SlideShare a Scribd company logo
Slide 1-1
Key questions for this chapter
•What makes semiconductors so special?
•How do electrons arrange themselves (in energy) in an electronic system?
•What is the formal definition of thermal equilibrium? What are some of its
consequence?
•What are these “energy band diagrams”?
•What is this “Fermi energy”?
•What are these “holes”
Slide 1-2
1.1 Silicon Crystal Structure
• Crystalline solid = elemental
atomic arrangement, or unit
cell, repeated ad infinitum in
space in three dimensions.
• Unit cell of silicon crystal is
cubic.
• Each Si atom has 4 nearest
neighbors.
Chapter 1 Electrons and Holes
in Semiconductors
• Si lattice constant: 0.54 nm
• Si atomic spacing: 0.24 nm
• Si atomic density: 5.0 x 1022 cm-3
Slide 1-3
Silicon Wafers and Crystal Planes
• Silicon wafers are usually
cut along the (100) plane
with a flat or notch to help
orient the wafer during IC
fabrication.
• The standard notation for
crystal planes is based on
the cubic unit cell.
(100) (011) (111)
x
y y y
z z z
x x
Si (111) plane
• Miller indices: symbol [abc]
 The related symbol [abc]
indicates the direction in the
crystal normal to the (abc) plane.
For example, when an electron travels in the
[100] direction, it travel perpendicular to the
(100) plane, i.e., along the x axis
Slide 1-4
1.2 Bond Model of Electrons and Holes
Silicon crystal in
a two-dimensional
representation.
Si Si Si
Si Si Si
Si Si Si
 When an electron breaks loose and becomes a conduction
electron, a hole is also created.
(a) (b)
Si Si Si
Si Si Si
Si Si Si
Si Si Si
Si Si Si
Si Si Si
Slide 1-5
Dopants in Silicon
Si Si Si
Si Si
Si Si Si
Si Si Si
Si Si
Si Si Si
As B
As, a Group V element, introduces conduction electrons and creates
N-type silicon,
B, a Group III element, introduces holes and creates P-type silicon,
and is called an acceptor.
Donors and acceptors are known
as dopants. Dopant ionization
energy ~50meV (very low).
and is called a donor.
Hydrogen: E
ion
m0 q4
13.6 eV
=
=
8e0
2h2
N-type
dopant
P-type
dopant
Slide 1-6
GaAs, III-V Compound Semiconductors, and Their Dopants
As As
Ga
Ga
GaAs has the same crystal structure as Si.
GaAs, GaP, GaN are III-V compound semiconductors, important for
optoelectronics.
Wich group of elements are candidates for donors? acceptors?
Ga
As
As
Ga Ga
Slide 1-7
1.3 Energy Band Model
.
Slide 1-8
1.3.1 Energy Band Diagram
Conduction band Ec
Ev
Eg
Band gap
Valence band
Energy band diagram shows the bottom edge of conduction band,
Ec , and top edge of valence band, Ev .
Ec and Ev are separated by the band gap energy, Eg .
Slide 1-9
Measuring the Band Gap Energy by Light Absorption
photons
photon energy: h v > Eg
Ec
Ev
Eg
electron
hole
Bandgap energies of selected semiconductors
• Eg can be determined from the minimum energy (hn) of
photons that are absorbed by the semiconductor.
Semi-
conductor InSb Ge Si GaAs GaP ZnSe Diamond
Eg (eV) 0.18 0.67 1.12 1.42 2.25 2.7 6
Slide 1-10
1.3.2 Donor and Acceptor in the Band Model
Conduction Band Ec
Ev
Valence Band
Donor Level
Acceptor Level
Ed
Ea
Donor ionization energy
Acceptor ionization energy
Ionization energy of selected donors and acceptors in silicon
Acceptors
Dopant Sb P As B Al In
Ionization energy, E c –E d or E a –E v (meV) 39 44 54 45 57 160
Donors
Slide 1-11
1.4 Semiconductors, Insulators, and Conductors
Totally filled bands and totally empty bands do not allow
Metal conduction band is half-filled.
Ec
Ev
Eg=1.1 eV
Ec
Eg= 9 eV empty
Si (Semiconductor) SiO
2
(Insulator) Conductor
Ec
filled
Top of
conduction band
Ev
current flow. (Just as there is no motion of liquid in a
totally filled or totally empty bottle.)
.
Semiconductors have lower Eg's than insulators and can be
doped.
Slide 1-12
1.5 Electrons and Holes
Both electrons and holes tend to seek their lowest
Holes float up like bubbles in water.
Electrons tend to fall in the energy band diagram.
Ec
Ev
electron kinetic energy
hole kinetic energy
increasing
electron
energy
increasing
hole
energy
energy positions.
The electron wave function is the solution of the three
dimensional Schrodinger wave equation
Slide 1-13


 


 )
(
2m
2
0
2
r
V

The solution is of the form exp( k r)
k = wave vector = 2π/electron wavelength
 
1.5.1 Effective Mass
m
F
dk
E
d
q


 2
2
2
on
accelerati

e
2
2
2
/
mass
effective
dk
E
d


For each k, there is a corresponding E.
Slide 1-14
1.5.1 Effective Mass
In an electric field, E, an electron or a hole accelerates.
Electron and hole effective masses
electrons
holes
Si Ge GaAs InAs AlAs
mn/m0 0.26 0.12 0.068 0.023 2
mp/m0 0.39 0.3 0.5 0.3 0.3
Slide 1-15
1.6 Density of States
E
Dc
Dv
Ec
Ev
D
Ec
Ev
DE








D
D
 3
cm
eV
1
volume
in
states
of
number
)
(
E
E
E
Dc
 
2
8
)
( 3
h
E
E
m
m
E
D c
n
n
c



 
2
8
)
( 3
h
E
E
m
m
E
D
v
p
p
v


 Derived in Appendix I
If we count the number of
states in a small range of
energy, ΔE, in the
conduction band, we can
find the density of states:
Slide 1-16
1.7 Thermal Equilibrium and the Fermi Function
1.7.1 An Analogy for Thermal Equilibrium
There is a certain probability for the electrons in the
conduction band to occupy high-energy states under
the agitation of thermal energy.
Dish
Vibrating Table
Sand particles
Slide 1-17
1.7.2 Fermi Function–The Probability of an Energy State
Being Occupied by an Electron
Remember: there is only
one Fermi-level in a system
at equilibrium.
kT
E
E f
e
E
f /
)
(
1
1
)
( 


 Ef is called the Fermi energy or the
Fermi level.
 The probability of a state at energy E being
occupied by an electron.
  kT
E
E f
e
E
f



)
( kT
E
E f 

  kT
E
E f
e
E
f



1
)
( kT
E
E f 


Boltzmann approximation:
f(E)
0.5 1
Ef
Ef – kT
Ef – 2kT
Ef – 3kT
Ef + kT
E
f
Ef + 2kT
Ef + 3kT
E
  kT
E
E f
e
E
f



)
(
  kT
E
E f
e
E
f



1
)
(
Slide 1-18
1.8 Electron and Hole Concentrations


band
conduction
of
top
)
(
)
(
c
E
c dE
E
D
E
f
n
   
)
(
2
8
0
3
Ec
E
d
e
E
E
e
h
m
m kT
E
E
Ec
E
c
kT
E
E
n
n c
f
c


 






 
dE
e
E
E
h
m
m
n
kT
E
E
E
c
n
n f
c



 
 3
2
8
1.8.1 Derivation of n and p from D(E) and f(E)
Slide 1-19
Electron and Hole Concentrations
Remember: the closer Ef moves up to Nc, the larger n is;
the closer Ef moves down to Ev , the larger p is.
For Si, Nc = 2.8 ´1019
cm-3
and Nv = 1.04´1019
cm-3
.
kT
E
E
c
f
c
e
N
n
/
)
( 


2
3
2
2
2 






h
kT
m
N n
c

kT
E
E
v
v
f
e
N
p
/
)
( 


2
3
2
2
2 






h
kT
m
N
p
v

Nc is called the effective
density of states (of the
conduction band) .
Nv is called the effective
density of states of the
valence band.
Slide 1-20
Slide 1-21
Slide 1-22
1.8.2 The Fermi Level and Carrier Concentrations
kT
E
E
c
f
c
e
N
n
/
)
( 


    eV
6
14
.
0
10
/
10
8
.
2
ln
026
.
0
ln 17
19




 n
N
kT
E
E c
f
c
    eV
31
.
0
10
/
10
04
.
1
ln
026
.
0
ln 14
19




 p
N
kT
E
E v
v
f
Ec
Ef
Ev
0.146 eV
(a)
0.31 eV
Ec
Ef
Ev
(b)
Where is Ef for n =1017 cm-3? And for p = 1014 cm-3?
Solution: (a)
(b) For p = 1014cm-3, from Eq.(1.8.8),
Slide 1-23
1.8.2 The Fermi Level and Carrier Concentrations
1013
1014
1015
1016
1017
1018
1019
1020
Ev
Ec
Na or Nd (cm-3
)
kT
E
E
c
f
c
e
N
n
/
)
( 


 
n
N
kT
E
E c
c
f ln


Slide 1-24
1.8.3 The np Product and the Intrinsic Carrier Concentration
Slide 1-25
Question: What is the hole concentration in an N-type semiconductor
with 1015 cm-3 of donors?
Solution: n = 1015 cm-3.
After increasing T by 60C, n remains the same at 1015 cm-3 while p
increases by about a factor of 2300 because .
Question: What is n if p = 1017cm-3 in a P-type silicon wafer?
Solution:
EXAMPLE: Carrier Concentrations
3
-
5
3
15
-3
20
2
cm
10
cm
10
cm
10


 
n
n
p i
kT
E
i
g
e
n
/
2 

3
-
3
3
17
-3
20
2
cm
10
cm
10
cm
10


 
p
n
n i
Slide 1-26
EXAMPLE: Complete ionization of the dopant atoms
Nd = 1017 cm-3. What fraction of the donors are not ionized?
Solution: First assume that all the donors are ionized.
Probability of not
being ionized
04
.
0
2
1
1
1
2
1
1
1
meV
26
/
)
meV
)
45
146
((
/
)
(



 

e
e
kT
E
E f
d
Therefore, it is reasonable to assume complete ionization, i.e., n = Nd .
meV
146
cm
10 3
17




 
c
f
d E
E
N
n
Ec
Ef
Ev
146 meV
Ed
45meV
1.9 General Theory of n and p

Slide 1-27
2
i
n
np 
d
a N
p
N
n 


Charge neutrality:
2
/
1
2
2
2
2 













 


 i
d
a
d
a
n
N
N
N
N
p
2
/
1
2
2
2
2 













 


 i
a
d
a
d
n
N
N
N
N
n
1.9 General Theory of n and p
Slide 1-28
I. (i.e., N-type)
If ,
II. (i.e., P-type)
If ,
a
d N
N
n 

n
n
p i
2

i
a
d n
N
N 

a
d N
N  d
N
n  d
i N
n
p
2

and
i
d
a n
N
N 
 d
a N
N
p 

p
n
n i
2

d
a N
N  a
N
p  a
i N
n
n
2

and
1.9 General Theory of on n and p
Slide 1-29
EXAMPLE: Dopant Compensation
What are n and p in Si with (a) Nd = 61016 cm-3 and Na = 21016 cm-3
and (b) additional 61016 cm-3 of Na?
(a)
(b) Na = 21016 + 61016 = 81016 cm-3 > Nd
3
16
cm
10
4 



 a
d N
N
n
3
3
16
20
2
cm
10
5
.
2
10
4
/
10
/ 




 n
n
p i
3
16
16
16
cm
10
2
10
6
10
8 







 d
a N
N
p
3
3
16
20
2
cm
10
5
10
2
/
10
/ 




 p
n
n i
+ + + + + +
. . . . . .
. . . . . . . . . . .
Nd = 61016 cm-3
Na = 21016 cm-3
n = 41016 cm-3
+ + + + + +
- - - - - - - -
. . . . . .
. . . . . .
Nd = 61016 cm-3
Na = 81016 cm-3
p = 21016 cm-3
Slide 1-30
1.10 Carrier Concentrations at Extremely High
and Low Temperatures
intrinsic regime
n = Nd
freeze-out regime
ln
n
1/T
High
temp
Room temp Cryogenic temp
kT
E
v
c
i
g
e
N
N
n
p
n
2
/




kT
E
E
d
c d
c
e
N
N
n 2
/
)
(
2
/
1
2









high T:
low T:
Slide 1-31
Key Conclusion

More Related Content

What's hot

Ch7 lecture slides Chenming Hu Device for IC
Ch7 lecture slides Chenming Hu Device for ICCh7 lecture slides Chenming Hu Device for IC
Ch7 lecture slides Chenming Hu Device for IC
Chenming Hu
 
Ch5 lecture slides Chenming Hu Device for IC
Ch5 lecture slides Chenming Hu Device for ICCh5 lecture slides Chenming Hu Device for IC
Ch5 lecture slides Chenming Hu Device for IC
Chenming Hu
 
Modern Semiconductor Devices for Integrated Circuits 1st Edition Hu Solutions...
Modern Semiconductor Devices for Integrated Circuits 1st Edition Hu Solutions...Modern Semiconductor Devices for Integrated Circuits 1st Edition Hu Solutions...
Modern Semiconductor Devices for Integrated Circuits 1st Edition Hu Solutions...
viqoza
 
Fisika Modern (15) molecules andsolid_semiconductor
Fisika Modern (15) molecules andsolid_semiconductorFisika Modern (15) molecules andsolid_semiconductor
Fisika Modern (15) molecules andsolid_semiconductor
jayamartha
 
Lecture 5: Junctions
Lecture 5: JunctionsLecture 5: Junctions
Lecture 5: Junctions
University of Liverpool
 
Lecture 6: Junction Characterisation
Lecture 6:   Junction CharacterisationLecture 6:   Junction Characterisation
Lecture 6: Junction Characterisation
University of Liverpool
 
Lecture9 1
Lecture9 1Lecture9 1
Lecture9 1
guest2ac6ed
 
Topic 2a ac_circuits_analysis
Topic 2a ac_circuits_analysisTopic 2a ac_circuits_analysis
Topic 2a ac_circuits_analysis
Gabriel O'Brien
 
Analog circuits
Analog circuitsAnalog circuits
Analog circuits
Mangi Lal
 
Solar Cells Lecture 3: Modeling and Simulation of Photovoltaic Devices and Sy...
Solar Cells Lecture 3: Modeling and Simulation of Photovoltaic Devices and Sy...Solar Cells Lecture 3: Modeling and Simulation of Photovoltaic Devices and Sy...
Solar Cells Lecture 3: Modeling and Simulation of Photovoltaic Devices and Sy...
Tuong Do
 
Transmission lines
Transmission linesTransmission lines
Transmission lines
umavijay
 
Chapter 08
Chapter 08Chapter 08
Chapter 08
Tha Mike
 
ECNG 6509 Switchgear Technology
ECNG 6509    Switchgear TechnologyECNG 6509    Switchgear Technology
ECNG 6509 Switchgear Technology
Chandrabhan Sharma
 
Transformer
TransformerTransformer
Transformer
Jayaprakash P
 
Topic 1 a_basic_concepts_and_theorem
Topic 1 a_basic_concepts_and_theoremTopic 1 a_basic_concepts_and_theorem
Topic 1 a_basic_concepts_and_theorem
Gabriel O'Brien
 
Chapter 09
Chapter 09Chapter 09
Chapter 09
Tha Mike
 
Telegrapher's Equation
Telegrapher's EquationTelegrapher's Equation
Lect2 up330 (100328)
Lect2 up330 (100328)Lect2 up330 (100328)
Lect2 up330 (100328)
aicdesign
 
Chapter 14
Chapter 14Chapter 14
Chapter 14
Tha Mike
 
SPM PHYSICS FORM 5 electronics
SPM PHYSICS FORM 5 electronicsSPM PHYSICS FORM 5 electronics
SPM PHYSICS FORM 5 electronics
Max Wong
 

What's hot (20)

Ch7 lecture slides Chenming Hu Device for IC
Ch7 lecture slides Chenming Hu Device for ICCh7 lecture slides Chenming Hu Device for IC
Ch7 lecture slides Chenming Hu Device for IC
 
Ch5 lecture slides Chenming Hu Device for IC
Ch5 lecture slides Chenming Hu Device for ICCh5 lecture slides Chenming Hu Device for IC
Ch5 lecture slides Chenming Hu Device for IC
 
Modern Semiconductor Devices for Integrated Circuits 1st Edition Hu Solutions...
Modern Semiconductor Devices for Integrated Circuits 1st Edition Hu Solutions...Modern Semiconductor Devices for Integrated Circuits 1st Edition Hu Solutions...
Modern Semiconductor Devices for Integrated Circuits 1st Edition Hu Solutions...
 
Fisika Modern (15) molecules andsolid_semiconductor
Fisika Modern (15) molecules andsolid_semiconductorFisika Modern (15) molecules andsolid_semiconductor
Fisika Modern (15) molecules andsolid_semiconductor
 
Lecture 5: Junctions
Lecture 5: JunctionsLecture 5: Junctions
Lecture 5: Junctions
 
Lecture 6: Junction Characterisation
Lecture 6:   Junction CharacterisationLecture 6:   Junction Characterisation
Lecture 6: Junction Characterisation
 
Lecture9 1
Lecture9 1Lecture9 1
Lecture9 1
 
Topic 2a ac_circuits_analysis
Topic 2a ac_circuits_analysisTopic 2a ac_circuits_analysis
Topic 2a ac_circuits_analysis
 
Analog circuits
Analog circuitsAnalog circuits
Analog circuits
 
Solar Cells Lecture 3: Modeling and Simulation of Photovoltaic Devices and Sy...
Solar Cells Lecture 3: Modeling and Simulation of Photovoltaic Devices and Sy...Solar Cells Lecture 3: Modeling and Simulation of Photovoltaic Devices and Sy...
Solar Cells Lecture 3: Modeling and Simulation of Photovoltaic Devices and Sy...
 
Transmission lines
Transmission linesTransmission lines
Transmission lines
 
Chapter 08
Chapter 08Chapter 08
Chapter 08
 
ECNG 6509 Switchgear Technology
ECNG 6509    Switchgear TechnologyECNG 6509    Switchgear Technology
ECNG 6509 Switchgear Technology
 
Transformer
TransformerTransformer
Transformer
 
Topic 1 a_basic_concepts_and_theorem
Topic 1 a_basic_concepts_and_theoremTopic 1 a_basic_concepts_and_theorem
Topic 1 a_basic_concepts_and_theorem
 
Chapter 09
Chapter 09Chapter 09
Chapter 09
 
Telegrapher's Equation
Telegrapher's EquationTelegrapher's Equation
Telegrapher's Equation
 
Lect2 up330 (100328)
Lect2 up330 (100328)Lect2 up330 (100328)
Lect2 up330 (100328)
 
Chapter 14
Chapter 14Chapter 14
Chapter 14
 
SPM PHYSICS FORM 5 electronics
SPM PHYSICS FORM 5 electronicsSPM PHYSICS FORM 5 electronics
SPM PHYSICS FORM 5 electronics
 

Similar to Ch1 slides-1

Chapter4 semiconductor in equilibrium
Chapter4 semiconductor in equilibriumChapter4 semiconductor in equilibrium
Chapter4 semiconductor in equilibrium
K. M.
 
CHAPTER_3_P2 - Concentration Rev2.pdf
CHAPTER_3_P2 - Concentration Rev2.pdfCHAPTER_3_P2 - Concentration Rev2.pdf
CHAPTER_3_P2 - Concentration Rev2.pdf
LINHTRANHOANG2
 
Electric field in material space 2nd 2
Electric field in material space 2nd 2Electric field in material space 2nd 2
Electric field in material space 2nd 2
HIMANSHU DIWAKAR
 
Aes
AesAes
Aes
cynon
 
Opto electronic presentation 01 ecx5243
Opto electronic presentation 01 ecx5243Opto electronic presentation 01 ecx5243
Opto electronic presentation 01 ecx5243
Miuranga Chanaka
 
Homogeneous_Semiconductors0801c.ppt
Homogeneous_Semiconductors0801c.pptHomogeneous_Semiconductors0801c.ppt
Homogeneous_Semiconductors0801c.ppt
HiuNguyn132763
 
DIELECTRICS PPT
DIELECTRICS PPTDIELECTRICS PPT
DIELECTRICS PPT
Vaishnavi Bathina
 
Semiconcuctor devices introduction
Semiconcuctor devices  introductionSemiconcuctor devices  introduction
Semiconcuctor devices introduction
RachnaRishi2
 
Chemistry Presentations
Chemistry Presentations Chemistry Presentations
Chemistry Presentations
Yousef390988
 
4661898.ppt
4661898.ppt4661898.ppt
4661898.ppt
khoi0209
 
Lecture 6
Lecture 6Lecture 6
Lecture 6
avocado1111
 
Semiconductor
SemiconductorSemiconductor
Semiconductor
Gabriel O'Brien
 
Introduction to electrochemistry by t. hara
Introduction to electrochemistry by t. haraIntroduction to electrochemistry by t. hara
Introduction to electrochemistry by t. hara
Toru Hara
 
Introduction to electrochemistry by t. hara
Introduction to electrochemistry by t. haraIntroduction to electrochemistry by t. hara
Introduction to electrochemistry by t. hara
Toru Hara
 
Solid state electronics
Solid state electronicsSolid state electronics
Solid state electronics
sultansaifuddin1
 
structure of atom crash course .pptx
structure of atom crash course .pptxstructure of atom crash course .pptx
structure of atom crash course .pptx
Tincymolck
 
Inorganic materials Part 2/2
Inorganic materials Part 2/2Inorganic materials Part 2/2
Inorganic materials Part 2/2
Chris Sonntag
 
1811363290000_Unit 4 (1).pptx
1811363290000_Unit 4 (1).pptx1811363290000_Unit 4 (1).pptx
1811363290000_Unit 4 (1).pptx
Ratna421918
 
Bonding in coordination complexes (Part 1)
Bonding in coordination complexes (Part 1)Bonding in coordination complexes (Part 1)
Bonding in coordination complexes (Part 1)
Chris Sonntag
 
Periodic table n electron config
Periodic table n electron configPeriodic table n electron config
Periodic table n electron config
Karnataka OER
 

Similar to Ch1 slides-1 (20)

Chapter4 semiconductor in equilibrium
Chapter4 semiconductor in equilibriumChapter4 semiconductor in equilibrium
Chapter4 semiconductor in equilibrium
 
CHAPTER_3_P2 - Concentration Rev2.pdf
CHAPTER_3_P2 - Concentration Rev2.pdfCHAPTER_3_P2 - Concentration Rev2.pdf
CHAPTER_3_P2 - Concentration Rev2.pdf
 
Electric field in material space 2nd 2
Electric field in material space 2nd 2Electric field in material space 2nd 2
Electric field in material space 2nd 2
 
Aes
AesAes
Aes
 
Opto electronic presentation 01 ecx5243
Opto electronic presentation 01 ecx5243Opto electronic presentation 01 ecx5243
Opto electronic presentation 01 ecx5243
 
Homogeneous_Semiconductors0801c.ppt
Homogeneous_Semiconductors0801c.pptHomogeneous_Semiconductors0801c.ppt
Homogeneous_Semiconductors0801c.ppt
 
DIELECTRICS PPT
DIELECTRICS PPTDIELECTRICS PPT
DIELECTRICS PPT
 
Semiconcuctor devices introduction
Semiconcuctor devices  introductionSemiconcuctor devices  introduction
Semiconcuctor devices introduction
 
Chemistry Presentations
Chemistry Presentations Chemistry Presentations
Chemistry Presentations
 
4661898.ppt
4661898.ppt4661898.ppt
4661898.ppt
 
Lecture 6
Lecture 6Lecture 6
Lecture 6
 
Semiconductor
SemiconductorSemiconductor
Semiconductor
 
Introduction to electrochemistry by t. hara
Introduction to electrochemistry by t. haraIntroduction to electrochemistry by t. hara
Introduction to electrochemistry by t. hara
 
Introduction to electrochemistry by t. hara
Introduction to electrochemistry by t. haraIntroduction to electrochemistry by t. hara
Introduction to electrochemistry by t. hara
 
Solid state electronics
Solid state electronicsSolid state electronics
Solid state electronics
 
structure of atom crash course .pptx
structure of atom crash course .pptxstructure of atom crash course .pptx
structure of atom crash course .pptx
 
Inorganic materials Part 2/2
Inorganic materials Part 2/2Inorganic materials Part 2/2
Inorganic materials Part 2/2
 
1811363290000_Unit 4 (1).pptx
1811363290000_Unit 4 (1).pptx1811363290000_Unit 4 (1).pptx
1811363290000_Unit 4 (1).pptx
 
Bonding in coordination complexes (Part 1)
Bonding in coordination complexes (Part 1)Bonding in coordination complexes (Part 1)
Bonding in coordination complexes (Part 1)
 
Periodic table n electron config
Periodic table n electron configPeriodic table n electron config
Periodic table n electron config
 

More from CahyaniWindarto2

review paper_4_08012023.pptx
review paper_4_08012023.pptxreview paper_4_08012023.pptx
review paper_4_08012023.pptx
CahyaniWindarto2
 
Experiments - Injection pressure effects on gasoline compression_rev01_202003...
Experiments - Injection pressure effects on gasoline compression_rev01_202003...Experiments - Injection pressure effects on gasoline compression_rev01_202003...
Experiments - Injection pressure effects on gasoline compression_rev01_202003...
CahyaniWindarto2
 
review paper_5_07272022.pptx
review paper_5_07272022.pptxreview paper_5_07272022.pptx
review paper_5_07272022.pptx
CahyaniWindarto2
 
review paper_2_07072022.pptx
review paper_2_07072022.pptxreview paper_2_07072022.pptx
review paper_2_07072022.pptx
CahyaniWindarto2
 
Workshop Part 2.pptx
Workshop Part 2.pptxWorkshop Part 2.pptx
Workshop Part 2.pptx
CahyaniWindarto2
 
Workshop Part 3.pptx
Workshop Part 3.pptxWorkshop Part 3.pptx
Workshop Part 3.pptx
CahyaniWindarto2
 
Workshop Part 1.pptx
Workshop Part 1.pptxWorkshop Part 1.pptx
Workshop Part 1.pptx
CahyaniWindarto2
 

More from CahyaniWindarto2 (7)

review paper_4_08012023.pptx
review paper_4_08012023.pptxreview paper_4_08012023.pptx
review paper_4_08012023.pptx
 
Experiments - Injection pressure effects on gasoline compression_rev01_202003...
Experiments - Injection pressure effects on gasoline compression_rev01_202003...Experiments - Injection pressure effects on gasoline compression_rev01_202003...
Experiments - Injection pressure effects on gasoline compression_rev01_202003...
 
review paper_5_07272022.pptx
review paper_5_07272022.pptxreview paper_5_07272022.pptx
review paper_5_07272022.pptx
 
review paper_2_07072022.pptx
review paper_2_07072022.pptxreview paper_2_07072022.pptx
review paper_2_07072022.pptx
 
Workshop Part 2.pptx
Workshop Part 2.pptxWorkshop Part 2.pptx
Workshop Part 2.pptx
 
Workshop Part 3.pptx
Workshop Part 3.pptxWorkshop Part 3.pptx
Workshop Part 3.pptx
 
Workshop Part 1.pptx
Workshop Part 1.pptxWorkshop Part 1.pptx
Workshop Part 1.pptx
 

Recently uploaded

53286592-Global-Entrepreneurship-and-the-Successful-Growth-Strategies-of-Earl...
53286592-Global-Entrepreneurship-and-the-Successful-Growth-Strategies-of-Earl...53286592-Global-Entrepreneurship-and-the-Successful-Growth-Strategies-of-Earl...
53286592-Global-Entrepreneurship-and-the-Successful-Growth-Strategies-of-Earl...
MarynaYurchenko2
 
EN Artificial Intelligence by Slidesgo.pptx
EN Artificial Intelligence by Slidesgo.pptxEN Artificial Intelligence by Slidesgo.pptx
EN Artificial Intelligence by Slidesgo.pptx
aichamardi99
 
一比一原版(Columbia文凭证书)哥伦比亚大学毕业证如何办理
一比一原版(Columbia文凭证书)哥伦比亚大学毕业证如何办理一比一原版(Columbia文凭证书)哥伦比亚大学毕业证如何办理
一比一原版(Columbia文凭证书)哥伦比亚大学毕业证如何办理
afkxen
 
EV Charging at Multifamily Properties by Kevin Donnelly
EV Charging at Multifamily Properties by Kevin DonnellyEV Charging at Multifamily Properties by Kevin Donnelly
EV Charging at Multifamily Properties by Kevin Donnelly
Forth
 
Hand Gesture Control Robotic Arm using image processing.pptx
Hand Gesture Control Robotic Arm using image processing.pptxHand Gesture Control Robotic Arm using image processing.pptx
Hand Gesture Control Robotic Arm using image processing.pptx
wstatus456
 
Kaizen SMT_MI_PCBA for Quality Engineerspptx
Kaizen SMT_MI_PCBA for Quality EngineerspptxKaizen SMT_MI_PCBA for Quality Engineerspptx
Kaizen SMT_MI_PCBA for Quality Engineerspptx
vaibhavsrivastava482521
 
What Could Be Behind Your Mercedes Sprinter's Power Loss on Uphill Roads
What Could Be Behind Your Mercedes Sprinter's Power Loss on Uphill RoadsWhat Could Be Behind Your Mercedes Sprinter's Power Loss on Uphill Roads
What Could Be Behind Your Mercedes Sprinter's Power Loss on Uphill Roads
Sprinter Gurus
 
快速办理(napier毕业证书)英国龙比亚大学毕业证在读证明一模一样
快速办理(napier毕业证书)英国龙比亚大学毕业证在读证明一模一样快速办理(napier毕业证书)英国龙比亚大学毕业证在读证明一模一样
快速办理(napier毕业证书)英国龙比亚大学毕业证在读证明一模一样
78tq3hi2
 
EV Charging at MFH Properties by Whitaker Jamieson
EV Charging at MFH Properties by Whitaker JamiesonEV Charging at MFH Properties by Whitaker Jamieson
EV Charging at MFH Properties by Whitaker Jamieson
Forth
 
原版制作(Exeter毕业证书)埃克塞特大学毕业证完成信一模一样
原版制作(Exeter毕业证书)埃克塞特大学毕业证完成信一模一样原版制作(Exeter毕业证书)埃克塞特大学毕业证完成信一模一样
原版制作(Exeter毕业证书)埃克塞特大学毕业证完成信一模一样
78tq3hi2
 
Catalytic Converter theft prevention - NYC.pptx
Catalytic Converter theft prevention - NYC.pptxCatalytic Converter theft prevention - NYC.pptx
Catalytic Converter theft prevention - NYC.pptx
Blue Star Brothers
 
一比一原版(WashU文凭证书)圣路易斯华盛顿大学毕业证如何办理
一比一原版(WashU文凭证书)圣路易斯华盛顿大学毕业证如何办理一比一原版(WashU文凭证书)圣路易斯华盛顿大学毕业证如何办理
一比一原版(WashU文凭证书)圣路易斯华盛顿大学毕业证如何办理
afkxen
 
What do the symbols on vehicle dashboard mean?
What do the symbols on vehicle dashboard mean?What do the symbols on vehicle dashboard mean?
What do the symbols on vehicle dashboard mean?
Hyundai Motor Group
 
Expanding Access to Affordable At-Home EV Charging by Vanessa Warheit
Expanding Access to Affordable At-Home EV Charging by Vanessa WarheitExpanding Access to Affordable At-Home EV Charging by Vanessa Warheit
Expanding Access to Affordable At-Home EV Charging by Vanessa Warheit
Forth
 
Globalfleet - global fleet survey 2021 full results
Globalfleet - global fleet survey 2021 full resultsGlobalfleet - global fleet survey 2021 full results
Globalfleet - global fleet survey 2021 full results
vaterland
 
AadiShakti Projects ( Asp Cranes ) Raipur
AadiShakti Projects ( Asp Cranes ) RaipurAadiShakti Projects ( Asp Cranes ) Raipur
AadiShakti Projects ( Asp Cranes ) Raipur
AadiShakti Projects
 
Here's Why Every Semi-Truck Should Have ELDs
Here's Why Every Semi-Truck Should Have ELDsHere's Why Every Semi-Truck Should Have ELDs
Here's Why Every Semi-Truck Should Have ELDs
jennifermiller8137
 

Recently uploaded (17)

53286592-Global-Entrepreneurship-and-the-Successful-Growth-Strategies-of-Earl...
53286592-Global-Entrepreneurship-and-the-Successful-Growth-Strategies-of-Earl...53286592-Global-Entrepreneurship-and-the-Successful-Growth-Strategies-of-Earl...
53286592-Global-Entrepreneurship-and-the-Successful-Growth-Strategies-of-Earl...
 
EN Artificial Intelligence by Slidesgo.pptx
EN Artificial Intelligence by Slidesgo.pptxEN Artificial Intelligence by Slidesgo.pptx
EN Artificial Intelligence by Slidesgo.pptx
 
一比一原版(Columbia文凭证书)哥伦比亚大学毕业证如何办理
一比一原版(Columbia文凭证书)哥伦比亚大学毕业证如何办理一比一原版(Columbia文凭证书)哥伦比亚大学毕业证如何办理
一比一原版(Columbia文凭证书)哥伦比亚大学毕业证如何办理
 
EV Charging at Multifamily Properties by Kevin Donnelly
EV Charging at Multifamily Properties by Kevin DonnellyEV Charging at Multifamily Properties by Kevin Donnelly
EV Charging at Multifamily Properties by Kevin Donnelly
 
Hand Gesture Control Robotic Arm using image processing.pptx
Hand Gesture Control Robotic Arm using image processing.pptxHand Gesture Control Robotic Arm using image processing.pptx
Hand Gesture Control Robotic Arm using image processing.pptx
 
Kaizen SMT_MI_PCBA for Quality Engineerspptx
Kaizen SMT_MI_PCBA for Quality EngineerspptxKaizen SMT_MI_PCBA for Quality Engineerspptx
Kaizen SMT_MI_PCBA for Quality Engineerspptx
 
What Could Be Behind Your Mercedes Sprinter's Power Loss on Uphill Roads
What Could Be Behind Your Mercedes Sprinter's Power Loss on Uphill RoadsWhat Could Be Behind Your Mercedes Sprinter's Power Loss on Uphill Roads
What Could Be Behind Your Mercedes Sprinter's Power Loss on Uphill Roads
 
快速办理(napier毕业证书)英国龙比亚大学毕业证在读证明一模一样
快速办理(napier毕业证书)英国龙比亚大学毕业证在读证明一模一样快速办理(napier毕业证书)英国龙比亚大学毕业证在读证明一模一样
快速办理(napier毕业证书)英国龙比亚大学毕业证在读证明一模一样
 
EV Charging at MFH Properties by Whitaker Jamieson
EV Charging at MFH Properties by Whitaker JamiesonEV Charging at MFH Properties by Whitaker Jamieson
EV Charging at MFH Properties by Whitaker Jamieson
 
原版制作(Exeter毕业证书)埃克塞特大学毕业证完成信一模一样
原版制作(Exeter毕业证书)埃克塞特大学毕业证完成信一模一样原版制作(Exeter毕业证书)埃克塞特大学毕业证完成信一模一样
原版制作(Exeter毕业证书)埃克塞特大学毕业证完成信一模一样
 
Catalytic Converter theft prevention - NYC.pptx
Catalytic Converter theft prevention - NYC.pptxCatalytic Converter theft prevention - NYC.pptx
Catalytic Converter theft prevention - NYC.pptx
 
一比一原版(WashU文凭证书)圣路易斯华盛顿大学毕业证如何办理
一比一原版(WashU文凭证书)圣路易斯华盛顿大学毕业证如何办理一比一原版(WashU文凭证书)圣路易斯华盛顿大学毕业证如何办理
一比一原版(WashU文凭证书)圣路易斯华盛顿大学毕业证如何办理
 
What do the symbols on vehicle dashboard mean?
What do the symbols on vehicle dashboard mean?What do the symbols on vehicle dashboard mean?
What do the symbols on vehicle dashboard mean?
 
Expanding Access to Affordable At-Home EV Charging by Vanessa Warheit
Expanding Access to Affordable At-Home EV Charging by Vanessa WarheitExpanding Access to Affordable At-Home EV Charging by Vanessa Warheit
Expanding Access to Affordable At-Home EV Charging by Vanessa Warheit
 
Globalfleet - global fleet survey 2021 full results
Globalfleet - global fleet survey 2021 full resultsGlobalfleet - global fleet survey 2021 full results
Globalfleet - global fleet survey 2021 full results
 
AadiShakti Projects ( Asp Cranes ) Raipur
AadiShakti Projects ( Asp Cranes ) RaipurAadiShakti Projects ( Asp Cranes ) Raipur
AadiShakti Projects ( Asp Cranes ) Raipur
 
Here's Why Every Semi-Truck Should Have ELDs
Here's Why Every Semi-Truck Should Have ELDsHere's Why Every Semi-Truck Should Have ELDs
Here's Why Every Semi-Truck Should Have ELDs
 

Ch1 slides-1

  • 1. Slide 1-1 Key questions for this chapter •What makes semiconductors so special? •How do electrons arrange themselves (in energy) in an electronic system? •What is the formal definition of thermal equilibrium? What are some of its consequence? •What are these “energy band diagrams”? •What is this “Fermi energy”? •What are these “holes”
  • 2. Slide 1-2 1.1 Silicon Crystal Structure • Crystalline solid = elemental atomic arrangement, or unit cell, repeated ad infinitum in space in three dimensions. • Unit cell of silicon crystal is cubic. • Each Si atom has 4 nearest neighbors. Chapter 1 Electrons and Holes in Semiconductors • Si lattice constant: 0.54 nm • Si atomic spacing: 0.24 nm • Si atomic density: 5.0 x 1022 cm-3
  • 3. Slide 1-3 Silicon Wafers and Crystal Planes • Silicon wafers are usually cut along the (100) plane with a flat or notch to help orient the wafer during IC fabrication. • The standard notation for crystal planes is based on the cubic unit cell. (100) (011) (111) x y y y z z z x x Si (111) plane • Miller indices: symbol [abc]  The related symbol [abc] indicates the direction in the crystal normal to the (abc) plane. For example, when an electron travels in the [100] direction, it travel perpendicular to the (100) plane, i.e., along the x axis
  • 4. Slide 1-4 1.2 Bond Model of Electrons and Holes Silicon crystal in a two-dimensional representation. Si Si Si Si Si Si Si Si Si  When an electron breaks loose and becomes a conduction electron, a hole is also created. (a) (b) Si Si Si Si Si Si Si Si Si Si Si Si Si Si Si Si Si Si
  • 5. Slide 1-5 Dopants in Silicon Si Si Si Si Si Si Si Si Si Si Si Si Si Si Si Si As B As, a Group V element, introduces conduction electrons and creates N-type silicon, B, a Group III element, introduces holes and creates P-type silicon, and is called an acceptor. Donors and acceptors are known as dopants. Dopant ionization energy ~50meV (very low). and is called a donor. Hydrogen: E ion m0 q4 13.6 eV = = 8e0 2h2 N-type dopant P-type dopant
  • 6. Slide 1-6 GaAs, III-V Compound Semiconductors, and Their Dopants As As Ga Ga GaAs has the same crystal structure as Si. GaAs, GaP, GaN are III-V compound semiconductors, important for optoelectronics. Wich group of elements are candidates for donors? acceptors? Ga As As Ga Ga
  • 7. Slide 1-7 1.3 Energy Band Model .
  • 8. Slide 1-8 1.3.1 Energy Band Diagram Conduction band Ec Ev Eg Band gap Valence band Energy band diagram shows the bottom edge of conduction band, Ec , and top edge of valence band, Ev . Ec and Ev are separated by the band gap energy, Eg .
  • 9. Slide 1-9 Measuring the Band Gap Energy by Light Absorption photons photon energy: h v > Eg Ec Ev Eg electron hole Bandgap energies of selected semiconductors • Eg can be determined from the minimum energy (hn) of photons that are absorbed by the semiconductor. Semi- conductor InSb Ge Si GaAs GaP ZnSe Diamond Eg (eV) 0.18 0.67 1.12 1.42 2.25 2.7 6
  • 10. Slide 1-10 1.3.2 Donor and Acceptor in the Band Model Conduction Band Ec Ev Valence Band Donor Level Acceptor Level Ed Ea Donor ionization energy Acceptor ionization energy Ionization energy of selected donors and acceptors in silicon Acceptors Dopant Sb P As B Al In Ionization energy, E c –E d or E a –E v (meV) 39 44 54 45 57 160 Donors
  • 11. Slide 1-11 1.4 Semiconductors, Insulators, and Conductors Totally filled bands and totally empty bands do not allow Metal conduction band is half-filled. Ec Ev Eg=1.1 eV Ec Eg= 9 eV empty Si (Semiconductor) SiO 2 (Insulator) Conductor Ec filled Top of conduction band Ev current flow. (Just as there is no motion of liquid in a totally filled or totally empty bottle.) . Semiconductors have lower Eg's than insulators and can be doped.
  • 12. Slide 1-12 1.5 Electrons and Holes Both electrons and holes tend to seek their lowest Holes float up like bubbles in water. Electrons tend to fall in the energy band diagram. Ec Ev electron kinetic energy hole kinetic energy increasing electron energy increasing hole energy energy positions.
  • 13. The electron wave function is the solution of the three dimensional Schrodinger wave equation Slide 1-13        ) ( 2m 2 0 2 r V  The solution is of the form exp( k r) k = wave vector = 2π/electron wavelength   1.5.1 Effective Mass m F dk E d q    2 2 2 on accelerati  e 2 2 2 / mass effective dk E d   For each k, there is a corresponding E.
  • 14. Slide 1-14 1.5.1 Effective Mass In an electric field, E, an electron or a hole accelerates. Electron and hole effective masses electrons holes Si Ge GaAs InAs AlAs mn/m0 0.26 0.12 0.068 0.023 2 mp/m0 0.39 0.3 0.5 0.3 0.3
  • 15. Slide 1-15 1.6 Density of States E Dc Dv Ec Ev D Ec Ev DE         D D  3 cm eV 1 volume in states of number ) ( E E E Dc   2 8 ) ( 3 h E E m m E D c n n c      2 8 ) ( 3 h E E m m E D v p p v    Derived in Appendix I If we count the number of states in a small range of energy, ΔE, in the conduction band, we can find the density of states:
  • 16. Slide 1-16 1.7 Thermal Equilibrium and the Fermi Function 1.7.1 An Analogy for Thermal Equilibrium There is a certain probability for the electrons in the conduction band to occupy high-energy states under the agitation of thermal energy. Dish Vibrating Table Sand particles
  • 17. Slide 1-17 1.7.2 Fermi Function–The Probability of an Energy State Being Occupied by an Electron Remember: there is only one Fermi-level in a system at equilibrium. kT E E f e E f / ) ( 1 1 ) (     Ef is called the Fermi energy or the Fermi level.  The probability of a state at energy E being occupied by an electron.   kT E E f e E f    ) ( kT E E f     kT E E f e E f    1 ) ( kT E E f    Boltzmann approximation: f(E) 0.5 1 Ef Ef – kT Ef – 2kT Ef – 3kT Ef + kT E f Ef + 2kT Ef + 3kT E   kT E E f e E f    ) (   kT E E f e E f    1 ) (
  • 18. Slide 1-18 1.8 Electron and Hole Concentrations   band conduction of top ) ( ) ( c E c dE E D E f n     ) ( 2 8 0 3 Ec E d e E E e h m m kT E E Ec E c kT E E n n c f c             dE e E E h m m n kT E E E c n n f c       3 2 8 1.8.1 Derivation of n and p from D(E) and f(E)
  • 19. Slide 1-19 Electron and Hole Concentrations Remember: the closer Ef moves up to Nc, the larger n is; the closer Ef moves down to Ev , the larger p is. For Si, Nc = 2.8 ´1019 cm-3 and Nv = 1.04´1019 cm-3 . kT E E c f c e N n / ) (    2 3 2 2 2        h kT m N n c  kT E E v v f e N p / ) (    2 3 2 2 2        h kT m N p v  Nc is called the effective density of states (of the conduction band) . Nv is called the effective density of states of the valence band.
  • 22. Slide 1-22 1.8.2 The Fermi Level and Carrier Concentrations kT E E c f c e N n / ) (        eV 6 14 . 0 10 / 10 8 . 2 ln 026 . 0 ln 17 19      n N kT E E c f c     eV 31 . 0 10 / 10 04 . 1 ln 026 . 0 ln 14 19      p N kT E E v v f Ec Ef Ev 0.146 eV (a) 0.31 eV Ec Ef Ev (b) Where is Ef for n =1017 cm-3? And for p = 1014 cm-3? Solution: (a) (b) For p = 1014cm-3, from Eq.(1.8.8),
  • 23. Slide 1-23 1.8.2 The Fermi Level and Carrier Concentrations 1013 1014 1015 1016 1017 1018 1019 1020 Ev Ec Na or Nd (cm-3 ) kT E E c f c e N n / ) (      n N kT E E c c f ln  
  • 24. Slide 1-24 1.8.3 The np Product and the Intrinsic Carrier Concentration
  • 25. Slide 1-25 Question: What is the hole concentration in an N-type semiconductor with 1015 cm-3 of donors? Solution: n = 1015 cm-3. After increasing T by 60C, n remains the same at 1015 cm-3 while p increases by about a factor of 2300 because . Question: What is n if p = 1017cm-3 in a P-type silicon wafer? Solution: EXAMPLE: Carrier Concentrations 3 - 5 3 15 -3 20 2 cm 10 cm 10 cm 10     n n p i kT E i g e n / 2   3 - 3 3 17 -3 20 2 cm 10 cm 10 cm 10     p n n i
  • 26. Slide 1-26 EXAMPLE: Complete ionization of the dopant atoms Nd = 1017 cm-3. What fraction of the donors are not ionized? Solution: First assume that all the donors are ionized. Probability of not being ionized 04 . 0 2 1 1 1 2 1 1 1 meV 26 / ) meV ) 45 146 (( / ) (       e e kT E E f d Therefore, it is reasonable to assume complete ionization, i.e., n = Nd . meV 146 cm 10 3 17       c f d E E N n Ec Ef Ev 146 meV Ed 45meV 1.9 General Theory of n and p 
  • 27. Slide 1-27 2 i n np  d a N p N n    Charge neutrality: 2 / 1 2 2 2 2                    i d a d a n N N N N p 2 / 1 2 2 2 2                    i a d a d n N N N N n 1.9 General Theory of n and p
  • 28. Slide 1-28 I. (i.e., N-type) If , II. (i.e., P-type) If , a d N N n   n n p i 2  i a d n N N   a d N N  d N n  d i N n p 2  and i d a n N N   d a N N p   p n n i 2  d a N N  a N p  a i N n n 2  and 1.9 General Theory of on n and p
  • 29. Slide 1-29 EXAMPLE: Dopant Compensation What are n and p in Si with (a) Nd = 61016 cm-3 and Na = 21016 cm-3 and (b) additional 61016 cm-3 of Na? (a) (b) Na = 21016 + 61016 = 81016 cm-3 > Nd 3 16 cm 10 4      a d N N n 3 3 16 20 2 cm 10 5 . 2 10 4 / 10 /       n n p i 3 16 16 16 cm 10 2 10 6 10 8          d a N N p 3 3 16 20 2 cm 10 5 10 2 / 10 /       p n n i + + + + + + . . . . . . . . . . . . . . . . . Nd = 61016 cm-3 Na = 21016 cm-3 n = 41016 cm-3 + + + + + + - - - - - - - - . . . . . . . . . . . . Nd = 61016 cm-3 Na = 81016 cm-3 p = 21016 cm-3
  • 30. Slide 1-30 1.10 Carrier Concentrations at Extremely High and Low Temperatures intrinsic regime n = Nd freeze-out regime ln n 1/T High temp Room temp Cryogenic temp kT E v c i g e N N n p n 2 /     kT E E d c d c e N N n 2 / ) ( 2 / 1 2          high T: low T: