The document presents Joe Suzuki's work on generalizing Bayesian criteria to settings beyond discrete or continuous distributions. It introduces generalized density functions based on Radon-Nikodym derivatives that allow defining universal measures gn approximating true densities f. These generalized densities enable extending Bayesian criteria like comparing pgnXgnY to (1-p)gXY to assess independence, to any sample space without assuming a specific form. The approach unifies Bayesian and MDL methods under a framework of universality, with various applications like Bayesian network structure learning.