Correlation measures the strength and direction of association between two variables. Positive correlation means both variables increase or decrease together, while negative correlation means one variable increases as the other decreases. Correlation does not imply causation. The correlation coefficient r ranges from -1 to 1, where -1 is total negative correlation, 0 is no correlation, and 1 is total positive correlation. Common types of correlation coefficients include Pearson's correlation coefficient, used with normally distributed interval or ratio data, and Spearman's rank correlation coefficient, used with ordinal or non-normally distributed data. Regression analysis can be used to predict the value of a dependent variable from the value of an independent variable when they are linearly correlated.