Open Channel Flow




                             School of Civil and
Monroe L. Weber-Shirk   Environmental Engineering
Open Channel Flow
® Liquid (water) flow with a ____surface
                             free ________
  (interface between water and air)
® relevant for
    ® natural channels: rivers, streams
    ® engineered channels: canals, sewer
      lines or culverts (partially full), storm drains
®   of interest to hydraulic engineers
    ® location of free surface
    ® velocity distribution
    ® discharge - stage (______) relationships
                          depth
    ® optimal channel design
Topics in Open Channel Flow
®   Uniform Flow     normal depth
    ® Discharge-Depth relationships
®   Channel transitions
    ® Control structures (sluice gates, weirs…)
    ® Rapid changes in bottom elevation or cross section
® Critical, Subcritical and Supercritical Flow
® Hydraulic Jump
® Gradually Varied Flow
    ® Classification of flows
    ® Surface profiles
Classification of Flows
®   Steady and Unsteady         (Temporal)
    Steady: velocity at a given point does not change with
    ®
    time
® Uniform, Gradually Varied, and Nonuniform (Spatial)
    ® Uniform: velocity at a given time does not change
      within a given length of a channel
    ® Gradually varied: gradual changes in velocity with
      distance
®   Laminar and Turbulent
    ® Laminar: flow appears to be as a movement of thin
      layers on top of each other
    ® Turbulent: packets of liquid move in irregular paths
Momentum and Energy
             Equations
®   Conservation of Energy
    ® “losses” due to conversion of turbulence to heat
    ® useful when energy losses are known or small
       ® Contractions
         ____________
    ® Must account for losses if applied over long distances
         We need an equation for losses
       ® _______________________________________________

®   Conservation of Momentum
    ® “losses” due to shear at the boundaries
    ® useful when energy losses are unknown
          Expansion
       ® ____________
Open Channel Flow: Discharge/
      Depth Relationship
® Given a long channel of
  constant slope and cross
  section find the relationship                 A
  between discharge and depth
                                                           P
® Assume
   ® Steady Uniform Flow - ___ acceleration
                             no _____________
                                     geometry
   ® prismatic channel (no change in _________ with distance)
® Use Energy and Momentum, Empirical or
  Dimensional Analysis?
® What controls depth given a discharge?
® Why doesn’t the flow accelerate? Force balance
Steady-Uniform Flow: Force
                 Balance
                                        V2
              τo P ∆ x
Shear force =________                   2g      Energy grade line
                   P                                           Hydraulic grade line
Wetted perimeter = __                   b
Gravitational force = γA ∆x sinθ
                      ________                    ∆x       c


γA∆ sin θ −τo P∆ = 0
   x            x
                                    a
             A
    τo =γ        sinθ                                  d
             P                       W cos θ θ
                                                                θ
                           Shear force
                                                 W
  A                                                            sin θ
      = R h Hydraulic radius                            S =             ≅ sin θ
  P                                             cos θ
                                             W sin θ

                                         Turbulence
Relationship between shear and velocity? ______________
Open Conduits:
         Dimensional Analysis
® Geometric     parameters               A
     Hydraulic radius (Rh)
  ® ___________________           Rh =
                                         P
    Channel length (l)
  ® ___________________
  ® ___________________
     Roughness (ε)
® Write   the functional relationship
           l ε               
  C p = f  , , Re, Fr , M, W 
           Rh Rh             
                                                  V
® Does                     No!               Fr =
         Fr affect shear? _________               yg
Pressure Coefficient for Open
          Channel Flow?
             − 2 ∆p     Pressure Coefficient
Cp =                                                 − ∆p = γhl
              ρV 2      (Energy Loss Coefficient)

              2 ghl                                    hl = S f l
 Ch =                   Head loss coefficient
               V2
       l



                                                     Friction slope
             2 gS f l   Friction slope coefficient   Slope of EGL
CS f       =
               V2
Dimensional Analysis
            l ε                                     2 gS f l
CS f   = f  , , Re                         CS f   =
            Rh Rh                                     V2

         l ε    
CS f   = f  , Re        Head loss ∝ length of channel
        Rh  Rh  

     Rh     ε                                        R
CS f    = f  , Re = λ (like f in Darcy-Weisbach) CS f h = λ
      l      Rh                                       l


2 gS f l Rh               2 gS f Rh             2g
            =λ         V=                    V=    S f Rh
  V 2
          l                  λ                  λ
Chezy equation (1768)
® Introducedby the French engineer Antoine
 Chezy in 1768 while designing a canal for
 the water-supply system of Paris
                                            2g
           V = C Rh S f     compare      V=    S f Rh
                                            λ
  where C = Chezy coefficient
              m              m
         60     < C < 150
              s             s
where 60 is for rough and 150 is for smooth
also a function of R (like f in Darcy-Weisbach)
Darcy-Weisbach equation (1840)
                                                         πd 2 
  f = Darcy-Weisbach friction factor                          
                                                     A  4  d
                                                        
                                                               =
        l V2                   l V2              Rh = =
 hl = f               hl = f                         P    πd      4
        d 2g                 4 Rh 2 g

          l V2                        V2            8g
Sfl = f                    S f Rh = f            V=    S f Rh
        4 Rh 2 g                      8g             f

  For rock-bedded streams                               1
                                           f =                     2
                                                         Rh 
                                          1.2 + 2.03log  d 
 where d84 = rock size larger than 84% of                84 
 the rocks in a random sample
Manning Equation (1891)

  ®Most popular in U.S. for open channels
   1 2/3 1/2   (MKS units!)
V = R h So
   n           Dimensions of n?   T /L1/3

                             Is n only a function of roughness? NO!
      1.49
V =           R 2/3S1/2
                h   o       (English system)
          n
                             Bottom slope
  Q = VA
      1
Q =       ARh / 3 S o / 2
            2       1
                            very sensitive to n
      n
Values of Manning n
                   Lined Canals                n
     Cement plaster                        0.011
     Untreated gunite                      0.016
     Wood, planed                          0.012            n = f(surface
     Wood, unplaned                        0.013
     Concrete, trowled                     0.012            roughness,
     Concrete, wood forms, unfinished
     Rubble in cement
                                           0.015
                                           0.020
                                                            channel
     Asphalt, smooth                       0.013            irregularity,
     Asphalt, rough                        0.016
                 Natural Channels
                                                            stage...)
     Gravel beds, straight                 0.025
     Gravel beds plus large boulders       0.040
     Earth, straight, with some grass      0.026
     Earth, winding, no vegetation         0.030
     Earth , winding with vegetation       0.050



n = 0.031d 1 / 6 d in ft                d = median size of bed material
n = 0.038d 1 / 6 d in m
1
   Trapezoidal Channel                     Q =       ARh / 3 S o / 2
                                                       2       1

                                                 n


   ® Derive P = f(y) and A = f(y) for a
     trapezoidal channel
   ® How would you obtain y = f(Q)?

      A = yb + y 2 z
                                   1                             y
                                       z
      [
P = 2 y 2 + ( yz )    ]
                     2 1/ 2
                              +b           b

           [
   P = 2 y 1+ z       ]
                  2 1/ 2
                              +b

      Use Solver!
Flow in Round Conduits
                                            = ( r sin θ ) ( r cos θ )
              r − y
 θ = arccos        
                     
               r 
            radians
A = r 2 (θ − sin θ cosθ )
                                        r
T = 2r sin θ
                                    θ
P = 2 rθ                    A                                y
Maximum discharge
when y = ______
         0.938d                 T
Open Channel Flow: Energy
                 Relations
                       V12                          hL = S f ∆x
velocity head     α1
                       2g                           V22
                                                                  energy
                                               α2                 grade line
                                                    2g

                                                                  hydraulic
                       y1                                         grade line
                                                    y2    water surface

                        S o ∆x

                                 ∆x

   Bottom slope (So) not necessarily equal to surface slope (Sf)
Energy relationships
p1           V12 p2            V22                      Pipe flow
   + z1 + α1    =   + z2 + α 2     + hL
γ            2g γ              2g                      z - measured from
                                                       horizontal datum

  From diagram on previous slide...

                 2         2              Turbulent flow (α ≅ 1)
               V         V
y1 + So ∆x +    1
                  = y2 +  2
                            + S f ∆x      y - depth of flow
               2g        2g
Energy Equation for Open Channel Flow
     V12                V22
y1 +     + So ∆x = y2 +     + S f ∆x
     2g                 2g
Specific Energy
® Thesum of the depth of flow and the
 velocity head is the specific energy:
                          V2           y - potential energy
              E = y +
                          2g           V2
                                            - kinetic energy
                                       2g
           E1 + S o ∆x = E2 + S f ∆x

 If channel bottom is horizontal and no head loss
                     E1 = E2
                                                       y
         For a change in bottom elevation
                   E1 − ∆y = E2
Specific Energy
In a channel with constant discharge, Q
                Q = A1V1 = A2V2
                 V2                    Q2
        E = y +             E = y +         where A=f(y)
                                          2
                 2g                   2gA
  Consider rectangular channel (A=By) and Q=qB
                q2       q is the discharge per unit width of channel
     E = y +
               2gy 2                   y              A

                                                       B
3 roots (one is negative)
Specific Energy: Sluice Gate
  10
   9
                                                     sluice gate q = 5.5 m2/s
y1 8                                                         EGL y2 = 0.45 m
   7                     q2
   6
           E = y +                                               V2 = 12.2 m/s
                        2gy 2                        1
   5
                                                                  E2 = 8 m
y




   4
   3
   2
                                                              2
y2 1
   0
       0    1   2   3    4    5   6   7   8   9 10
                                       E1 = E2
                              E
Given downstream depth and discharge, find upstream depth.
                   alternate
    y1 and y2 are ___________ depths (same specific energy)
       Why not use momentum conservation to find y1?
Specific Energy: Raise the Sluice
                       Gate
     4
                                               sluice gate

     3
y1                                                            EGL
     2
y




                                               1                  2
y2 1
                                                   E1 = E2
     0
         0        1      2     3      4                      q2
                        E                          E = y +
                                                            2gy 2
             as sluice gate is raised y1 approaches y2 and E is
             minimized: Maximum discharge for given energy.
Specific Energy: Step Up
    Short, smooth step with rise ∆y in channel
    Given upstream depth and            4
    discharge find y2
    4                                   3


    3                                   2




                                    y
    2                                   1
y




    1                                   0
                                            0    1   ∆y   2   3    4
    0                                                     E
        0   1     2      3     4
                  E          E1 = E2 + ∆y       Increase step height?
4


                                                                        3


                                                                        2

                                                               yc




                                                                    y
                          Critical Flow                                 1


                                                                        0
                                                                            0       1    2   3   4
                                                                                         E



Find critical depth, yc                     Arbitrary cross-section
   dE
        = 0                                                T
   dy                                                                                   dy
           Q2
E = y +                A=f(y)                              y   A                        dA
          2gA2
                                                                                P
 dE     Q 2 dA
    = 1− 3     =0                 dA = Tdy            T=surface width
 dy     gA dy

      Q 2Tc    2
              QT                  V 2T              A
1 =                    = Fr   2
                                         = Fr   2
                                                      =D   Hydraulic Depth
      gAc3    gA   3
                                  gA                T
Critical Flow:
                        Rectangular channel
        Q 2Tc                                              T
 1 =                            T = Tc
           gAc3
 Q = qT                       Ac = ycT                Ac       yc

     q 2T 3             q2
1=              =
       3    3             3
     gy T
       c                gyc
                    1/ 3
     q         2   
yc =                              Only for rectangular channels!
     g             
                   

 q =          3
            gyc               Given the depth we can find the flow!
Critical Flow Relationships:
           Rectangular Channels
      q     2
                 1/ 3
                                         Vc2 yc 
                                                2

 yc =                             yc = 
                                     3                  because       q = Vc yc
      g                                 g 
                                               

 Vc                                            inertial force       Kinetic energy
        = 1             Froude number
 yc g                                          gravity force       Potential energy


        Vc2                    yc        Vc2
 yc =                                =              velocity head = 0.5 (depth)
         g                     2         2g
             V2                                yc                      2
E = y +                       E = yc +                          yc =       E
             2g                                2                       3
4


                                                      3


                                                      2




                                                  y
                  Critical Flow                       1


                                                      0
                                                          0   1   2   3   4
                                                                  E




®   Characteristics
    ® Unstable surface
    ® Series of standing waves   Difficult to measure depth
®   Occurrence
    ® Broad crested weir (and other weirs)
    ® Channel Controls (rapid changes in cross-section)
    ® Over falls
    ® Changes in channel slope from mild to steep

®   Used for flow measurements
    ®   Unique relationship between depth and discharge
        ___________________________________________
Broad-crested Weir
                         1/ 3
           q       2                                                   E
      yc =                             H
           g                                                 yc
                       
                                             P          Broad-crested
q =    gy   3
            c       Q = b gyc
                            3
                                                        weir
                2
      yc =          E                   Hard to measure yc
                3
                        3/ 2
                 2                    E measured from top of weir
 Q=b g                         E 3/ 2
                 3
                                 3/ 2
            2                         Cd corrects for using H rather
 Q = Cd b g   H
            3                         than E.
Broad-crested Weir: Example
® Calculate the flow and the depth upstream.
  The channel is 3 m wide. Is H approximately
  equal to E?                                          E
                                               yc
                                            yc=0.3 m
                           0.5         Broad-crested
                                       weir

  How do you find flow?____________________
                         Critical flow relation

                     Energy equation
  How do you find H?______________________
                                                  Solution
Hydraulic Jump
® Used for energy dissipation
® Occurs when flow transitions from
  supercritical to subcritical
  ® base   of spillway
® We  would like to know depth of water
  downstream from jump as well as the
  location of the jump
® Which equation, Energy or Momentum?
Hydraulic Jump!
Hydraulic Jump
M1 +M 2 = W +Fp1 +Fp2 +Fss Conservation of Momentum
                                           hL
                      EGL
M 1 x + M 2 x = F p + Fp              1x            2x



M 1 x = −ρ 12 A1
          V                                                                    y2
                                                     y1
M 2 x = ρ A2
         V                   2
                              2


                                                                     L
− ρQV1 + ρQV2 = p1 A1 − p2 A2
         2           2                                         ρgy             Q
     Q           Q           gy1 A1        gy2 A2         p=             V =
 −           +           =            −                        2
     A1          A2               2          2                                 A
Hydraulic Jump:
                Conjugate Depths
For a rectangular channel make the following substitutions
   A = By         Q = By1V1


         V1
   Fr1 =            Froude number
         gy1
  Much algebra         y2 =
                              y1
                                   (− 1 +   1 + 8 Fr12   )
                              2
    valid for slopes < 0.02
Hydraulic Jump:
       Energy Loss and Length
•Energy Loss E1 = E2 + hL
            q2                       ( y2 − y1 ) 3
 E = y +           algebra   hL =
           2gy 2                   4 y1 y2
  significant energy loss (to turbulence) in jump

•Length of jump
   No general theoretical solution
   Experiments show
       L = 6 y2   for 4 < Fr1 < 20
Gradually Varied Flow
       V12                V22             Energy equation for non-
  y1 +     + So ∆x = y2 +     + S f ∆x
       2g                 2g              uniform, steady flow

                       V22 V12             dy = y2 − y1
So dx = ( y2 − y1 ) +     −  + S f dx
                       2g 2g                        T
         V 2                                                      dy
  dy + d   + S f dx = So dx
          2g                                        y     A
                                                                P
  dy  d V   2
          + S f dx = S o dx
    +
  dy dy  2 g 
                dy       dy
Gradually Varied Flow
d V 2 
     =   d  Q2 
              
                           − 2Q 2  dA
                       =         ⋅
                                           − Q 2T 
                                        =          = − Fr 2
dy  2 g 
         dy  2 gA2 
                     
                           2 gA3  dy
                                  
                                           gA3 
                                                  
                                             Change in KE
dy d  V 2   dx      dx
  +  +Sf       = So                        Change in PE
dy dy  2 g 
            dy      dy
                                   We are holding Q constant!
                 dx          dx
 1 − Fr + S f
        2
                      = So
                 dy          dy

 dy                                 dy       So − S f
      [1 − Fr ]
             2
                  = So − S f             =
 dx                                 dx       1 − Fr 2
Gradually Varied Flow
dy       So − S f
     =               Governing equation for
dx       1 − Fr 2    gradually varied flow
®    Gives change of water depth with distance along channel
®    Note
      ® So and Sf are positive when sloping down in
        direction of flow
      ® y is measured from channel bottom
      ® dy/dx =0 means water depth is constant

     yn is when So = S f
Surface Profiles
®   Mild slope (yn>yc)
    ®   in a long channel subcritical flow will occur
®   Steep slope (yn<yc)
    ®   in a long channel supercritical flow will occur
®   Critical slope (yn=yc)
    ®   in a long channel unstable flow will occur
®   Horizontal slope (So=0)
    ®   yn undefined
®   Adverse slope (So<0)
    ®   yn undefined           Note: These slopes are f(Q)!
Surface Profiles
Normal depth                                        Obstruction
  Sluice gate                                       Steep slope (S2)
  Steep slope                                       Hydraulic Jump

   dy       So − S f
        =                    S0 - S f   1 - Fr2   dy/dx
   dx       1 − Fr   2
                                                              4

                                +         +         +
                                                          yn  3



                                -         +         -     yc
                                                              2




                                                          y
                                                              1



                                -          -        +         0
                                                                  0   1   2   3   4
                                                                          E
More Surface Profiles
                                          dy       So − S f
     S0 - S f   1 - Fr2   dy/dx                =
                                      4
                                          dx       1 − Fr 2
    1 +           +         +         3



                                  yc
                                      2




                                  y
    2 +            -        -
                                  yn  1


    3 -            -        +         0
                                          0    1    2    3    4
                                                    E
Direct Step Method
       V12                        V22
y1 +         + S o ∆x = y2 +            + S f ∆x          energy equation
       2g                         2g

                      V12        V22
         y1 − y2 +           −
                       2g        2g
∆x =                                        solve for ∆x
                  S f − So
   rectangular channel                               prismatic channel
             q                   q                        Q             Q
  V1 =                 V2 =                        V2 =          V1 =
             y1                  y2                       A2            A1
Direct Step Method
                 Friction Slope
  Manning                          Darcy-Weisbach
      n 2V 2                               fV 2
 S f = 4/3         SI units          Sf =
      Rh                                  8 gRh
       n 2V 2
Sf =               English units
     2.22 Rh / 3
             4
Direct Step
® Limitation: channel must be _________ (so that
                                prismatic
  velocity is a function of depth only and not a
  function of x)
® Method
    ® identify type of profile (determines whether ∆y is + or -)
    ® choose ∆y and thus yn+1
    ® calculate hydraulic radius and velocity at yn and yn+1
    ® calculate friction slope yn and yn+1
    ® calculate average friction slope
    ® calculate ∆x
Direct Step Method
       =y*b+y^2*z
                                                                           V12       V22
              =2*y*(1+z^2)^0.5 +b                              y1 − y2 +         −
                                                                           2g        2g
                     =A/P                           ∆x =
                                                                     S f − So
                            =Q/A
                                =(n*V)^2/Rh^(4/3)
                                     =y+(V^2)/(2*g)
                                          =(G16-G15)/((F15+F16)/2-So)
A     B    C      D       E     F          G     H      I      J     K      L      M
y     A    P      Rh      V     Sf         E     Dx     x      T     Fr     bottom surface
0.900 1.799 4.223   0.426 0.139    0.00004 0.901           0   3.799   0.065 0.000   0.900
0.870 1.687 4.089   0.412 0.148    0.00005 0.871   0.498 0.5   3.679   0.070 0.030   0.900
Standard Step
® Given a depth at one location, determine the depth at a
  second location
® Step size (∆x) must be small enough so that changes in
  water depth aren’t very large. Otherwise estimates of the
  friction slope and the velocity head are inaccurate
® Can solve in upstream or downstream direction
    ® upstream for subcritical
    ® downstream for supercritical
®   Find a depth that satisfies the energy equation
                          V12                     V22
                   y1 +         + S o ∆x = y2 +         + S f ∆x
                          2g                      2g
What curves are available?
                                                                  1.4

                                                                  1.2

                                                                  1.0
                                           S1




                                                                        elevation (m)
                                                                  0.8


                        bottom
                                        S3                        0.6

                                                                  0.4
                        surface
                        yc                                        0.2
                        yn
                                                                  0.0
                  20      15               10             5   0
                                  distance upstream (m)

Is there a curve between yc and yn that
decreases in depth in the upstream direction?
Wave Celerity
                     Vw


       y                                      y+δy                 y
             V            V+δV                                         V-Vw V+δV-Vw y+δy


           unsteady flow                                                 steady flow

       1                             1
F1 =       ρgy   2
                          F2 =           ρg ( y + δy ) 2
       2                             2                         F1                 F2

Fr = F1 − F2 =
                          1
                                 [
                              ρg y − ( y + δy )
                                         2                 2
                                                               ]        V-Vw   V+δV-Vw
                          2
Wave Celerity:
                Momentum Conservation
Fr = M 2 − M 1        M 1 = − ρ (V − Vw ) y
                                        2
                                                     Per unit width
Fr = ρy ( V − Vw ) [ ( V + δV − Vw ) − ( V − Vw ) ]
Fr = ρy ( V − Vw ) δV
                                                 y      V-Vw V+δV-Vw y+δy
 1
        [                  ]
      ρg y 2 − ( y + δy ) 2 = ρy ( V − Vw ) δV
 2
 1                                                         steady flow
      g [ − 2 yδy ] = y ( V − Vw ) δV
  2
 − gδy = ( V − Vw ) δV
Wave Celerity
y ( V − Vw ) = ( y + δy )( V + δV − Vw )              Mass conservation
yV − yVw = yV + δyV + yδV + δyδV − yVw − δyVw

                          δy
δV = −( V − Vw )
                          y
                                            y
− gδy = ( V − Vw ) δV           Momentum          V-Vw V+δV-Vw y+δy

                          δy
gδy = ( V − Vw )
                      2

                           y                          steady flow
                                                             V               V
gy = ( V − Vw )
                  2
                               c = V − Vw       c =   gy            = Fr =
                                                              yg             c
Wave Propagation
®   Supercritical flow
    ® c<V
    ® waves only propagate downstream
    ® water doesn’t “know” what is happening downstream

       upstream
    ® _________ control

®   Critical flow
    ®   c=V
®   Subcritical flow
    ® c>V
    ® waves propagate both upstream and downstream
Most Efficient Hydraulic
                Sections
®   A section that gives maximum discharge for a
    specified flow area
    ®   Minimum perimeter per area
® No frictional losses on the free surface
® Analogy to pipe flow
® Best shapes
    ® best
    ® best with 2 sides
    ® best with 3 sides
Why isn’t the most efficient
 hydraulic section the best design?

Minimum area = least excavation only if top of
channel is at grade

Cost of liner

Complexity of form work

Erosion constraint - stability of side walls
Open Channel Flow Discharge
          Measurements
®   Discharge
    ®   Weir
        ®   broad crested
        ®   sharp crested
        ®   triangular
    ® Venturi Flume
    ® Spillways
    ® Sluice gates

®   Velocity-Area-Integration
Discharge Measurements
                                  2
® Sharp-Crested                Q = Cd b 2 gH 3/ 2
                   Weir           3
                                     8             θ  5/ 2
® Triangular   Weir            Q=      Cd 2 g tan      H
                                    15             2
                                                   3/ 2
® Broad-Crested                           2 
                   Weir        Q = Cd b g   H
                                          3 

® Sluice   Gate                Q = Cd by g 2 gy1


 Explain the exponents of H!
Summary

® Allthe complications of pipe flow plus
  additional parameter... _________________
                          free surface location
® Various descriptions of head loss term
  ® Chezy,   Manning, Darcy-Weisbach
                                            4

® Importance   of Froude Number             3


                                            2
  ® Fr>1 decrease in E gives increase in y




                                        y
                                            1


  ® Fr<1 decrease in E gives decrease in y  0
                                                0   1   2   3   4
                                                        E

  ® Fr=1 standing waves (also min E given Q)

® Methods    of calculating location of free surface
Broad-crested Weir: Solution
  q =      3
         gyc                                                              E
                                                             yc
                                                          yc=0.3 m
q = (9.8m / s )( 0.3m )
               2          3
                                           0.5       Broad-crested
                                                     weir
   q = 0.5144m 2 / s
                                                         3
Q = qL = 1.54m 3 / s                        2     E2 =       yc = 0.45m
                                       yc = E           2
                                           3      E1 = E2 + ∆y = 0.95m
                                                              q2
                                                   E1 = y1 +
                                                             2gy12
                                     q2
                              E1 −      2
                                          ≅ y1      y1 = 0.935
                                   2 gE1
                                                 H1 = y1 − 0.5m = 0.435
Sluice Gate

  reservoir   Sluice gate
2m

     10 cm

                     S = 0.005
Summary/Overview
® Energy   losses              V=
                                   8g
                                       S f Rh
                                    f
  ®Dimensional      Analysis      1 2/3 1/2
                               V = R h So
  ®Empirical                      n
V12                V22
   Energy Equation           y1 +
                                  2g
                                      + So ∆x = y2 +
                                                     2g
                                                         + S f ∆x


                                    V2    q2          Q2
® Specific
         Energy          E = y +    = y+      2 = y+
                                 2g      2 gy        2 gA2
® Two depths with same energy!
  ®How   do we know which depth4
   is the right one?
                                3
  ®Is the path to the new depth
                                2


                                y
   possible?
                                    1


                                    0
                                        0   1     2     3      4
                                                 E
Specific Energy: Step Up
    Short, smooth step with rise ∆y in channel
    Given upstream depth and            4
    discharge find y2
    4                                   3


    3                                   2




                                    y
    2                                   1
y




    1                                   0
                                            0    1   ∆y   2   3    4
    0                                                     E
        0   1     2      3     4
                  E          E1 = E2 + ∆y       Increase step height?
Critical Depth

® Minimum   energy for q
 ®When    dE
               = 0
          dy                    yc              Vc2
 ®When   kinetic = potential!               =
                                2               2g
 ®Fr=1
                                    4

        V       q      T
   Fr = c =        =Q               3

        yc g     3
               gyc    gA3
                                    2




                                y
 ®Fr>1 = Supercritical              1

 ®Fr<1 = Subcritical                0
                                        0         1   2   3   4
                                                      E
What next?

® Water   surface profiles
  ® Rapidly   varied flow
    ®A  way to move from supercritical to subcritical flow
      (Hydraulic Jump)
  ® Gradually   varied flow equations
    ® Surface  profiles
    ® Direct step

    ® Standard step

Hidro

  • 1.
    Open Channel Flow School of Civil and Monroe L. Weber-Shirk Environmental Engineering
  • 2.
    Open Channel Flow ®Liquid (water) flow with a ____surface free ________ (interface between water and air) ® relevant for ® natural channels: rivers, streams ® engineered channels: canals, sewer lines or culverts (partially full), storm drains ® of interest to hydraulic engineers ® location of free surface ® velocity distribution ® discharge - stage (______) relationships depth ® optimal channel design
  • 3.
    Topics in OpenChannel Flow ® Uniform Flow normal depth ® Discharge-Depth relationships ® Channel transitions ® Control structures (sluice gates, weirs…) ® Rapid changes in bottom elevation or cross section ® Critical, Subcritical and Supercritical Flow ® Hydraulic Jump ® Gradually Varied Flow ® Classification of flows ® Surface profiles
  • 4.
    Classification of Flows ® Steady and Unsteady (Temporal) Steady: velocity at a given point does not change with ® time ® Uniform, Gradually Varied, and Nonuniform (Spatial) ® Uniform: velocity at a given time does not change within a given length of a channel ® Gradually varied: gradual changes in velocity with distance ® Laminar and Turbulent ® Laminar: flow appears to be as a movement of thin layers on top of each other ® Turbulent: packets of liquid move in irregular paths
  • 5.
    Momentum and Energy Equations ® Conservation of Energy ® “losses” due to conversion of turbulence to heat ® useful when energy losses are known or small ® Contractions ____________ ® Must account for losses if applied over long distances We need an equation for losses ® _______________________________________________ ® Conservation of Momentum ® “losses” due to shear at the boundaries ® useful when energy losses are unknown Expansion ® ____________
  • 6.
    Open Channel Flow:Discharge/ Depth Relationship ® Given a long channel of constant slope and cross section find the relationship A between discharge and depth P ® Assume ® Steady Uniform Flow - ___ acceleration no _____________ geometry ® prismatic channel (no change in _________ with distance) ® Use Energy and Momentum, Empirical or Dimensional Analysis? ® What controls depth given a discharge? ® Why doesn’t the flow accelerate? Force balance
  • 7.
    Steady-Uniform Flow: Force Balance V2 τo P ∆ x Shear force =________ 2g Energy grade line P Hydraulic grade line Wetted perimeter = __ b Gravitational force = γA ∆x sinθ ________ ∆x c γA∆ sin θ −τo P∆ = 0 x x a A τo =γ sinθ d P W cos θ θ θ Shear force W A sin θ = R h Hydraulic radius S = ≅ sin θ P cos θ W sin θ Turbulence Relationship between shear and velocity? ______________
  • 8.
    Open Conduits: Dimensional Analysis ® Geometric parameters A Hydraulic radius (Rh) ® ___________________ Rh = P Channel length (l) ® ___________________ ® ___________________ Roughness (ε) ® Write the functional relationship  l ε  C p = f  , , Re, Fr , M, W   Rh Rh  V ® Does No! Fr = Fr affect shear? _________ yg
  • 9.
    Pressure Coefficient forOpen Channel Flow? − 2 ∆p Pressure Coefficient Cp = − ∆p = γhl ρV 2 (Energy Loss Coefficient) 2 ghl hl = S f l Ch = Head loss coefficient V2 l Friction slope 2 gS f l Friction slope coefficient Slope of EGL CS f = V2
  • 10.
    Dimensional Analysis  l ε  2 gS f l CS f = f  , , Re CS f =  Rh Rh  V2 l ε  CS f = f  , Re Head loss ∝ length of channel Rh  Rh  Rh ε  R CS f = f  , Re = λ (like f in Darcy-Weisbach) CS f h = λ l  Rh  l 2 gS f l Rh 2 gS f Rh 2g =λ V= V= S f Rh V 2 l λ λ
  • 11.
    Chezy equation (1768) ®Introducedby the French engineer Antoine Chezy in 1768 while designing a canal for the water-supply system of Paris 2g V = C Rh S f compare V= S f Rh λ where C = Chezy coefficient m m 60 < C < 150 s s where 60 is for rough and 150 is for smooth also a function of R (like f in Darcy-Weisbach)
  • 12.
    Darcy-Weisbach equation (1840)  πd 2  f = Darcy-Weisbach friction factor   A  4  d  = l V2 l V2 Rh = = hl = f hl = f P πd 4 d 2g 4 Rh 2 g l V2 V2 8g Sfl = f S f Rh = f V= S f Rh 4 Rh 2 g 8g f For rock-bedded streams 1 f = 2   Rh  1.2 + 2.03log  d  where d84 = rock size larger than 84% of   84  the rocks in a random sample
  • 13.
    Manning Equation (1891) ®Most popular in U.S. for open channels 1 2/3 1/2 (MKS units!) V = R h So n Dimensions of n? T /L1/3 Is n only a function of roughness? NO! 1.49 V = R 2/3S1/2 h o (English system) n Bottom slope Q = VA 1 Q = ARh / 3 S o / 2 2 1 very sensitive to n n
  • 14.
    Values of Manningn Lined Canals n Cement plaster 0.011 Untreated gunite 0.016 Wood, planed 0.012 n = f(surface Wood, unplaned 0.013 Concrete, trowled 0.012 roughness, Concrete, wood forms, unfinished Rubble in cement 0.015 0.020 channel Asphalt, smooth 0.013 irregularity, Asphalt, rough 0.016 Natural Channels stage...) Gravel beds, straight 0.025 Gravel beds plus large boulders 0.040 Earth, straight, with some grass 0.026 Earth, winding, no vegetation 0.030 Earth , winding with vegetation 0.050 n = 0.031d 1 / 6 d in ft d = median size of bed material n = 0.038d 1 / 6 d in m
  • 15.
    1 Trapezoidal Channel Q = ARh / 3 S o / 2 2 1 n ® Derive P = f(y) and A = f(y) for a trapezoidal channel ® How would you obtain y = f(Q)? A = yb + y 2 z 1 y z [ P = 2 y 2 + ( yz ) ] 2 1/ 2 +b b [ P = 2 y 1+ z ] 2 1/ 2 +b Use Solver!
  • 16.
    Flow in RoundConduits = ( r sin θ ) ( r cos θ ) r − y θ = arccos     r  radians A = r 2 (θ − sin θ cosθ ) r T = 2r sin θ θ P = 2 rθ A y Maximum discharge when y = ______ 0.938d T
  • 17.
    Open Channel Flow:Energy Relations V12 hL = S f ∆x velocity head α1 2g V22 energy α2 grade line 2g hydraulic y1 grade line y2 water surface S o ∆x ∆x Bottom slope (So) not necessarily equal to surface slope (Sf)
  • 18.
    Energy relationships p1 V12 p2 V22 Pipe flow + z1 + α1 = + z2 + α 2 + hL γ 2g γ 2g z - measured from horizontal datum From diagram on previous slide... 2 2 Turbulent flow (α ≅ 1) V V y1 + So ∆x + 1 = y2 + 2 + S f ∆x y - depth of flow 2g 2g Energy Equation for Open Channel Flow V12 V22 y1 + + So ∆x = y2 + + S f ∆x 2g 2g
  • 19.
    Specific Energy ® Thesumof the depth of flow and the velocity head is the specific energy: V2 y - potential energy E = y + 2g V2 - kinetic energy 2g E1 + S o ∆x = E2 + S f ∆x If channel bottom is horizontal and no head loss E1 = E2 y For a change in bottom elevation E1 − ∆y = E2
  • 20.
    Specific Energy In achannel with constant discharge, Q Q = A1V1 = A2V2 V2 Q2 E = y + E = y + where A=f(y) 2 2g 2gA Consider rectangular channel (A=By) and Q=qB q2 q is the discharge per unit width of channel E = y + 2gy 2 y A B 3 roots (one is negative)
  • 21.
    Specific Energy: SluiceGate 10 9 sluice gate q = 5.5 m2/s y1 8 EGL y2 = 0.45 m 7 q2 6 E = y + V2 = 12.2 m/s 2gy 2 1 5 E2 = 8 m y 4 3 2 2 y2 1 0 0 1 2 3 4 5 6 7 8 9 10 E1 = E2 E Given downstream depth and discharge, find upstream depth. alternate y1 and y2 are ___________ depths (same specific energy) Why not use momentum conservation to find y1?
  • 22.
    Specific Energy: Raisethe Sluice Gate 4 sluice gate 3 y1 EGL 2 y 1 2 y2 1 E1 = E2 0 0 1 2 3 4 q2 E E = y + 2gy 2 as sluice gate is raised y1 approaches y2 and E is minimized: Maximum discharge for given energy.
  • 23.
    Specific Energy: StepUp Short, smooth step with rise ∆y in channel Given upstream depth and 4 discharge find y2 4 3 3 2 y 2 1 y 1 0 0 1 ∆y 2 3 4 0 E 0 1 2 3 4 E E1 = E2 + ∆y Increase step height?
  • 24.
    4 3 2 yc y Critical Flow 1 0 0 1 2 3 4 E Find critical depth, yc Arbitrary cross-section dE = 0 T dy dy Q2 E = y + A=f(y) y A dA 2gA2 P dE Q 2 dA = 1− 3 =0 dA = Tdy T=surface width dy gA dy Q 2Tc 2 QT V 2T A 1 = = Fr 2 = Fr 2 =D Hydraulic Depth gAc3 gA 3 gA T
  • 25.
    Critical Flow: Rectangular channel Q 2Tc T 1 = T = Tc gAc3 Q = qT Ac = ycT Ac yc q 2T 3 q2 1= = 3 3 3 gy T c gyc 1/ 3 q 2  yc =   Only for rectangular channels! g    q = 3 gyc Given the depth we can find the flow!
  • 26.
    Critical Flow Relationships: Rectangular Channels q 2 1/ 3   Vc2 yc  2 yc =   yc =  3  because q = Vc yc g   g      Vc inertial force Kinetic energy = 1 Froude number yc g gravity force Potential energy Vc2 yc Vc2 yc = = velocity head = 0.5 (depth) g 2 2g V2 yc 2 E = y + E = yc + yc = E 2g 2 3
  • 27.
    4 3 2 y Critical Flow 1 0 0 1 2 3 4 E ® Characteristics ® Unstable surface ® Series of standing waves Difficult to measure depth ® Occurrence ® Broad crested weir (and other weirs) ® Channel Controls (rapid changes in cross-section) ® Over falls ® Changes in channel slope from mild to steep ® Used for flow measurements ® Unique relationship between depth and discharge ___________________________________________
  • 28.
    Broad-crested Weir 1/ 3 q 2  E yc =   H g  yc   P Broad-crested q = gy 3 c Q = b gyc 3 weir 2 yc = E Hard to measure yc 3 3/ 2  2 E measured from top of weir Q=b g E 3/ 2  3 3/ 2 2  Cd corrects for using H rather Q = Cd b g H 3  than E.
  • 29.
    Broad-crested Weir: Example ®Calculate the flow and the depth upstream. The channel is 3 m wide. Is H approximately equal to E? E yc yc=0.3 m 0.5 Broad-crested weir How do you find flow?____________________ Critical flow relation Energy equation How do you find H?______________________ Solution
  • 30.
    Hydraulic Jump ® Usedfor energy dissipation ® Occurs when flow transitions from supercritical to subcritical ® base of spillway ® We would like to know depth of water downstream from jump as well as the location of the jump ® Which equation, Energy or Momentum?
  • 31.
  • 32.
    Hydraulic Jump M1 +M2 = W +Fp1 +Fp2 +Fss Conservation of Momentum hL EGL M 1 x + M 2 x = F p + Fp 1x 2x M 1 x = −ρ 12 A1 V y2 y1 M 2 x = ρ A2 V 2 2 L − ρQV1 + ρQV2 = p1 A1 − p2 A2 2 2 ρgy Q Q Q gy1 A1 gy2 A2 p= V = − + = − 2 A1 A2 2 2 A
  • 33.
    Hydraulic Jump: Conjugate Depths For a rectangular channel make the following substitutions A = By Q = By1V1 V1 Fr1 = Froude number gy1 Much algebra y2 = y1 (− 1 + 1 + 8 Fr12 ) 2 valid for slopes < 0.02
  • 34.
    Hydraulic Jump: Energy Loss and Length •Energy Loss E1 = E2 + hL q2 ( y2 − y1 ) 3 E = y + algebra hL = 2gy 2 4 y1 y2 significant energy loss (to turbulence) in jump •Length of jump No general theoretical solution Experiments show L = 6 y2 for 4 < Fr1 < 20
  • 35.
    Gradually Varied Flow V12 V22 Energy equation for non- y1 + + So ∆x = y2 + + S f ∆x 2g 2g uniform, steady flow  V22 V12  dy = y2 − y1 So dx = ( y2 − y1 ) +  −  + S f dx  2g 2g  T V 2  dy dy + d   + S f dx = So dx  2g  y A P dy d V  2   + S f dx = S o dx + dy dy  2 g    dy dy
  • 36.
    Gradually Varied Flow dV 2    = d  Q2    − 2Q 2  dA  =  ⋅  − Q 2T  =   = − Fr 2 dy  2 g    dy  2 gA2     2 gA3  dy    gA3    Change in KE dy d  V 2  dx dx +  +Sf = So Change in PE dy dy  2 g    dy dy We are holding Q constant! dx dx 1 − Fr + S f 2 = So dy dy dy dy So − S f [1 − Fr ] 2 = So − S f = dx dx 1 − Fr 2
  • 37.
    Gradually Varied Flow dy So − S f = Governing equation for dx 1 − Fr 2 gradually varied flow ® Gives change of water depth with distance along channel ® Note ® So and Sf are positive when sloping down in direction of flow ® y is measured from channel bottom ® dy/dx =0 means water depth is constant yn is when So = S f
  • 38.
    Surface Profiles ® Mild slope (yn>yc) ® in a long channel subcritical flow will occur ® Steep slope (yn<yc) ® in a long channel supercritical flow will occur ® Critical slope (yn=yc) ® in a long channel unstable flow will occur ® Horizontal slope (So=0) ® yn undefined ® Adverse slope (So<0) ® yn undefined Note: These slopes are f(Q)!
  • 39.
    Surface Profiles Normal depth Obstruction Sluice gate Steep slope (S2) Steep slope Hydraulic Jump dy So − S f = S0 - S f 1 - Fr2 dy/dx dx 1 − Fr 2 4 + + + yn 3 - + - yc 2 y 1 - - + 0 0 1 2 3 4 E
  • 40.
    More Surface Profiles dy So − S f S0 - S f 1 - Fr2 dy/dx = 4 dx 1 − Fr 2 1 + + + 3 yc 2 y 2 + - - yn 1 3 - - + 0 0 1 2 3 4 E
  • 41.
    Direct Step Method V12 V22 y1 + + S o ∆x = y2 + + S f ∆x energy equation 2g 2g V12 V22 y1 − y2 + − 2g 2g ∆x = solve for ∆x S f − So rectangular channel prismatic channel q q Q Q V1 = V2 = V2 = V1 = y1 y2 A2 A1
  • 42.
    Direct Step Method Friction Slope Manning Darcy-Weisbach n 2V 2 fV 2 S f = 4/3 SI units Sf = Rh 8 gRh n 2V 2 Sf = English units 2.22 Rh / 3 4
  • 43.
    Direct Step ® Limitation:channel must be _________ (so that prismatic velocity is a function of depth only and not a function of x) ® Method ® identify type of profile (determines whether ∆y is + or -) ® choose ∆y and thus yn+1 ® calculate hydraulic radius and velocity at yn and yn+1 ® calculate friction slope yn and yn+1 ® calculate average friction slope ® calculate ∆x
  • 44.
    Direct Step Method =y*b+y^2*z V12 V22 =2*y*(1+z^2)^0.5 +b y1 − y2 + − 2g 2g =A/P ∆x = S f − So =Q/A =(n*V)^2/Rh^(4/3) =y+(V^2)/(2*g) =(G16-G15)/((F15+F16)/2-So) A B C D E F G H I J K L M y A P Rh V Sf E Dx x T Fr bottom surface 0.900 1.799 4.223 0.426 0.139 0.00004 0.901 0 3.799 0.065 0.000 0.900 0.870 1.687 4.089 0.412 0.148 0.00005 0.871 0.498 0.5 3.679 0.070 0.030 0.900
  • 45.
    Standard Step ® Givena depth at one location, determine the depth at a second location ® Step size (∆x) must be small enough so that changes in water depth aren’t very large. Otherwise estimates of the friction slope and the velocity head are inaccurate ® Can solve in upstream or downstream direction ® upstream for subcritical ® downstream for supercritical ® Find a depth that satisfies the energy equation V12 V22 y1 + + S o ∆x = y2 + + S f ∆x 2g 2g
  • 46.
    What curves areavailable? 1.4 1.2 1.0 S1 elevation (m) 0.8 bottom S3 0.6 0.4 surface yc 0.2 yn 0.0 20 15 10 5 0 distance upstream (m) Is there a curve between yc and yn that decreases in depth in the upstream direction?
  • 47.
    Wave Celerity Vw y y+δy y V V+δV V-Vw V+δV-Vw y+δy unsteady flow steady flow 1 1 F1 = ρgy 2 F2 = ρg ( y + δy ) 2 2 2 F1 F2 Fr = F1 − F2 = 1 [ ρg y − ( y + δy ) 2 2 ] V-Vw V+δV-Vw 2
  • 48.
    Wave Celerity: Momentum Conservation Fr = M 2 − M 1 M 1 = − ρ (V − Vw ) y 2 Per unit width Fr = ρy ( V − Vw ) [ ( V + δV − Vw ) − ( V − Vw ) ] Fr = ρy ( V − Vw ) δV y V-Vw V+δV-Vw y+δy 1 [ ] ρg y 2 − ( y + δy ) 2 = ρy ( V − Vw ) δV 2 1 steady flow g [ − 2 yδy ] = y ( V − Vw ) δV 2 − gδy = ( V − Vw ) δV
  • 49.
    Wave Celerity y (V − Vw ) = ( y + δy )( V + δV − Vw ) Mass conservation yV − yVw = yV + δyV + yδV + δyδV − yVw − δyVw δy δV = −( V − Vw ) y y − gδy = ( V − Vw ) δV Momentum V-Vw V+δV-Vw y+δy δy gδy = ( V − Vw ) 2 y steady flow V V gy = ( V − Vw ) 2 c = V − Vw c = gy = Fr = yg c
  • 50.
    Wave Propagation ® Supercritical flow ® c<V ® waves only propagate downstream ® water doesn’t “know” what is happening downstream upstream ® _________ control ® Critical flow ® c=V ® Subcritical flow ® c>V ® waves propagate both upstream and downstream
  • 51.
    Most Efficient Hydraulic Sections ® A section that gives maximum discharge for a specified flow area ® Minimum perimeter per area ® No frictional losses on the free surface ® Analogy to pipe flow ® Best shapes ® best ® best with 2 sides ® best with 3 sides
  • 52.
    Why isn’t themost efficient hydraulic section the best design? Minimum area = least excavation only if top of channel is at grade Cost of liner Complexity of form work Erosion constraint - stability of side walls
  • 53.
    Open Channel FlowDischarge Measurements ® Discharge ® Weir ® broad crested ® sharp crested ® triangular ® Venturi Flume ® Spillways ® Sluice gates ® Velocity-Area-Integration
  • 54.
    Discharge Measurements 2 ® Sharp-Crested Q = Cd b 2 gH 3/ 2 Weir 3 8  θ  5/ 2 ® Triangular Weir Q= Cd 2 g tan H 15  2 3/ 2 ® Broad-Crested 2  Weir Q = Cd b g H 3  ® Sluice Gate Q = Cd by g 2 gy1 Explain the exponents of H!
  • 55.
    Summary ® Allthe complicationsof pipe flow plus additional parameter... _________________ free surface location ® Various descriptions of head loss term ® Chezy, Manning, Darcy-Weisbach 4 ® Importance of Froude Number 3 2 ® Fr>1 decrease in E gives increase in y y 1 ® Fr<1 decrease in E gives decrease in y 0 0 1 2 3 4 E ® Fr=1 standing waves (also min E given Q) ® Methods of calculating location of free surface
  • 56.
    Broad-crested Weir: Solution q = 3 gyc E yc yc=0.3 m q = (9.8m / s )( 0.3m ) 2 3 0.5 Broad-crested weir q = 0.5144m 2 / s 3 Q = qL = 1.54m 3 / s 2 E2 = yc = 0.45m yc = E 2 3 E1 = E2 + ∆y = 0.95m q2 E1 = y1 + 2gy12 q2 E1 − 2 ≅ y1 y1 = 0.935 2 gE1 H1 = y1 − 0.5m = 0.435
  • 57.
    Sluice Gate reservoir Sluice gate 2m 10 cm S = 0.005
  • 58.
    Summary/Overview ® Energy losses V= 8g S f Rh f ®Dimensional Analysis 1 2/3 1/2 V = R h So ®Empirical n
  • 59.
    V12 V22 Energy Equation y1 + 2g + So ∆x = y2 + 2g + S f ∆x V2 q2 Q2 ® Specific Energy E = y + = y+ 2 = y+ 2g 2 gy 2 gA2 ® Two depths with same energy! ®How do we know which depth4 is the right one? 3 ®Is the path to the new depth 2 y possible? 1 0 0 1 2 3 4 E
  • 60.
    Specific Energy: StepUp Short, smooth step with rise ∆y in channel Given upstream depth and 4 discharge find y2 4 3 3 2 y 2 1 y 1 0 0 1 ∆y 2 3 4 0 E 0 1 2 3 4 E E1 = E2 + ∆y Increase step height?
  • 61.
    Critical Depth ® Minimum energy for q ®When dE = 0 dy yc Vc2 ®When kinetic = potential! = 2 2g ®Fr=1 4 V q T Fr = c = =Q 3 yc g 3 gyc gA3 2 y ®Fr>1 = Supercritical 1 ®Fr<1 = Subcritical 0 0 1 2 3 4 E
  • 62.
    What next? ® Water surface profiles ® Rapidly varied flow ®A way to move from supercritical to subcritical flow (Hydraulic Jump) ® Gradually varied flow equations ® Surface profiles ® Direct step ® Standard step