11/5/2019 1
Radial Basis Functions and Splines
Presented by…
Bikash Baruah
PhD(CSE)/2019/04
11/5/2019 2
Contents
• Introduction
• Architecture
• Designing
• Learning strategies
11/5/2019 3
Introduction
• The design of a neural network using Radial Basis Function
is a curve-fitting (approximation) problem in high-
dimensional space.
• Unlike Multilayer Perceptron it can have Single Hidden
Layer.
11/5/2019 4
In MLP
11/5/2019 5
In RBF (Radial Basis Function)
11/5/2019 6
Architecture
Input layer Hidden layer Output layer
x1
x2
x3
xn
h1
h2
h3
hm
f(x)
W1
W2
W3
Wm
m > n
11/5/2019 7
Radial Basis Function Network
• Approximate function with linear combination of
Radial basis functions
F(x) = S wi h(x)
• h(x) is mostly Gaussian function
11/5/2019 8
Three layers
• Input layer
– Source nodes that connect to the network to its
environment / hidden layer.
• Hidden layer
– Hidden units provide a set of basis function
– High dimensionality
• Output layer
– Linear combination of hidden functions
11/5/2019 9
Q. Classify the output of two input EX-OR
gate using Radial Basis Function and Splines.
11/5/2019 10
11/5/2019 11
Architecture of X-OR Problem
Input layer Hidden layer Output layer
hi1
hi2
hi3
hi4
f(x)
W1
W2
W3
W4
Yi
Xi
11/5/2019 12
Radial basis function
hj(x) = exp( -(x-cj)2 / 2rj
2 )
f(x) =  wjhj(x)
j=1
m
Where cj is center of a region,
rj is Nearest Neighbor Distance
Xi Yi h1 h2 h3 h4 Wj
 wjhj(xi) Output
0 0 1.0 0.6 0.6 0.4 -1 -0.2 0
0 1 0.6 1.0 0.4 0.6 +1 0.2 1
1 0 0.6 0.4 1.0 0.6 +1 0.2 1
1 1 0.4 0.6 0.6 1.0 -1 -0.2 0
11/5/2019 13
hj(x,y) = exp( -((x,y)-cj)2 / 2rj
2 ) ; Here Rj = 1
h1 -> c1 = (0,0) h3 -> c3 = (1, 0)
h2 -> c2 = (0,1) h4 -> c4 = (1, 1)
11/5/2019 14
Computation of Weight (Wj)
f(x) =  wjhj(x)
(i) Now, Calculate the Error
 e =  wjhj(x) – f(x)
(ii) If Error is present
Use Gradient function
 wj = [hj
T hj]-1 hj f(x)
(iii) If input € wj
then f(x) = 1
else
f(x) = 0
h1 h2 h3 h4
1.0 0.6 0.6 0.4
0.6 1.0 0.4 0.6
0.6 0.4 1.0 0.6
0.4 0.6 0.6 1.0
The Value of hj
11/5/2019 15
Assignment
• Classify the output of two input EX-OR gate using Radial
Basis Function and Splines.
Thank You…
11/5/2019 16

Radial Basis Function and Splines.

  • 1.
    11/5/2019 1 Radial BasisFunctions and Splines Presented by… Bikash Baruah PhD(CSE)/2019/04
  • 2.
    11/5/2019 2 Contents • Introduction •Architecture • Designing • Learning strategies
  • 3.
    11/5/2019 3 Introduction • Thedesign of a neural network using Radial Basis Function is a curve-fitting (approximation) problem in high- dimensional space. • Unlike Multilayer Perceptron it can have Single Hidden Layer.
  • 4.
  • 5.
    11/5/2019 5 In RBF(Radial Basis Function)
  • 6.
    11/5/2019 6 Architecture Input layerHidden layer Output layer x1 x2 x3 xn h1 h2 h3 hm f(x) W1 W2 W3 Wm m > n
  • 7.
    11/5/2019 7 Radial BasisFunction Network • Approximate function with linear combination of Radial basis functions F(x) = S wi h(x) • h(x) is mostly Gaussian function
  • 8.
    11/5/2019 8 Three layers •Input layer – Source nodes that connect to the network to its environment / hidden layer. • Hidden layer – Hidden units provide a set of basis function – High dimensionality • Output layer – Linear combination of hidden functions
  • 9.
  • 10.
    Q. Classify theoutput of two input EX-OR gate using Radial Basis Function and Splines. 11/5/2019 10
  • 11.
    11/5/2019 11 Architecture ofX-OR Problem Input layer Hidden layer Output layer hi1 hi2 hi3 hi4 f(x) W1 W2 W3 W4 Yi Xi
  • 12.
    11/5/2019 12 Radial basisfunction hj(x) = exp( -(x-cj)2 / 2rj 2 ) f(x) =  wjhj(x) j=1 m Where cj is center of a region, rj is Nearest Neighbor Distance
  • 13.
    Xi Yi h1h2 h3 h4 Wj  wjhj(xi) Output 0 0 1.0 0.6 0.6 0.4 -1 -0.2 0 0 1 0.6 1.0 0.4 0.6 +1 0.2 1 1 0 0.6 0.4 1.0 0.6 +1 0.2 1 1 1 0.4 0.6 0.6 1.0 -1 -0.2 0 11/5/2019 13 hj(x,y) = exp( -((x,y)-cj)2 / 2rj 2 ) ; Here Rj = 1 h1 -> c1 = (0,0) h3 -> c3 = (1, 0) h2 -> c2 = (0,1) h4 -> c4 = (1, 1)
  • 14.
    11/5/2019 14 Computation ofWeight (Wj) f(x) =  wjhj(x) (i) Now, Calculate the Error  e =  wjhj(x) – f(x) (ii) If Error is present Use Gradient function  wj = [hj T hj]-1 hj f(x) (iii) If input € wj then f(x) = 1 else f(x) = 0 h1 h2 h3 h4 1.0 0.6 0.6 0.4 0.6 1.0 0.4 0.6 0.6 0.4 1.0 0.6 0.4 0.6 0.6 1.0 The Value of hj
  • 15.
    11/5/2019 15 Assignment • Classifythe output of two input EX-OR gate using Radial Basis Function and Splines.
  • 16.