a A (-a,0) D (a,0) C It’s an ellipse. From the drawing we can see that the semi major axis in the x direction is 3a. What is the semi major axis in the y direction? 29