SlideShare a Scribd company logo
CChhaapptteerr 1155 
MMuullttiiccaassttiinngg aanndd 
MMuullttiiccaasstt RRoouuttiinngg PPrroottooccoollss 
Objectives 
Upon completion you will be able to: 
• Differentiate between a unicast, multicast, and broadcast message 
• Know the many applications of multicasting 
• Understand multicast link state routing and MOSPF 
• Understand multicast link state routing and DVMRP 
• Understand the Core-Based Tree Protocol 
• Understand the Protocol Independent Multicast Protocols 
• Understand the MBONE concept 
TCP/IP Protocol Suite 1
15.1 UNICAST, MULTICAST, 
AND BROADCAST 
A message can be unicast, multicast, or broadcast. LLeett uuss ccllaarriiffyy tthheessee 
tteerrmmss aass tthheeyy rreellaattee ttoo tthhee IInntteerrnneett.. 
TThhee ttooppiiccss ddiissccuusssseedd iinn tthhiiss sseeccttiioonn iinncclluuddee:: 
UUnniiccaassttiinngg 
MMuullttiiccaassttiinngg 
BBrrooaaddccaassttiinngg 
MMuullttiiccaassttiinngg vveerrssuuss MMuullttiippllee UUnniiccaassttiinngg 
TCP/IP Protocol Suite 2
Figure 15.1 Unicasting 
TCP/IP Protocol Suite 3
NNoottee:: 
In unicasting, the router forwards the 
received packet through only 
one of its interfaces. 
TCP/IP Protocol Suite 4
Figure 15.2 Multicasting 
TCP/IP Protocol Suite 5
NNoottee:: 
In multicasting, the router may 
forward the received packet 
through several of its interfaces. 
TCP/IP Protocol Suite 6
Figure 15.3 Multicasting versus multiple unicasting 
TCP/IP Protocol Suite 7
NNoottee:: 
Emulation of multicasting through 
multiple unicasting is not efficient and 
may create long delays, particularly 
with a large group. 
TCP/IP Protocol Suite 8
15.2 MULTICAST APPLICATIONS 
Multicasting has many applications today such aass aacccceessss ttoo ddiissttrriibbuutteedd 
ddaattaabbaasseess,, iinnffoorrmmaattiioonn ddiisssseemmiinnaattiioonn,, tteelleeccoonnffeerreenncciinngg,, aanndd ddiissttaannccee 
lleeaarrnniinngg.. 
TThhee ttooppiiccss ddiissccuusssseedd iinn tthhiiss sseeccttiioonn iinncclluuddee:: 
AAcccceessss ttoo DDiissttrriibbuutteedd DDaattaabbaasseess 
IInnffoorrmmaattiioonn DDiisssseemmiinnaattiioonn 
DDiisssseemmiinnaattiioonn ooff NNeewwss 
TTeelleeccoonnffeerreenncciinngg 
DDiissttaannccee LLeeaarrnniinngg 
TCP/IP Protocol Suite 9
15.3 MULTICAST ROUTING 
In this section, we first discuss the idea of optimal rroouuttiinngg,, ccoommmmoonn iinn 
aallll mmuullttiiccaasstt pprroottooccoollss.. WWee tthheenn ggiivvee aann oovveerrvviieeww ooff mmuullttiiccaasstt rroouuttiinngg 
pprroottooccoollss.. 
TThhee ttooppiiccss ddiissccuusssseedd iinn tthhiiss sseeccttiioonn iinncclluuddee:: 
OOppttiimmaall RRoouuttiinngg:: SShhoorrtteesstt PPaatthh TTrreeeess 
RRoouuttiinngg PPrroottooccoollss 
TCP/IP Protocol Suite 10
NNoottee:: 
In unicast routing, each router in the 
domain has a table that defines a 
shortest path tree to possible 
destinations. 
TCP/IP Protocol Suite 11
Figure 15.4 Shortest path tree in unicast routing 
TCP/IP Protocol Suite 12
NNoottee:: 
In multicast routing, each involved 
router needs to construct a shortest 
path tree for each group. 
TCP/IP Protocol Suite 13
NNoottee:: 
In the source-based tree approach, 
each router needs to have one shortest 
path tree for each group. 
TCP/IP Protocol Suite 14
Figure 15.5 Source-based tree approach 
TCP/IP Protocol Suite 15
Figure 15.6 Group-shared tree approach 
TCP/IP Protocol Suite 16
NNoottee:: 
In the group-shared tree approach, 
only the core router, which has a 
shortest path tree for each group, is 
involved in multicasting. 
TCP/IP Protocol Suite 17
Figure 15.7 Taxonomy of common multicast protocols 
TCP/IP Protocol Suite 18
15.4 MULTICAST LINK STATE 
ROUTING: MOSPF 
In this section, we briefly discuss multicast link ssttaattee rroouuttiinngg aanndd iittss 
iimmpplleemmeennttaattiioonn iinn tthhee IInntteerrnneett,, MMOOSSPPFF.. 
TThhee ttooppiiccss ddiissccuusssseedd iinn tthhiiss sseeccttiioonn iinncclluuddee:: 
MMuullttiiccaasstt LLiinnkk SSttaattee RRoouuttiinngg 
MMOOSSPPFF 
TCP/IP Protocol Suite 19
NNoottee:: 
Multicast link state routing uses the 
source-based tree approach. 
TCP/IP Protocol Suite 20
15.5 MULTICAST DISTANCE 
VECTOR: DVMRP 
In this section, we briefly discuss multicast distance vveeccttoorr rroouuttiinngg aanndd 
iittss iimmpplleemmeennttaattiioonn iinn tthhee IInntteerrnneett,, DDVVMMRRPP.. 
TThhee ttooppiiccss ddiissccuusssseedd iinn tthhiiss sseeccttiioonn iinncclluuddee:: 
MMuullttiiccaasstt DDiissttaannccee VVeeccttoorr RRoouuttiinngg 
DDVVMMRRPP 
TCP/IP Protocol Suite 21
NNoottee:: 
Flooding broadcasts packets, but 
creates loops in the systems. 
TCP/IP Protocol Suite 22
NNoottee:: 
RPF eliminates the loop in the 
flooding process. 
TCP/IP Protocol Suite 23
Figure 15.8 RPF 
TCP/IP Protocol Suite 24
Figure 15.9 Problem with RPF 
TCP/IP Protocol Suite 25
Figure 15.10 RPF versus RPB 
TCP/IP Protocol Suite 26
NNoottee:: 
RPB creates a shortest path broadcast 
tree from the source to each destination. 
It guarantees that each destination 
receives one and only one 
copy of the packet. 
TCP/IP Protocol Suite 27
Figure 15.11 RPF, RPB, and RPM 
TCP/IP Protocol Suite 28
NNoottee:: 
RPM adds pruning and grafting to 
RPB to create a multicast shortest path 
tree that supports dynamic 
membership changes. 
TCP/IP Protocol Suite 29
15.6 CBT 
The Core-Based Tree (CBT) protocol is a group-sshhaarreedd pprroottooccooll tthhaatt 
uusseess aa ccoorree aass tthhee rroooott ooff tthhee ttrreeee.. TThhee aauuttoonnoommoouuss ssyysstteemm iiss ddiivviiddeedd iinnttoo 
rreeggiioonnss aanndd aa ccoorree ((cceenntteerr rroouutteerr oorr rreennddeezzvvoouuss rroouutteerr)) iiss cchhoosseenn ffoorr 
eeaacchh rreeggiioonn.. 
TThhee ttooppiiccss ddiissccuusssseedd iinn tthhiiss sseeccttiioonn iinncclluuddee:: 
FFoorrmmaattiioonn ooff tthhee TTrreeee 
SSeennddiinngg MMuullttiiccaasstt PPaacckkeettss 
SSeelleeccttiinngg tthhee RReennddeezzvvoouuss RRoouutteerr 
TCP/IP Protocol Suite 30
Figure 15.12 Group-shared tree with rendezvous router 
TCP/IP Protocol Suite 31
Figure 15.13 Sending a multicast packet to the rendezvous router 
TCP/IP Protocol Suite 32
NNoottee:: 
In CBT, the source sends the multicast 
packet (encapsulated in a unicast packet) 
to the core router. 
The core router decapsulates the packet 
and forwards it to all interested 
interfaces. 
TCP/IP Protocol Suite 33
15.7 PIM 
Protocol Independent Multicast (PIM) is the nnaammee ggiivveenn ttoo ttwwoo 
iinnddeeppeennddeenntt mmuullttiiccaasstt rroouuttiinngg pprroottooccoollss:: PPrroottooccooll IInnddeeppeennddeenntt 
MMuullttiiccaasstt,, DDeennssee MMooddee ((PPIIMM--DDMM)) aanndd PPrroottooccooll IInnddeeppeennddeenntt MMuullttiiccaasstt,, 
SSppaarrssee MMooddee ((PPIIMM--SSMM)).. 
TThhee ttooppiiccss ddiissccuusssseedd iinn tthhiiss sseeccttiioonn iinncclluuddee:: 
PPIIMM--DDMM 
PPIIMM--SSMM 
TCP/IP Protocol Suite 34
NNoottee:: 
PIM-DM is used in a dense multicast 
environment, such as a LAN. 
TCP/IP Protocol Suite 35
NNoottee:: 
PIM-DM uses RPF and 
pruning/grafting strategies to handle 
multicasting. 
However, it is independent from the 
underlying unicast protocol. 
TCP/IP Protocol Suite 36
NNoottee:: 
PIM-SM is used in a sparse multicast 
environment such as a WAN. 
TCP/IP Protocol Suite 37
NNoottee:: 
PIM-SM is similar to CBT but uses a 
simpler procedure. 
TCP/IP Protocol Suite 38
15.8 MBONE 
A multicast router may not find another multicast rroouutteerr iinn tthhee 
nneeiigghhbboorrhhoooodd ttoo ffoorrwwaarrdd tthhee mmuullttiiccaasstt ppaacckkeett.. AA ssoolluuttiioonn ffoorr tthhiiss 
pprroobblleemm iiss ttuunnnneelliinngg.. WWee mmaakkee aa mmuullttiiccaasstt bbaacckkbboonnee ((MMBBOONNEE)) oouutt ooff 
tthheessee iissoollaatteedd rroouutteerrss uussiinngg tthhee ccoonncceepptt ooff ttuunnnneelliinngg.. 
TCP/IP Protocol Suite 39
Figure 15.14 Logical tunneling 
TCP/IP Protocol Suite 40
Figure 15.15 MBONE 
TCP/IP Protocol Suite 41

More Related Content

Viewers also liked

Lecture 9 electronic_mail_representation_and_transfer
Lecture 9 electronic_mail_representation_and_transferLecture 9 electronic_mail_representation_and_transfer
Lecture 9 electronic_mail_representation_and_transfer
Serious_SamSoul
 
Chap 25 multimedia
Chap 25 multimediaChap 25 multimedia
Chap 25 multimedia
Noctorous Jamal
 
Chap 22 www http
Chap 22 www httpChap 22 www http
Chap 22 www http
Noctorous Jamal
 
Chap 08 ip
Chap 08 ipChap 08 ip
Chap 08 ip
Noctorous Jamal
 
Chap 02 osi model
Chap 02 osi modelChap 02 osi model
Chap 02 osi model
Noctorous Jamal
 
Chap 27 next generation i pv6
Chap 27 next generation i pv6Chap 27 next generation i pv6
Chap 27 next generation i pv6
Noctorous Jamal
 
Chap 11 udp
Chap 11 udpChap 11 udp
Chap 11 udp
Noctorous Jamal
 
Chap 21 snmp
Chap 21 snmpChap 21 snmp
Chap 21 snmp
Noctorous Jamal
 
Tutorial on dhcp
Tutorial on dhcp Tutorial on dhcp
Tutorial on dhcp
Salah Amean
 
Chap 04 ip addresses classful
Chap 04 ip addresses classfulChap 04 ip addresses classful
Chap 04 ip addresses classful
Noctorous Jamal
 
Chap 17 dns
Chap 17 dnsChap 17 dns
Chap 17 dns
Noctorous Jamal
 
Chap 12 tcp
Chap 12 tcpChap 12 tcp
Chap 12 tcp
Noctorous Jamal
 
Chap 09 icmp
Chap 09 icmpChap 09 icmp
Chap 09 icmp
Noctorous Jamal
 
Chap 28 security
Chap 28 securityChap 28 security
Chap 28 security
Noctorous Jamal
 
Chap 20 smtp, pop, imap
Chap 20 smtp, pop, imapChap 20 smtp, pop, imap
Chap 20 smtp, pop, imap
Noctorous Jamal
 
Congestion control in tcp
Congestion control in tcpCongestion control in tcp
Congestion control in tcp
samarai_apoc
 
IP Multicasting
IP MulticastingIP Multicasting

Viewers also liked (17)

Lecture 9 electronic_mail_representation_and_transfer
Lecture 9 electronic_mail_representation_and_transferLecture 9 electronic_mail_representation_and_transfer
Lecture 9 electronic_mail_representation_and_transfer
 
Chap 25 multimedia
Chap 25 multimediaChap 25 multimedia
Chap 25 multimedia
 
Chap 22 www http
Chap 22 www httpChap 22 www http
Chap 22 www http
 
Chap 08 ip
Chap 08 ipChap 08 ip
Chap 08 ip
 
Chap 02 osi model
Chap 02 osi modelChap 02 osi model
Chap 02 osi model
 
Chap 27 next generation i pv6
Chap 27 next generation i pv6Chap 27 next generation i pv6
Chap 27 next generation i pv6
 
Chap 11 udp
Chap 11 udpChap 11 udp
Chap 11 udp
 
Chap 21 snmp
Chap 21 snmpChap 21 snmp
Chap 21 snmp
 
Tutorial on dhcp
Tutorial on dhcp Tutorial on dhcp
Tutorial on dhcp
 
Chap 04 ip addresses classful
Chap 04 ip addresses classfulChap 04 ip addresses classful
Chap 04 ip addresses classful
 
Chap 17 dns
Chap 17 dnsChap 17 dns
Chap 17 dns
 
Chap 12 tcp
Chap 12 tcpChap 12 tcp
Chap 12 tcp
 
Chap 09 icmp
Chap 09 icmpChap 09 icmp
Chap 09 icmp
 
Chap 28 security
Chap 28 securityChap 28 security
Chap 28 security
 
Chap 20 smtp, pop, imap
Chap 20 smtp, pop, imapChap 20 smtp, pop, imap
Chap 20 smtp, pop, imap
 
Congestion control in tcp
Congestion control in tcpCongestion control in tcp
Congestion control in tcp
 
IP Multicasting
IP MulticastingIP Multicasting
IP Multicasting
 

More from Noctorous Jamal

Chap 24 mobile ip
Chap 24 mobile ipChap 24 mobile ip
Chap 24 mobile ip
Noctorous Jamal
 
Chap 23 ip over atm
Chap 23 ip over atmChap 23 ip over atm
Chap 23 ip over atm
Noctorous Jamal
 
Chap 19 ftp & tftp
Chap 19 ftp & tftpChap 19 ftp & tftp
Chap 19 ftp & tftp
Noctorous Jamal
 
Chap 14 rip, ospf
Chap 14 rip, ospfChap 14 rip, ospf
Chap 14 rip, ospf
Noctorous Jamal
 
Chap 13 stream control transmission protocol
Chap 13 stream control transmission protocolChap 13 stream control transmission protocol
Chap 13 stream control transmission protocol
Noctorous Jamal
 
Chap 10 igmp
Chap 10 igmpChap 10 igmp
Chap 10 igmp
Noctorous Jamal
 
Chap 07 arp & rarp
Chap 07 arp & rarpChap 07 arp & rarp
Chap 07 arp & rarp
Noctorous Jamal
 
Chap 06 delivery and routing of ip packets
Chap 06 delivery and routing of ip packetsChap 06 delivery and routing of ip packets
Chap 06 delivery and routing of ip packets
Noctorous Jamal
 
Chap 05 ip addresses classfless
Chap 05 ip addresses classflessChap 05 ip addresses classfless
Chap 05 ip addresses classfless
Noctorous Jamal
 
Lecture 8 The Communication System Finalterm Slides
Lecture 8  The Communication System Finalterm SlidesLecture 8  The Communication System Finalterm Slides
Lecture 8 The Communication System Finalterm Slides
Noctorous Jamal
 
Lecture 7 The Communication System Finalterm Slides
Lecture 7  The Communication System Finalterm SlidesLecture 7  The Communication System Finalterm Slides
Lecture 7 The Communication System Finalterm Slides
Noctorous Jamal
 
Lecture 6 The Communication System Finalterm Slides
Lecture 6  The Communication System Finalterm SlidesLecture 6  The Communication System Finalterm Slides
Lecture 6 The Communication System Finalterm Slides
Noctorous Jamal
 

More from Noctorous Jamal (12)

Chap 24 mobile ip
Chap 24 mobile ipChap 24 mobile ip
Chap 24 mobile ip
 
Chap 23 ip over atm
Chap 23 ip over atmChap 23 ip over atm
Chap 23 ip over atm
 
Chap 19 ftp & tftp
Chap 19 ftp & tftpChap 19 ftp & tftp
Chap 19 ftp & tftp
 
Chap 14 rip, ospf
Chap 14 rip, ospfChap 14 rip, ospf
Chap 14 rip, ospf
 
Chap 13 stream control transmission protocol
Chap 13 stream control transmission protocolChap 13 stream control transmission protocol
Chap 13 stream control transmission protocol
 
Chap 10 igmp
Chap 10 igmpChap 10 igmp
Chap 10 igmp
 
Chap 07 arp & rarp
Chap 07 arp & rarpChap 07 arp & rarp
Chap 07 arp & rarp
 
Chap 06 delivery and routing of ip packets
Chap 06 delivery and routing of ip packetsChap 06 delivery and routing of ip packets
Chap 06 delivery and routing of ip packets
 
Chap 05 ip addresses classfless
Chap 05 ip addresses classflessChap 05 ip addresses classfless
Chap 05 ip addresses classfless
 
Lecture 8 The Communication System Finalterm Slides
Lecture 8  The Communication System Finalterm SlidesLecture 8  The Communication System Finalterm Slides
Lecture 8 The Communication System Finalterm Slides
 
Lecture 7 The Communication System Finalterm Slides
Lecture 7  The Communication System Finalterm SlidesLecture 7  The Communication System Finalterm Slides
Lecture 7 The Communication System Finalterm Slides
 
Lecture 6 The Communication System Finalterm Slides
Lecture 6  The Communication System Finalterm SlidesLecture 6  The Communication System Finalterm Slides
Lecture 6 The Communication System Finalterm Slides
 

Chap 15 multicasting

  • 1. CChhaapptteerr 1155 MMuullttiiccaassttiinngg aanndd MMuullttiiccaasstt RRoouuttiinngg PPrroottooccoollss Objectives Upon completion you will be able to: • Differentiate between a unicast, multicast, and broadcast message • Know the many applications of multicasting • Understand multicast link state routing and MOSPF • Understand multicast link state routing and DVMRP • Understand the Core-Based Tree Protocol • Understand the Protocol Independent Multicast Protocols • Understand the MBONE concept TCP/IP Protocol Suite 1
  • 2. 15.1 UNICAST, MULTICAST, AND BROADCAST A message can be unicast, multicast, or broadcast. LLeett uuss ccllaarriiffyy tthheessee tteerrmmss aass tthheeyy rreellaattee ttoo tthhee IInntteerrnneett.. TThhee ttooppiiccss ddiissccuusssseedd iinn tthhiiss sseeccttiioonn iinncclluuddee:: UUnniiccaassttiinngg MMuullttiiccaassttiinngg BBrrooaaddccaassttiinngg MMuullttiiccaassttiinngg vveerrssuuss MMuullttiippllee UUnniiccaassttiinngg TCP/IP Protocol Suite 2
  • 3. Figure 15.1 Unicasting TCP/IP Protocol Suite 3
  • 4. NNoottee:: In unicasting, the router forwards the received packet through only one of its interfaces. TCP/IP Protocol Suite 4
  • 5. Figure 15.2 Multicasting TCP/IP Protocol Suite 5
  • 6. NNoottee:: In multicasting, the router may forward the received packet through several of its interfaces. TCP/IP Protocol Suite 6
  • 7. Figure 15.3 Multicasting versus multiple unicasting TCP/IP Protocol Suite 7
  • 8. NNoottee:: Emulation of multicasting through multiple unicasting is not efficient and may create long delays, particularly with a large group. TCP/IP Protocol Suite 8
  • 9. 15.2 MULTICAST APPLICATIONS Multicasting has many applications today such aass aacccceessss ttoo ddiissttrriibbuutteedd ddaattaabbaasseess,, iinnffoorrmmaattiioonn ddiisssseemmiinnaattiioonn,, tteelleeccoonnffeerreenncciinngg,, aanndd ddiissttaannccee lleeaarrnniinngg.. TThhee ttooppiiccss ddiissccuusssseedd iinn tthhiiss sseeccttiioonn iinncclluuddee:: AAcccceessss ttoo DDiissttrriibbuutteedd DDaattaabbaasseess IInnffoorrmmaattiioonn DDiisssseemmiinnaattiioonn DDiisssseemmiinnaattiioonn ooff NNeewwss TTeelleeccoonnffeerreenncciinngg DDiissttaannccee LLeeaarrnniinngg TCP/IP Protocol Suite 9
  • 10. 15.3 MULTICAST ROUTING In this section, we first discuss the idea of optimal rroouuttiinngg,, ccoommmmoonn iinn aallll mmuullttiiccaasstt pprroottooccoollss.. WWee tthheenn ggiivvee aann oovveerrvviieeww ooff mmuullttiiccaasstt rroouuttiinngg pprroottooccoollss.. TThhee ttooppiiccss ddiissccuusssseedd iinn tthhiiss sseeccttiioonn iinncclluuddee:: OOppttiimmaall RRoouuttiinngg:: SShhoorrtteesstt PPaatthh TTrreeeess RRoouuttiinngg PPrroottooccoollss TCP/IP Protocol Suite 10
  • 11. NNoottee:: In unicast routing, each router in the domain has a table that defines a shortest path tree to possible destinations. TCP/IP Protocol Suite 11
  • 12. Figure 15.4 Shortest path tree in unicast routing TCP/IP Protocol Suite 12
  • 13. NNoottee:: In multicast routing, each involved router needs to construct a shortest path tree for each group. TCP/IP Protocol Suite 13
  • 14. NNoottee:: In the source-based tree approach, each router needs to have one shortest path tree for each group. TCP/IP Protocol Suite 14
  • 15. Figure 15.5 Source-based tree approach TCP/IP Protocol Suite 15
  • 16. Figure 15.6 Group-shared tree approach TCP/IP Protocol Suite 16
  • 17. NNoottee:: In the group-shared tree approach, only the core router, which has a shortest path tree for each group, is involved in multicasting. TCP/IP Protocol Suite 17
  • 18. Figure 15.7 Taxonomy of common multicast protocols TCP/IP Protocol Suite 18
  • 19. 15.4 MULTICAST LINK STATE ROUTING: MOSPF In this section, we briefly discuss multicast link ssttaattee rroouuttiinngg aanndd iittss iimmpplleemmeennttaattiioonn iinn tthhee IInntteerrnneett,, MMOOSSPPFF.. TThhee ttooppiiccss ddiissccuusssseedd iinn tthhiiss sseeccttiioonn iinncclluuddee:: MMuullttiiccaasstt LLiinnkk SSttaattee RRoouuttiinngg MMOOSSPPFF TCP/IP Protocol Suite 19
  • 20. NNoottee:: Multicast link state routing uses the source-based tree approach. TCP/IP Protocol Suite 20
  • 21. 15.5 MULTICAST DISTANCE VECTOR: DVMRP In this section, we briefly discuss multicast distance vveeccttoorr rroouuttiinngg aanndd iittss iimmpplleemmeennttaattiioonn iinn tthhee IInntteerrnneett,, DDVVMMRRPP.. TThhee ttooppiiccss ddiissccuusssseedd iinn tthhiiss sseeccttiioonn iinncclluuddee:: MMuullttiiccaasstt DDiissttaannccee VVeeccttoorr RRoouuttiinngg DDVVMMRRPP TCP/IP Protocol Suite 21
  • 22. NNoottee:: Flooding broadcasts packets, but creates loops in the systems. TCP/IP Protocol Suite 22
  • 23. NNoottee:: RPF eliminates the loop in the flooding process. TCP/IP Protocol Suite 23
  • 24. Figure 15.8 RPF TCP/IP Protocol Suite 24
  • 25. Figure 15.9 Problem with RPF TCP/IP Protocol Suite 25
  • 26. Figure 15.10 RPF versus RPB TCP/IP Protocol Suite 26
  • 27. NNoottee:: RPB creates a shortest path broadcast tree from the source to each destination. It guarantees that each destination receives one and only one copy of the packet. TCP/IP Protocol Suite 27
  • 28. Figure 15.11 RPF, RPB, and RPM TCP/IP Protocol Suite 28
  • 29. NNoottee:: RPM adds pruning and grafting to RPB to create a multicast shortest path tree that supports dynamic membership changes. TCP/IP Protocol Suite 29
  • 30. 15.6 CBT The Core-Based Tree (CBT) protocol is a group-sshhaarreedd pprroottooccooll tthhaatt uusseess aa ccoorree aass tthhee rroooott ooff tthhee ttrreeee.. TThhee aauuttoonnoommoouuss ssyysstteemm iiss ddiivviiddeedd iinnttoo rreeggiioonnss aanndd aa ccoorree ((cceenntteerr rroouutteerr oorr rreennddeezzvvoouuss rroouutteerr)) iiss cchhoosseenn ffoorr eeaacchh rreeggiioonn.. TThhee ttooppiiccss ddiissccuusssseedd iinn tthhiiss sseeccttiioonn iinncclluuddee:: FFoorrmmaattiioonn ooff tthhee TTrreeee SSeennddiinngg MMuullttiiccaasstt PPaacckkeettss SSeelleeccttiinngg tthhee RReennddeezzvvoouuss RRoouutteerr TCP/IP Protocol Suite 30
  • 31. Figure 15.12 Group-shared tree with rendezvous router TCP/IP Protocol Suite 31
  • 32. Figure 15.13 Sending a multicast packet to the rendezvous router TCP/IP Protocol Suite 32
  • 33. NNoottee:: In CBT, the source sends the multicast packet (encapsulated in a unicast packet) to the core router. The core router decapsulates the packet and forwards it to all interested interfaces. TCP/IP Protocol Suite 33
  • 34. 15.7 PIM Protocol Independent Multicast (PIM) is the nnaammee ggiivveenn ttoo ttwwoo iinnddeeppeennddeenntt mmuullttiiccaasstt rroouuttiinngg pprroottooccoollss:: PPrroottooccooll IInnddeeppeennddeenntt MMuullttiiccaasstt,, DDeennssee MMooddee ((PPIIMM--DDMM)) aanndd PPrroottooccooll IInnddeeppeennddeenntt MMuullttiiccaasstt,, SSppaarrssee MMooddee ((PPIIMM--SSMM)).. TThhee ttooppiiccss ddiissccuusssseedd iinn tthhiiss sseeccttiioonn iinncclluuddee:: PPIIMM--DDMM PPIIMM--SSMM TCP/IP Protocol Suite 34
  • 35. NNoottee:: PIM-DM is used in a dense multicast environment, such as a LAN. TCP/IP Protocol Suite 35
  • 36. NNoottee:: PIM-DM uses RPF and pruning/grafting strategies to handle multicasting. However, it is independent from the underlying unicast protocol. TCP/IP Protocol Suite 36
  • 37. NNoottee:: PIM-SM is used in a sparse multicast environment such as a WAN. TCP/IP Protocol Suite 37
  • 38. NNoottee:: PIM-SM is similar to CBT but uses a simpler procedure. TCP/IP Protocol Suite 38
  • 39. 15.8 MBONE A multicast router may not find another multicast rroouutteerr iinn tthhee nneeiigghhbboorrhhoooodd ttoo ffoorrwwaarrdd tthhee mmuullttiiccaasstt ppaacckkeett.. AA ssoolluuttiioonn ffoorr tthhiiss pprroobblleemm iiss ttuunnnneelliinngg.. WWee mmaakkee aa mmuullttiiccaasstt bbaacckkbboonnee ((MMBBOONNEE)) oouutt ooff tthheessee iissoollaatteedd rroouutteerrss uussiinngg tthhee ccoonncceepptt ooff ttuunnnneelliinngg.. TCP/IP Protocol Suite 39
  • 40. Figure 15.14 Logical tunneling TCP/IP Protocol Suite 40
  • 41. Figure 15.15 MBONE TCP/IP Protocol Suite 41