The document provides an overview of the Cerebellar Model Articulation Controller (CMAC) neural network model. Some key points:
- CMAC is a 3-layer feedforward neural network that mimics the functionality of the mammalian cerebellum. It uses coarse coding to store weights in a localized associative memory.
- The input layer uses threshold units to activate a fixed number of neurons. The second layer performs logic AND operations. The third layer computes the weighted sum to produce the output.
- Learning involves comparing the actual output to the desired output and adjusting weights using methods like least mean square. Generalization occurs due to overlapping receptive fields between neurons.
- Applications include robot control,