CS 213

Data Structures and Algorithms
Second Semester, 2011-2012
Sum of Squares
int sumOfSquares(int n){
   int sum = 0;
   for(int i=1; i<=n; i++)
        sum = sum + i*i;
   return sum;
}
 T(n) = 5n + 4
Selection Sort
Given the following numbers in an array:
           53 23 10 34 2 17
            2 23 10 34 53 17
            2 10 23 34 53 17
            2 10 17 34 53 23
            2 10 17 23 53 34
            2 10 17 23 34 53
Still on Selection Sort
void selectionSort(int A[], int n){
   for(int i=0; i<n; i++){
      int min = i;
      for(int j=i+1; j<n; j++){
             if(A[j] < A[min])
                min = j;
                                      What is this function’s T(n)? What
         }                            we need is to compute for T(n)
         int temp = A[i];             from the inner loop going
         A[i] = A[min];               outwards.
         A[min] = temp;
                                      We need to use the summation
   }                                  notation to solve the T(n).
}
The Summation Notation



    = x1 + x2 + x3 + x4
Still on the summation notation

4
                                     n
∑     i      = 1+2+3+4   = 10
                                    ∑i =    n ( n +1)
                                                2
                                    i =1
i=1
 5
                                     n
∑     3 = 3+3+3+3+3      = 15
                                    ∑c     =nc =15
i=1                                 i=1
Exercise
 for(int i=1; i<=5; i++) cout<<endl;
 for(int i=1; i<=n; i++) cout<<endl;
 for(int i=3; i<=m; i++) cout<<endl;
 for(int i=1; i<=6; i++)
       for(int j=1; j<=8; j++) cout<<endl;
 for(int i=1; i<=n; i++)
       for(int j=1; j<=n; j++) cout<<endl;
 for(int i=1; i<=m; i++)
       for(int j=1; j<=m; j++) cout<<endl;
 for(int i=1; i<=n; i++)
       for(int j=i; j<=n; j++) cout<<endl;
Going back to the Selection Sort
void selectionSort(int A[], int n){
   for(int i=0; i<n; i++){            n     n         n
      int min = i;
      for(int j=i+1; j<n; j++){       ∑ ∑ c =∑                  c(n-i+1-1)
             if(A[j] < A[min])        i=1 j=i+1 i=1
                min = j;
          }                           n              n
          int temp = A[i];
          A[i] = A[min];              ∑   c(n-i) = c   n-i∑
          A[min] = temp;              i=1                 i=1
   }
                                       n        n               n
}
                                      ∑ n-i = ∑ n - ∑ i
                                      i=1       i=1           i=1
Time Complexity
A function that maps problem size into the
 time required to solve the problem.
Typically, we are interested in the inherent
 complexity of computing the solution to
 problems in a particular class.
Lower Bound
 We might want to know how fast we can sort a list of n
  items, initially in an arbitrary order, regardless of the
  algorithm used.
 What is sought here is the lower bound, L(n), on sorting,
  a property of the sorting problem and not of any
  particular algorithm.
 This says that no algorithm can do the job in fewer than
  L(n) time units for arbitrary inputs.
Upper Bound
 We might also like to know how long it would
  take to sort such list using a known algorithm
  with a worst-case input.
 What is sought here is the upper bound, U(n),
  which says that for arbitrary inputs we can
  always sort in time at most U(n).
Goal of Time Complexity Analysis

 While there are apparently two complexity functions for
  problems, L(n) and U(n), the ultimate goal is to make
  these two bounds coincide.
 This is the optimal algorithm which has L(n) = U(n).
 For some of the problems, this goal has not been
  realized yet!
Invitation
Consider this, CS 213, as you journey into
 finding optimal solutions to classes of
 problems!
Who knows, you might win a million
 dollars ($$$) from Claymath Foundation!
Upper Bound Complexity
There are two ways in analyzing this
 bound:
  Counting instructions
  Solving recurrences
Both are used to find the worst case of an
 algorithm.
Big O-Notation (O(g(n)))
The O-notation is used to describe the
 worst-case running time of an algorithm.
O(n) means that the growth of the running
 time of the algorithm is a function of n.
O-notation computes for the upper bound.
O-Notation Defined
O(g(n)) = {f(n): ∃ c>0, n0>0 s.t. 0 ≤ f(n) ≤
 cg(n) for all n ≥ n0}.
Example: Check if (n2/2) – 3n ∈ O(n2)
  (n2/2) – 3n ≤ cn2
  ½ - 3/n ≤ c
  Choosing c = ½, n0 = 6 proves the claim.
Another Example
3n2 - 100n + 6 ∈ O(n2) ?
  3n2 - 100n + 6 ≤ cn2
  3 – 100/n + 6/n2 ≤ c
  At this point, we have to choose a c>0 and an
   n0
  What values will prove our claim?
Lower Bound Complexity
 This is the more difficult of the bounds.
 There is no algorithm to analyze.
 Ω(g(n)) is used to describe the lower bound of
  the running time of the algorithm or minimum
  possible running time of the algorithm.
Ω-Notation
Ω(g(n)) = {f(n): ∃ c>0, n0>0 s.t. 0 ≤ cg(n) ≤
 f(n) for all n ≥ n0}.
Example: Check if (n2/2) – 3n ∈ Ω(n2)
  cn2 ≤ (n2/2) – 3n
  c ≤ ½ - 3/n
  Choosing c = 1/14, n0 = 7 proves the claim.
Another Example
 Check if 3n2 - 100n + 6 ∈ Ω(n)
    cn ≤ 3n2 - 100n + 6
    c ≤ 3n – 100 + 6/n
 At this point we need to find a c and an n0 that will prove
  our claim.
 What values of c and n0 will suffice the inequality??
θ-Notation
Used to denote that the lower and upper
 bounds of the running time of the
 algorithm is tight, i.e. the growth rate of the
 upper and lower bounds are the same.
θ-Notation Defined
θ(g(n)) = {f(n): ∃ c1>0, c2>0, n0>0 s.t. 0 ≤
 c1g(n) ≤ f(n) ≤ c2g(n) for all n ≥ n0}.
f(n) ∈ θ(g(n)) if f(n) ∈ O(g(n)) and f(n) ∈
 Ω(g(n))
Complexity Classes
Description   O-notation

constant      O(1)

logarithmic   O(log n)

linear        O(n)

n log n       O(n log n)

quadratic     O(n2)

cubic         O(n3)

polynomial    O(nk), k≥1

exponential   O(an), a>1
Growth rate of complexity classes

    class       n=2       n=16        n=256       n=1024
            1         1           1           1              1
log n                 1           4           8            10
n                     2          16        256         1024
n log n               2          64       2048        10240
n^2                   4      256         65536      1048576


n^3                   8     4096      16777216     1.07E+09


2^n                   4    65536      1.16E+77    1.8E+308
Graph of the Growth Rates
      50                                                     n^2
      45
      40
                                                                                           n log n
      35
                                         2^n
      30
                        n^3
      25
      20
      15
      10                                                                                       n

      5
                                                                                               log n
      0
           1   2    3         4     5           6       7          8      9       10      11

log n      0   1   1.58       2    2.32        2.58    2.81        3     3.17    3.32    3.46
n          1   2    3         4      5           6       7         8       9      10      11
n log n    0   2   4.75       8    11.61       15.51   19.65       24    28.53   33.22   38.05
n^2        1   4    9         16    25          36      49         64     81     100     121
n^3        1   8   27         64   125         216     343         512   729     1000    1331
2^n        2   4    8         16    32          64     128         256   512     1024    2048
Bigger N
 2000
 1800
 1600
 1400
                                                                                      n^3
 1200
 1000
    800
    600
                                                                  2^n
    400
    200
                                                                                    n^2
      0                                                                           n log n
                                                                                    n n
                                                                                     log
          1   2    3     4     5       6       7      8      9           10      11

log n     0   1   1.58   2    2.32    2.58    2.81    3     3.17        3.32    3.46
n         1   2    3     4      5       6       7     8       9          10      11
n log n   0   2   4.75   8    11.61   15.51   19.65   24    28.53       33.22   38.05
n^2       1   4    9     16    25      36      49     64     81         100     121
n^3       1   8   27     64   125     216     343     512   729         1000    1331
2^n       2   4    8     16    32      64     128     256   512         1024    2048
Still on the Graph
      2000
      1800
      1600
      1400
                                                                                               n^3
      1200                                                                                    10*n^2
      1000
       800                                                                                 20*n log n
       600                                                                                       50*n
                                                                            2^n
       400                                                                                 100*log n
       200
         0
             1    2      3      4       5       6        7      8       9          10       11

100*log n    0    100   158.5   200   232.19   258.5   280.74   300   316.99      332.19   345.94
50*n         50   100   150     200    250     300      350     400    450         500      550
20*n log n   0    40    95.1    160   232.19   310.2   393.03   480   570.59      664.39   761.07
10*n^2       10   40     90     160    250     360      490     640    810        1000     1210
n^3          1    8      27     64     125     216      343     512    729        1000     1331
2^n          2    4       8     16     32       64      128     256    512        1024     2048

Time complexity

  • 1.
    CS 213 Data Structuresand Algorithms Second Semester, 2011-2012
  • 2.
    Sum of Squares intsumOfSquares(int n){ int sum = 0; for(int i=1; i<=n; i++) sum = sum + i*i; return sum; }  T(n) = 5n + 4
  • 3.
    Selection Sort Given thefollowing numbers in an array: 53 23 10 34 2 17 2 23 10 34 53 17 2 10 23 34 53 17 2 10 17 34 53 23 2 10 17 23 53 34 2 10 17 23 34 53
  • 4.
    Still on SelectionSort void selectionSort(int A[], int n){ for(int i=0; i<n; i++){ int min = i; for(int j=i+1; j<n; j++){ if(A[j] < A[min]) min = j; What is this function’s T(n)? What } we need is to compute for T(n) int temp = A[i]; from the inner loop going A[i] = A[min]; outwards. A[min] = temp; We need to use the summation } notation to solve the T(n). }
  • 5.
    The Summation Notation = x1 + x2 + x3 + x4
  • 6.
    Still on thesummation notation 4 n ∑ i = 1+2+3+4 = 10 ∑i = n ( n +1) 2 i =1 i=1 5 n ∑ 3 = 3+3+3+3+3 = 15 ∑c =nc =15 i=1 i=1
  • 7.
    Exercise  for(int i=1;i<=5; i++) cout<<endl;  for(int i=1; i<=n; i++) cout<<endl;  for(int i=3; i<=m; i++) cout<<endl;  for(int i=1; i<=6; i++) for(int j=1; j<=8; j++) cout<<endl;  for(int i=1; i<=n; i++) for(int j=1; j<=n; j++) cout<<endl;  for(int i=1; i<=m; i++) for(int j=1; j<=m; j++) cout<<endl;  for(int i=1; i<=n; i++) for(int j=i; j<=n; j++) cout<<endl;
  • 8.
    Going back tothe Selection Sort void selectionSort(int A[], int n){ for(int i=0; i<n; i++){ n n n int min = i; for(int j=i+1; j<n; j++){ ∑ ∑ c =∑ c(n-i+1-1) if(A[j] < A[min]) i=1 j=i+1 i=1 min = j; } n n int temp = A[i]; A[i] = A[min]; ∑ c(n-i) = c n-i∑ A[min] = temp; i=1 i=1 } n n n } ∑ n-i = ∑ n - ∑ i i=1 i=1 i=1
  • 9.
    Time Complexity A functionthat maps problem size into the time required to solve the problem. Typically, we are interested in the inherent complexity of computing the solution to problems in a particular class.
  • 10.
    Lower Bound  Wemight want to know how fast we can sort a list of n items, initially in an arbitrary order, regardless of the algorithm used.  What is sought here is the lower bound, L(n), on sorting, a property of the sorting problem and not of any particular algorithm.  This says that no algorithm can do the job in fewer than L(n) time units for arbitrary inputs.
  • 11.
    Upper Bound  Wemight also like to know how long it would take to sort such list using a known algorithm with a worst-case input.  What is sought here is the upper bound, U(n), which says that for arbitrary inputs we can always sort in time at most U(n).
  • 12.
    Goal of TimeComplexity Analysis  While there are apparently two complexity functions for problems, L(n) and U(n), the ultimate goal is to make these two bounds coincide.  This is the optimal algorithm which has L(n) = U(n).  For some of the problems, this goal has not been realized yet!
  • 13.
    Invitation Consider this, CS213, as you journey into finding optimal solutions to classes of problems! Who knows, you might win a million dollars ($$$) from Claymath Foundation!
  • 14.
    Upper Bound Complexity Thereare two ways in analyzing this bound: Counting instructions Solving recurrences Both are used to find the worst case of an algorithm.
  • 15.
    Big O-Notation (O(g(n))) TheO-notation is used to describe the worst-case running time of an algorithm. O(n) means that the growth of the running time of the algorithm is a function of n. O-notation computes for the upper bound.
  • 16.
    O-Notation Defined O(g(n)) ={f(n): ∃ c>0, n0>0 s.t. 0 ≤ f(n) ≤ cg(n) for all n ≥ n0}. Example: Check if (n2/2) – 3n ∈ O(n2) (n2/2) – 3n ≤ cn2 ½ - 3/n ≤ c Choosing c = ½, n0 = 6 proves the claim.
  • 17.
    Another Example 3n2 -100n + 6 ∈ O(n2) ? 3n2 - 100n + 6 ≤ cn2 3 – 100/n + 6/n2 ≤ c At this point, we have to choose a c>0 and an n0 What values will prove our claim?
  • 18.
    Lower Bound Complexity This is the more difficult of the bounds.  There is no algorithm to analyze.  Ω(g(n)) is used to describe the lower bound of the running time of the algorithm or minimum possible running time of the algorithm.
  • 19.
    Ω-Notation Ω(g(n)) = {f(n):∃ c>0, n0>0 s.t. 0 ≤ cg(n) ≤ f(n) for all n ≥ n0}. Example: Check if (n2/2) – 3n ∈ Ω(n2) cn2 ≤ (n2/2) – 3n c ≤ ½ - 3/n Choosing c = 1/14, n0 = 7 proves the claim.
  • 20.
    Another Example  Checkif 3n2 - 100n + 6 ∈ Ω(n)  cn ≤ 3n2 - 100n + 6  c ≤ 3n – 100 + 6/n  At this point we need to find a c and an n0 that will prove our claim.  What values of c and n0 will suffice the inequality??
  • 21.
    θ-Notation Used to denotethat the lower and upper bounds of the running time of the algorithm is tight, i.e. the growth rate of the upper and lower bounds are the same.
  • 22.
    θ-Notation Defined θ(g(n)) ={f(n): ∃ c1>0, c2>0, n0>0 s.t. 0 ≤ c1g(n) ≤ f(n) ≤ c2g(n) for all n ≥ n0}. f(n) ∈ θ(g(n)) if f(n) ∈ O(g(n)) and f(n) ∈ Ω(g(n))
  • 23.
    Complexity Classes Description O-notation constant O(1) logarithmic O(log n) linear O(n) n log n O(n log n) quadratic O(n2) cubic O(n3) polynomial O(nk), k≥1 exponential O(an), a>1
  • 24.
    Growth rate ofcomplexity classes class n=2 n=16 n=256 n=1024 1 1 1 1 1 log n 1 4 8 10 n 2 16 256 1024 n log n 2 64 2048 10240 n^2 4 256 65536 1048576 n^3 8 4096 16777216 1.07E+09 2^n 4 65536 1.16E+77 1.8E+308
  • 25.
    Graph of theGrowth Rates 50 n^2 45 40 n log n 35 2^n 30 n^3 25 20 15 10 n 5 log n 0 1 2 3 4 5 6 7 8 9 10 11 log n 0 1 1.58 2 2.32 2.58 2.81 3 3.17 3.32 3.46 n 1 2 3 4 5 6 7 8 9 10 11 n log n 0 2 4.75 8 11.61 15.51 19.65 24 28.53 33.22 38.05 n^2 1 4 9 16 25 36 49 64 81 100 121 n^3 1 8 27 64 125 216 343 512 729 1000 1331 2^n 2 4 8 16 32 64 128 256 512 1024 2048
  • 26.
    Bigger N 2000 1800 1600 1400 n^3 1200 1000 800 600 2^n 400 200 n^2 0 n log n n n log 1 2 3 4 5 6 7 8 9 10 11 log n 0 1 1.58 2 2.32 2.58 2.81 3 3.17 3.32 3.46 n 1 2 3 4 5 6 7 8 9 10 11 n log n 0 2 4.75 8 11.61 15.51 19.65 24 28.53 33.22 38.05 n^2 1 4 9 16 25 36 49 64 81 100 121 n^3 1 8 27 64 125 216 343 512 729 1000 1331 2^n 2 4 8 16 32 64 128 256 512 1024 2048
  • 27.
    Still on theGraph 2000 1800 1600 1400 n^3 1200 10*n^2 1000 800 20*n log n 600 50*n 2^n 400 100*log n 200 0 1 2 3 4 5 6 7 8 9 10 11 100*log n 0 100 158.5 200 232.19 258.5 280.74 300 316.99 332.19 345.94 50*n 50 100 150 200 250 300 350 400 450 500 550 20*n log n 0 40 95.1 160 232.19 310.2 393.03 480 570.59 664.39 761.07 10*n^2 10 40 90 160 250 360 490 640 810 1000 1210 n^3 1 8 27 64 125 216 343 512 729 1000 1331 2^n 2 4 8 16 32 64 128 256 512 1024 2048