AI Game Search
MENOUFIA UNIVERSITY
FACULTY OF COMPUTERS AND INFORMATION
ALL DEPARTMENTS
ARTIFICIAL INTELLIGENCE
‫المنوفية‬ ‫جامعة‬
‫والمعلومات‬ ‫الحاسبات‬ ‫كلية‬
‫األقسام‬ ‫جميع‬
‫الذكاء‬‫اإلصطناعي‬
‫المنوفية‬ ‫جامعة‬
Ahmed Fawzy Gad
ahmed.fawzy@ci.menofia.edu.eg
Minimax
Minimax Game Search
Minimax Game Search
Two Players take turns:
Max and Min
Minimax Game Search
Two Players take turns:
Max and Min
Max : Maximizes Score.
Min : Minimizes Score.
MAX
Minimax Game Search
Two Players take turns:
Max and MinMAX
MIN
Minimax Game Search
Two Players take turns:
Max and Min
Max : Maximizes Score.
Min : Minimizes Score.
MAX
MIN
Minimax Game Search
Two Players take turns:
Max and Min
Max : Maximizes Score.
Min : Minimizes Score.
Special Case.
Max is an expert.
Min is a beginner.
MAX
MIN
Minimax Game Search
A
Minimax Game Search
Which node to follow?
No heuristic values.
A
B C
Minimax Game Search
Which node to follow?
No heuristic values.
A
B C
Minimax Game Search
Which node to follow?
No heuristic values.
A
B C
Hot to find heuristic values
for other nodes?
Minimax Game Search
Which node to follow?
No heuristic values.
A
B C
Hot to find heuristic values
for other nodes?
Use children heuristics to
calculate parent heuristic.
Minimax Game Search
Which node to follow?
No heuristic values.
A
B C
Hot to find heuristic values
for other nodes?
Use children heuristics to
calculate parent heuristic.
Minimax Game
Search Steps
Minimax Game Search
Which node to follow?
No heuristic values.
A
B C
Hot to find heuristic values
for other nodes?
Use children heuristics to
calculate parent heuristic.
Minimax Game
Search Steps
Calculate
Heuristics
Minimax Game Search
Which node to follow?
No heuristic values.
A
B C
Hot to find heuristic values
for other nodes?
Use children heuristics to
calculate parent heuristic.
Minimax Game
Search Steps
Calculate
Heuristics
Search
Phase 1 : Heuristic Value Calculation
Depth-First Search
A
Phase 1 : Heuristic Value Calculation
Depth-First Search
A
B
Phase 1 : Heuristic Value Calculation
Depth-First Search
A
B C
Phase 1 : Heuristic Value Calculation
Depth-First Search
A
B CB C
Phase 1 : Heuristic Value Calculation
Depth-First Search
A
B
B
C
Phase 1 : Heuristic Value Calculation
Depth-First Search
A
B
B
C
D E
B C
Phase 1 : Heuristic Value Calculation
Depth-First Search
A
B
B
C
D E
B C
D E
Phase 1 : Heuristic Value Calculation
Depth-First Search
A
B
B
D
C
D E
B C
D E
Phase 1 : Heuristic Value Calculation
Depth-First Search
A
B
B
D
H I
C
D E
J
B C
D E
Phase 1 : Heuristic Value Calculation
Depth-First Search
A
B
B
D
H I
C
D E
J
B C
D E
H I J
Phase 1 : Heuristic Value Calculation
Depth-First Search
A
B
B
D
H I
C
D E
J
B C
D E
H I J
Phase 1 : Heuristic Value Calculation
Depth-First Search
A
B
B
D
H I
C
D E
J
3 -2 5
B C
D E
H I J
Phase 1 : Heuristic Value Calculation
Depth-First Search
A
B
B
D
H I
C
D E
J
3 -2 5
B C
D E
H I J
Max
Phase 1 : Heuristic Value Calculation
Depth-First Search
A
B
B
D
H I
C
D E
J
3 -2 5
B C
D E
H I J
Max
5
Phase 1 : Heuristic Value Calculation
Depth-First Search
A
B
B
D
H I
C
D E
J
3 -2 5
B C
D E
H I J
Max
5
5
Phase 1 : Heuristic Value Calculation
Depth-First Search
A
B
B
D
H I
C
D E
J
3 -2 5
B C
D E
H I J
Max
5
5
5
Phase 1 : Heuristic Value Calculation
Depth-First Search
A
B
B
D
H I
C
D E
J
3 -2 5
B C
D E
H I J
Max
5
5
5
5
Phase 1 : Heuristic Value Calculation
Depth-First Search
A
B
B
C
D E
B C
D E5
5
Phase 1 : Heuristic Value Calculation
Depth-First Search
A
B
B
E
C
D E
B C
D E5
5
Phase 1 : Heuristic Value Calculation
Depth-First Search
A
B
B
E
K L
C
D E
M
B C
D E5
5
Phase 1 : Heuristic Value Calculation
Depth-First Search
A
B
B
E
K L
C
D E
M
B C
D E
K L M
5
5
Phase 1 : Heuristic Value Calculation
Depth-First Search
A
B
B
E
K L
C
D E
M
7 0 3
B C
D E
K L M
5
5
Phase 1 : Heuristic Value Calculation
Depth-First Search
A
B
B
E
K L
C
D E
M
7 0 3
B C
D E
K L M
Max
5
5
Phase 1 : Heuristic Value Calculation
Depth-First Search
A
B
B
E
K L
C
D E
M
7 0 3
B C
D E
K L M
Max
7
5
5
Phase 1 : Heuristic Value Calculation
Depth-First Search
A
B
B
E
K L
C
D E
M
7 0 3
B C
D E
K L M
Max
7
7
5
5
Phase 1 : Heuristic Value Calculation
Depth-First Search
A
B
B
E
K L
C
D E
M
7 0 3
B C
D E
K L M
Max
7
7
75
5
Phase 1 : Heuristic Value Calculation
Depth-First Search
A
B
B
E
K L
C
D E
M
7 0 3
B C
D E
K L M
Max
7
7
7
Min
5
75
Phase 1 : Heuristic Value Calculation
Depth-First Search
A
B
B
E
K L
C
D E
M
7 0 3
B C
D E
K L M
Max
7
7
7
Min5
55
75
Phase 1 : Heuristic Value Calculation
Depth-First Search
A
B
B
E
K L
C
D E
M
7 0 3
B C
D E
K L M
Max
7
7
7
Min5
5
55
75
Phase 1 : Heuristic Value Calculation
Depth-First Search
A
B
B
E
K L
C
D E
M
7 0 3
B C
D E
K L M
Max
7
7
7
Min5
5
55
7
5
5
Phase 1 : Heuristic Value Calculation
Depth-First Search
A
B CB C5
7
5
5
Phase 1 : Heuristic Value Calculation
Depth-First Search
A
B
C
CB C5
7
5
5
Phase 1 : Heuristic Value Calculation
Depth-First Search
A
B
C
C
F G
B C5
7
5
5
Phase 1 : Heuristic Value Calculation
Depth-First Search
A
B
C
C
F G
B C5
F G
7
5
5
Phase 1 : Heuristic Value Calculation
Depth-First Search
A
B
C
F
C
F G
B C5
F G
7
5
5
Phase 1 : Heuristic Value Calculation
Depth-First Search
A
B
C
F
N O
C
F G
P
B C5
F G
7
5
5
Phase 1 : Heuristic Value Calculation
Depth-First Search
A
B
C
F
N O
C
F G
P
B C
N O P
5
F G
7
5
5
Phase 1 : Heuristic Value Calculation
Depth-First Search
A
B
C
F
N O
C
F G
P
0 -5 4
B C
N O P
5
F G
7
5
5
Phase 1 : Heuristic Value Calculation
Depth-First Search
A
B
C
F
N O
C
F G
P
0 -5 4
B C
N O P
Max
5
F G
7
5
5
Phase 1 : Heuristic Value Calculation
Depth-First Search
A
B
C
F
N O
C
F G
P
0 -5 4
B C
N O P
Max
4
5
F G
7
5
5
Phase 1 : Heuristic Value Calculation
Depth-First Search
A
B
C
F
N O
C
F G
P
0 -5 4
B C
N O P
Max
4
5
4
F G
7
5
5
Phase 1 : Heuristic Value Calculation
Depth-First Search
A
B
C
F
N O
C
F G
P
0 -5 4
B C
N O P
Max
4
5
4
F G4
7
5
5
Phase 1 : Heuristic Value Calculation
Depth-First Search
A
B
C
F
N O
C
F G
P
0 -5 4
B C
N O P
Max
4
5
4
F G4
47
5
5
Phase 1 : Heuristic Value Calculation
Depth-First Search
A
B
C
C
F G
B C5
F G4
47
5
5
Phase 1 : Heuristic Value Calculation
Depth-First Search
A
B
C
G
C
F G
B C5
F G4
47
5
5
Phase 1 : Heuristic Value Calculation
Depth-First Search
A
B
C
G
Q R
C
F G
S
B C5
F G4
47
5
5
Phase 1 : Heuristic Value Calculation
Depth-First Search
A
B
C
G
Q R
C
F G
S
B C
Q R S
5
F G4
47
5
5
Phase 1 : Heuristic Value Calculation
Depth-First Search
A
B
C
G
Q R
C
F G
S
-6 8 2
B C
Q R S
5
F G4
47
5
5
Phase 1 : Heuristic Value Calculation
Depth-First Search
A
B
C
G
Q R
C
F G
S
-6 8 2
B C
Q R S
Max
5
F G4
47
5
5
Phase 1 : Heuristic Value Calculation
Depth-First Search
A
B
C
G
Q R
C
F G
S
-6 8 2
B C
Q R S
Max
8
5
F G4
47
5
5
Phase 1 : Heuristic Value Calculation
Depth-First Search
A
B
C
G
Q R
C
F G
S
-6 8 2
B C
Q R S
Max
8
5
8
F G4
47
5
5
Phase 1 : Heuristic Value Calculation
Depth-First Search
A
B
C
G
Q R
C
F G
S
-6 8 2
B C
Q R S
Max
8
5
8
F G4 8
47
5
5
Phase 1 : Heuristic Value Calculation
Depth-First Search
A
B
C
G
Q R
C
F G
S
-6 8 2
B C
Q R S
Max
8
5
8
F G4 8
Min
847
5
5
Phase 1 : Heuristic Value Calculation
Depth-First Search
A
B
C
G
Q R
C
F G
S
-6 8 2
B C
Q R S
Max
8
5
8
F G4 8
Min4
4
847
5
5
Phase 1 : Heuristic Value Calculation
Depth-First Search
A
B
C
G
Q R
C
F G
S
-6 8 2
B C
Q R S
Max
8
5
8
F G4 8
Min4
4
4
847
5
5
4
Max
Phase 1 : Heuristic Value Calculation
Depth-First Search
A
B
C
G
Q R
C
F G
S
-6 8 2
B C
Q R S
Max
8
5
8
F G4 8
Min4
4
4
847
5
5
4
Max
Phase 1 : Heuristic Value Calculation
Depth-First Search
A
B
C
G
Q R
C
F G
S
-6 8 2
B C
Q R S
Max
8
5
8
F G4 8
Min4
4
4
5
8
4
47
5
5
Max
Phase 1 : Heuristic Value Calculation
Depth-First Search
A
B
C
G
Q R
C
F G
S
-6 8 2
B C
Q R S
Max
8
5
8
F G4 8
Min4
4
4
5
5
8
4
47
5
5
Max
Phase 1 : Heuristic Value Calculation
Depth-First Search
A
B
C
G
Q R
C
F G
S
-6 8 2
B C
Q R S
Max
8
5
8
F G4 8
Min4
4
4
5
5
8
4
5
47
5
5
Max
Phase 1 : Heuristic Value Calculation
Depth-First Search
A
B
C
G
Q R
C
F G
S
-6 8 2
B C
Q R S
Max
8
5
8
F G4 8
Min4
4
4
5
5
8
4
5
47
5
5
If both players play optimally then Max will win by a score 5.
Game Tree After Heuristic Value Calculation
8
4
5
47
5
5
Phase 2 : Game Search
8
4
5
47
5
5
Phase 2 : Game Search
8
4
5
47
5
5
A
Phase 2 : Game Search
8
4
5
47
5
5
BMax
A
Phase 2 : Game Search
8
4
5
47
5
5
B
D
Max
A
Min
Phase 2 : Game Search
8
4
5
47
5
5
B
D
J
Max
Min
Max
A
Minimax Game Search Drawback
• Expands all the tree
while not all
expanded nodes are
useful.
Minimax Game Search Drawback
• Expands all the tree
while not all
expanded nodes are
useful.
• In this example, just
few nodes of the
whole tree was useful
in reaching the goal.
Alpha-Beta Pruning
Alpha-Beta Pruning = Minimax Except
• This game search strategy is a modification to Minimax game search
that avoids exploring nodes that are not useful in the search.
• It gives the same results as Minimax but avoids exploring some
nodes.
• In the previous example, the path explored using Minimax was A-B-D-
J.
• Also the Alpha-Beta Pruning path will be A-B-D-J but without
exploring all nodes as in Minimax.
Alpha-Beta Pruning Motivation
Never explore values that are not useful.
=Min(Max(1, 2, 5), Max(6, x, y), Max(1, 3, 4))
=Min(5, Max(6, x, y), 4)
=Min(Max(6, x, y), 4)
=4
Alpha-Beta Game Search
Alpha-Beta Game Search
Alpha-Beta Game Search
Alpha-Beta Game Search
Alpha-Beta Game Search
Alpha-Beta Game Search
5
Alpha-Beta Game Search
5
5
Alpha-Beta Game Search
5
5
Alpha-Beta Game Search
5
5
Alpha-Beta Game Search
5
5
Alpha-Beta Game Search
7
5
5
Alpha-Beta Game Search
7
5
5
Min(5, max(7, x, y))
=5
Alpha-Beta Game Search
7
5
5
Alpha-Beta Game Search
7
5
5
Alpha-Beta Game Search
7
5
5
Alpha-Beta Game Search
7
5
5
5
Alpha-Beta Game Search
7
5
5
5
Alpha-Beta Game Search
7
5
5
5
Alpha-Beta Game Search
7
5
5
5
Alpha-Beta Game Search
7
5
5
5
Alpha-Beta Game Search
7
5
5
5
4
Alpha-Beta Game Search
7
5
5
5
4
4
Max(5, min(4, x, y, z))
=5
Alpha-Beta Game Search
7
5
5
5
4
4
Alpha-Beta Game Search
7
5
5
5
4
4
Alpha-Beta Game Search
7
5
5
5
4
4
Same results as Minimax
with fewer nodes explored.
5 Unexplored Branches.

Artificial Intelligence Game Search by Examples

  • 1.
    AI Game Search MENOUFIAUNIVERSITY FACULTY OF COMPUTERS AND INFORMATION ALL DEPARTMENTS ARTIFICIAL INTELLIGENCE ‫المنوفية‬ ‫جامعة‬ ‫والمعلومات‬ ‫الحاسبات‬ ‫كلية‬ ‫األقسام‬ ‫جميع‬ ‫الذكاء‬‫اإلصطناعي‬ ‫المنوفية‬ ‫جامعة‬ Ahmed Fawzy Gad ahmed.fawzy@ci.menofia.edu.eg
  • 2.
  • 3.
  • 4.
    Minimax Game Search TwoPlayers take turns: Max and Min
  • 5.
    Minimax Game Search TwoPlayers take turns: Max and Min Max : Maximizes Score. Min : Minimizes Score. MAX
  • 6.
    Minimax Game Search TwoPlayers take turns: Max and MinMAX MIN
  • 7.
    Minimax Game Search TwoPlayers take turns: Max and Min Max : Maximizes Score. Min : Minimizes Score. MAX MIN
  • 8.
    Minimax Game Search TwoPlayers take turns: Max and Min Max : Maximizes Score. Min : Minimizes Score. Special Case. Max is an expert. Min is a beginner. MAX MIN
  • 9.
  • 10.
    Minimax Game Search Whichnode to follow? No heuristic values. A B C
  • 11.
    Minimax Game Search Whichnode to follow? No heuristic values. A B C
  • 12.
    Minimax Game Search Whichnode to follow? No heuristic values. A B C Hot to find heuristic values for other nodes?
  • 13.
    Minimax Game Search Whichnode to follow? No heuristic values. A B C Hot to find heuristic values for other nodes? Use children heuristics to calculate parent heuristic.
  • 14.
    Minimax Game Search Whichnode to follow? No heuristic values. A B C Hot to find heuristic values for other nodes? Use children heuristics to calculate parent heuristic. Minimax Game Search Steps
  • 15.
    Minimax Game Search Whichnode to follow? No heuristic values. A B C Hot to find heuristic values for other nodes? Use children heuristics to calculate parent heuristic. Minimax Game Search Steps Calculate Heuristics
  • 16.
    Minimax Game Search Whichnode to follow? No heuristic values. A B C Hot to find heuristic values for other nodes? Use children heuristics to calculate parent heuristic. Minimax Game Search Steps Calculate Heuristics Search
  • 17.
    Phase 1 :Heuristic Value Calculation Depth-First Search A
  • 18.
    Phase 1 :Heuristic Value Calculation Depth-First Search A B
  • 19.
    Phase 1 :Heuristic Value Calculation Depth-First Search A B C
  • 20.
    Phase 1 :Heuristic Value Calculation Depth-First Search A B CB C
  • 21.
    Phase 1 :Heuristic Value Calculation Depth-First Search A B B C
  • 22.
    Phase 1 :Heuristic Value Calculation Depth-First Search A B B C D E B C
  • 23.
    Phase 1 :Heuristic Value Calculation Depth-First Search A B B C D E B C D E
  • 24.
    Phase 1 :Heuristic Value Calculation Depth-First Search A B B D C D E B C D E
  • 25.
    Phase 1 :Heuristic Value Calculation Depth-First Search A B B D H I C D E J B C D E
  • 26.
    Phase 1 :Heuristic Value Calculation Depth-First Search A B B D H I C D E J B C D E H I J
  • 27.
    Phase 1 :Heuristic Value Calculation Depth-First Search A B B D H I C D E J B C D E H I J
  • 28.
    Phase 1 :Heuristic Value Calculation Depth-First Search A B B D H I C D E J 3 -2 5 B C D E H I J
  • 29.
    Phase 1 :Heuristic Value Calculation Depth-First Search A B B D H I C D E J 3 -2 5 B C D E H I J Max
  • 30.
    Phase 1 :Heuristic Value Calculation Depth-First Search A B B D H I C D E J 3 -2 5 B C D E H I J Max 5
  • 31.
    Phase 1 :Heuristic Value Calculation Depth-First Search A B B D H I C D E J 3 -2 5 B C D E H I J Max 5 5
  • 32.
    Phase 1 :Heuristic Value Calculation Depth-First Search A B B D H I C D E J 3 -2 5 B C D E H I J Max 5 5 5
  • 33.
    Phase 1 :Heuristic Value Calculation Depth-First Search A B B D H I C D E J 3 -2 5 B C D E H I J Max 5 5 5 5
  • 34.
    Phase 1 :Heuristic Value Calculation Depth-First Search A B B C D E B C D E5 5
  • 35.
    Phase 1 :Heuristic Value Calculation Depth-First Search A B B E C D E B C D E5 5
  • 36.
    Phase 1 :Heuristic Value Calculation Depth-First Search A B B E K L C D E M B C D E5 5
  • 37.
    Phase 1 :Heuristic Value Calculation Depth-First Search A B B E K L C D E M B C D E K L M 5 5
  • 38.
    Phase 1 :Heuristic Value Calculation Depth-First Search A B B E K L C D E M 7 0 3 B C D E K L M 5 5
  • 39.
    Phase 1 :Heuristic Value Calculation Depth-First Search A B B E K L C D E M 7 0 3 B C D E K L M Max 5 5
  • 40.
    Phase 1 :Heuristic Value Calculation Depth-First Search A B B E K L C D E M 7 0 3 B C D E K L M Max 7 5 5
  • 41.
    Phase 1 :Heuristic Value Calculation Depth-First Search A B B E K L C D E M 7 0 3 B C D E K L M Max 7 7 5 5
  • 42.
    Phase 1 :Heuristic Value Calculation Depth-First Search A B B E K L C D E M 7 0 3 B C D E K L M Max 7 7 75 5
  • 43.
    Phase 1 :Heuristic Value Calculation Depth-First Search A B B E K L C D E M 7 0 3 B C D E K L M Max 7 7 7 Min 5 75
  • 44.
    Phase 1 :Heuristic Value Calculation Depth-First Search A B B E K L C D E M 7 0 3 B C D E K L M Max 7 7 7 Min5 55 75
  • 45.
    Phase 1 :Heuristic Value Calculation Depth-First Search A B B E K L C D E M 7 0 3 B C D E K L M Max 7 7 7 Min5 5 55 75
  • 46.
    Phase 1 :Heuristic Value Calculation Depth-First Search A B B E K L C D E M 7 0 3 B C D E K L M Max 7 7 7 Min5 5 55 7 5 5
  • 47.
    Phase 1 :Heuristic Value Calculation Depth-First Search A B CB C5 7 5 5
  • 48.
    Phase 1 :Heuristic Value Calculation Depth-First Search A B C CB C5 7 5 5
  • 49.
    Phase 1 :Heuristic Value Calculation Depth-First Search A B C C F G B C5 7 5 5
  • 50.
    Phase 1 :Heuristic Value Calculation Depth-First Search A B C C F G B C5 F G 7 5 5
  • 51.
    Phase 1 :Heuristic Value Calculation Depth-First Search A B C F C F G B C5 F G 7 5 5
  • 52.
    Phase 1 :Heuristic Value Calculation Depth-First Search A B C F N O C F G P B C5 F G 7 5 5
  • 53.
    Phase 1 :Heuristic Value Calculation Depth-First Search A B C F N O C F G P B C N O P 5 F G 7 5 5
  • 54.
    Phase 1 :Heuristic Value Calculation Depth-First Search A B C F N O C F G P 0 -5 4 B C N O P 5 F G 7 5 5
  • 55.
    Phase 1 :Heuristic Value Calculation Depth-First Search A B C F N O C F G P 0 -5 4 B C N O P Max 5 F G 7 5 5
  • 56.
    Phase 1 :Heuristic Value Calculation Depth-First Search A B C F N O C F G P 0 -5 4 B C N O P Max 4 5 F G 7 5 5
  • 57.
    Phase 1 :Heuristic Value Calculation Depth-First Search A B C F N O C F G P 0 -5 4 B C N O P Max 4 5 4 F G 7 5 5
  • 58.
    Phase 1 :Heuristic Value Calculation Depth-First Search A B C F N O C F G P 0 -5 4 B C N O P Max 4 5 4 F G4 7 5 5
  • 59.
    Phase 1 :Heuristic Value Calculation Depth-First Search A B C F N O C F G P 0 -5 4 B C N O P Max 4 5 4 F G4 47 5 5
  • 60.
    Phase 1 :Heuristic Value Calculation Depth-First Search A B C C F G B C5 F G4 47 5 5
  • 61.
    Phase 1 :Heuristic Value Calculation Depth-First Search A B C G C F G B C5 F G4 47 5 5
  • 62.
    Phase 1 :Heuristic Value Calculation Depth-First Search A B C G Q R C F G S B C5 F G4 47 5 5
  • 63.
    Phase 1 :Heuristic Value Calculation Depth-First Search A B C G Q R C F G S B C Q R S 5 F G4 47 5 5
  • 64.
    Phase 1 :Heuristic Value Calculation Depth-First Search A B C G Q R C F G S -6 8 2 B C Q R S 5 F G4 47 5 5
  • 65.
    Phase 1 :Heuristic Value Calculation Depth-First Search A B C G Q R C F G S -6 8 2 B C Q R S Max 5 F G4 47 5 5
  • 66.
    Phase 1 :Heuristic Value Calculation Depth-First Search A B C G Q R C F G S -6 8 2 B C Q R S Max 8 5 F G4 47 5 5
  • 67.
    Phase 1 :Heuristic Value Calculation Depth-First Search A B C G Q R C F G S -6 8 2 B C Q R S Max 8 5 8 F G4 47 5 5
  • 68.
    Phase 1 :Heuristic Value Calculation Depth-First Search A B C G Q R C F G S -6 8 2 B C Q R S Max 8 5 8 F G4 8 47 5 5
  • 69.
    Phase 1 :Heuristic Value Calculation Depth-First Search A B C G Q R C F G S -6 8 2 B C Q R S Max 8 5 8 F G4 8 Min 847 5 5
  • 70.
    Phase 1 :Heuristic Value Calculation Depth-First Search A B C G Q R C F G S -6 8 2 B C Q R S Max 8 5 8 F G4 8 Min4 4 847 5 5
  • 71.
    Phase 1 :Heuristic Value Calculation Depth-First Search A B C G Q R C F G S -6 8 2 B C Q R S Max 8 5 8 F G4 8 Min4 4 4 847 5 5 4
  • 72.
    Max Phase 1 :Heuristic Value Calculation Depth-First Search A B C G Q R C F G S -6 8 2 B C Q R S Max 8 5 8 F G4 8 Min4 4 4 847 5 5 4
  • 73.
    Max Phase 1 :Heuristic Value Calculation Depth-First Search A B C G Q R C F G S -6 8 2 B C Q R S Max 8 5 8 F G4 8 Min4 4 4 5 8 4 47 5 5
  • 74.
    Max Phase 1 :Heuristic Value Calculation Depth-First Search A B C G Q R C F G S -6 8 2 B C Q R S Max 8 5 8 F G4 8 Min4 4 4 5 5 8 4 47 5 5
  • 75.
    Max Phase 1 :Heuristic Value Calculation Depth-First Search A B C G Q R C F G S -6 8 2 B C Q R S Max 8 5 8 F G4 8 Min4 4 4 5 5 8 4 5 47 5 5
  • 76.
    Max Phase 1 :Heuristic Value Calculation Depth-First Search A B C G Q R C F G S -6 8 2 B C Q R S Max 8 5 8 F G4 8 Min4 4 4 5 5 8 4 5 47 5 5 If both players play optimally then Max will win by a score 5.
  • 77.
    Game Tree AfterHeuristic Value Calculation 8 4 5 47 5 5
  • 78.
    Phase 2 :Game Search 8 4 5 47 5 5
  • 79.
    Phase 2 :Game Search 8 4 5 47 5 5 A
  • 80.
    Phase 2 :Game Search 8 4 5 47 5 5 BMax A
  • 81.
    Phase 2 :Game Search 8 4 5 47 5 5 B D Max A Min
  • 82.
    Phase 2 :Game Search 8 4 5 47 5 5 B D J Max Min Max A
  • 83.
    Minimax Game SearchDrawback • Expands all the tree while not all expanded nodes are useful.
  • 84.
    Minimax Game SearchDrawback • Expands all the tree while not all expanded nodes are useful. • In this example, just few nodes of the whole tree was useful in reaching the goal.
  • 85.
  • 86.
    Alpha-Beta Pruning =Minimax Except • This game search strategy is a modification to Minimax game search that avoids exploring nodes that are not useful in the search. • It gives the same results as Minimax but avoids exploring some nodes. • In the previous example, the path explored using Minimax was A-B-D- J. • Also the Alpha-Beta Pruning path will be A-B-D-J but without exploring all nodes as in Minimax.
  • 87.
    Alpha-Beta Pruning Motivation Neverexplore values that are not useful. =Min(Max(1, 2, 5), Max(6, x, y), Max(1, 3, 4)) =Min(5, Max(6, x, y), 4) =Min(Max(6, x, y), 4) =4
  • 88.
  • 89.
  • 90.
  • 91.
  • 92.
  • 93.
  • 94.
  • 95.
  • 96.
  • 97.
  • 98.
  • 99.
  • 100.
  • 101.
  • 102.
  • 103.
  • 104.
  • 105.
  • 106.
  • 107.
  • 108.
  • 109.
  • 110.
  • 111.
  • 112.
    Alpha-Beta Game Search 7 5 5 5 4 4 Sameresults as Minimax with fewer nodes explored. 5 Unexplored Branches.