SlideShare a Scribd company logo
Analysis of the Blade Boundary-Layer Flow
of a Marine Propeller With RANSE
J. Baltazar1
, D. Melo1
, D. Rijpkema2
1Instituto Superior Técnico, Universidade de Lisboa, Portugal
2Maritime Research Institute Netherlands, Wageningen, the Netherlands
MARINE 2019 Göteborg, Sweden May 13-15 1
Objectives
Comparison between RANS simulations and experimental data
from LDV measurements in the DTRC water tunnel for marine
propeller P4119 (Jessup, 1989):
D [m] 0.3048
c0.7R [m] 0.1409
Z 3
P/D0.7R 1.0839
AE /A0 0.5
Contribute to the understanding of the blade boundary-layer flow
modelling.
MARINE 2019 Göteborg, Sweden May 13-15 2
Performance Prediction at Model-Scale
RANSE solver ReFRESCO
Finite-volume discretisation
Flow variables defined in cell-centres
Turbulence model:
– k − ω SST (Menter et al., 2003)
– Not developed for transition
Transition model:
– γ − R̃eθt (Langtry and Menter, 2009)
– Strong dependency to turbulence intensity Tu
and eddy-viscosity ratio µt/µ
MARINE 2019 Göteborg, Sweden May 13-15 3
Numerical Set-Up
Cylindrical domain (5D)
6 multi-block structured grids: 1M to 38M cells
No wall functions are used (y+
∼ 1)
Uniform inflow (open-water)
Discretisation of convective flux:
– Momentum: QUICK
– Turbulence/Transition: Upwind
MARINE 2019 Göteborg, Sweden May 13-15 4
Grid Generation
Grid Volume Blade y+
max
G1 37.6M 73.9k 0.20
G2 21.0M 42.3k 0.24
G3 9.9M 25.6k 0.31
G4 6.1M 18.6k 0.39
G5 1.9M 8.6k 0.51
G6 0.9M 4.9k 0.66
MARINE 2019 Göteborg, Sweden May 13-15 5
Results Summary
RANS simulations at model-scale (Re ' 9.5 × 105
)
Comparison with experimental data (Jdesign = 0.833)
Evaluation of numerical errors:
– Iterative errors
– Numerical uncertainty estimation
Influence of turbulence quantities:
– Blade flow (limiting streamlines and skin friction)
– Propeller forces
Chordwise and spanwise velocity profiles
Boundary-layer parameters
MARINE 2019 Göteborg, Sweden May 13-15 6
Evaluation of Iterative Error
k − ω SST turbulence model (Tu =1.0% and µt/µ = 1)
Iteration
L
∞
0 20000 40000 60000 80000 100000
10
-8
10
-7
10-6
10
-5
10
-4
10
-3
10
-2
10
-1
UX
UY
UZ
P
k
ω
L∞
Norm
Iteration
L
2
0 20000 40000 60000 80000 100000
10
-10
10
-9
10-8
10
-7
10
-6
10
-5
10
-4
10
-3
UX
UY
UZ
P
k
ω
L2
Norm
Iteration
0 20000 40000 60000 80000 100000
0.10
0.15
0.20
0.25
0.30
Iteration
0 20000 40000 60000 80000 100000
0.10
0.15
0.20
0.25
0.30
KT
10KQ
Propeller Force Coefficients
MARINE 2019 Göteborg, Sweden May 13-15 7
Evaluation of Iterative Error
γ − R̃eθt
transition model (Tu =1.5% and µt/µ = 500)
Iteration
L
∞
0 5000 10000 15000 20000 25000
10
-7
10
-6
10-5
10
-4
10
-3
10
-2
10
-1
100
10
1
UX
UY
UZ
P
k
ω
γ
Reθ
L∞
Norm
Iteration
L
2
0 5000 10000 15000 20000 25000
10
-9
10-8
10
-7
10
-6
10
-5
10
-4
10-3
10
-2
10
-1
10
0
UX
UY
UZ
P
k
ω
γ
Reθ
L2
Norm
Iteration
0 5000 10000 15000 20000 25000
0.10
0.15
0.20
0.25
0.30
Iteration
0 5000 10000 15000 20000 25000
0.10
0.15
0.20
0.25
0.30
KT
10KQ
Propeller Force Coefficients
MARINE 2019 Göteborg, Sweden May 13-15 8
Numerical Uncertainty Estimation
Eça and Hoekstra (2014) procedure
hi
/h1
K
T
0 1 2 3 4
0.140
0.142
0.144
0.146
0.148 k-ω SST : p=0.96 , Unum
=0.55 %
γ-Reθ
: p=1.16 , Unum
=1.03 %
hi
/h1
10K
Q
0 1 2 3 4
0.270
0.273
0.276
0.279
0.282
0.285 k-ω SST : p=1.84 , Unum
=0.20 %
γ-Reθ
: p=1.64 , Unum
=0.51 %
MARINE 2019 Göteborg, Sweden May 13-15 9
Limiting Streamlines and Skin Friction Coefficient
γ − R̃eθt
transition model (Tu =1.2% and µt/µ = 500)
Pressure Side Suction Side
MARINE 2019 Göteborg, Sweden May 13-15 10
Limiting Streamlines and Skin Friction Coefficient
γ − R̃eθt
transition model (Tu =1.5% and µt/µ = 500)
Pressure Side Suction Side
MARINE 2019 Göteborg, Sweden May 13-15 11
Limiting Streamlines and Skin Friction Coefficient
k − ω SST turbulence model (Tu =1.0% and µt/µ = 1)
Pressure Side Suction Side
MARINE 2019 Göteborg, Sweden May 13-15 12
Influence of Turbulence Quantities
Thrust and torque coefficients (pressure p and friction f contributions)
Model Tu µt/µ KTp KTf
KT
γ − R̃eθt 1.2% 500 0.1498 -0.002470 0.1473
γ − R̃eθt 1.5% 500 0.1476 -0.003373 0.1442
k − ω SST 1.0% 1 0.1463 -0.004460 0.1419
Exp. – – – – 0.146
Model Tu µt/µ 10KQp 10KQf
10KQ
γ − R̃eθt 1.2% 500 0.2529 0.01771 0.2706
γ − R̃eθt 1.5% 500 0.2489 0.02422 0.2731
k − ω SST 1.0% 1 0.2472 0.03117 0.2784
Exp. – – – – 0.280
MARINE 2019 Göteborg, Sweden May 13-15 13
Blade Boundary-Layer Flow
Chordwise velocity profiles: r/R = 0.7 (suction side)
Vs /Vref
100
y/c
0.0 0.2 0.4 0.6 0.8 1.0
0.0
0.2
0.4
0.6
0.8
γ-Reθt , Tu=1.2%, µt /µ=500, 100δ/c=0.29
γ-Reθt , Tu=1.5%, µt /µ=500, 100δ/c=0.34
k-ω SST, Tu=1.0%, µt /µ=1, 100δ/c=0.63
Experimental (Tripped Blade)
Experimental (Smooth Blade)
s/c=0.3
Vs /Vref
100
y/c
0.0 0.2 0.4 0.6 0.8 1.0
0.0
0.2
0.4
0.6
0.8
1.0
1.2
γ-Reθt , Tu=1.2%, µt /µ=500, 100δ/c=0.49
γ-Reθt , Tu=1.5%, µt /µ=500, 100δ/c=0.78
k-ω SST, Tu=1.0%, µt /µ=1, 100δ/c=1.01
Experimental (Tripped Blade)
Experimental (Smooth Blade)
s/c=0.5
Vs /Vref
100
y/c
0.0 0.2 0.4 0.6 0.8 1.0
0.0
0.3
0.6
0.9
1.2
1.5
1.8
γ-Reθt , Tu=1.2%, µt /µ=500, 100δ/c=0.92
γ-Reθt , Tu=1.5%, µt /µ=500, 100δ/c=1.24
k-ω SST, Tu=1.0%, µt /µ=1, 100δ/c=1.48
Experimental (Tripped Blade)
Experimental (Smooth Blade)
s/c=0.7
MARINE 2019 Göteborg, Sweden May 13-15 14
Blade Boundary-Layer Flow
Chordwise velocity profiles: r/R = 0.7 (pressure side)
Vs /Vref
100
y/c
0.0 0.2 0.4 0.6 0.8 1.0
0.0
0.2
0.4
0.6
0.8
1.0
γ-Reθt , Tu=1.2%, µt /µ=500, 100δ/c=0.31
γ-Reθt , Tu=1.5%, µt /µ=500, 100δ/c=0.32
k-ω SST, Tu=1.0%, µt /µ=1, 100δ/c=0.75
Experimental (Tripped Blade)
Experimental (Smooth Blade)
s/c=0.39
Vs /Vref
100
y/c
0.0 0.2 0.4 0.6 0.8 1.0
0.0
0.3
0.6
0.9
1.2
1.5
γ-Reθt , Tu=1.2%, µt /µ=500, 100δ/c=0.39
γ-Reθt , Tu=1.5%, µt /µ=500, 100δ/c=0.51
k-ω SST, Tu=1.0%, µt /µ=1, 100δ/c=1.09
Experimental (Tripped Blade)
Experimental (Smooth Blade)
s/c=0.608
Vs /Vref
100
y/c
0.0 0.2 0.4 0.6 0.8 1.0
0.0
0.4
0.8
1.2
1.6
2.0
γ-Reθt , Tu=1.2%, µt /µ=500, 100δ/c=0.50
γ-Reθt , Tu=1.5%, µt /µ=500, 100δ/c=0.99
k-ω SST, Tu=1.0%, µt /µ=1, 100δ/c=1.53
Experimental (Tripped Blade)
Experimental (Smooth Blade)
s/c=0.859
MARINE 2019 Göteborg, Sweden May 13-15 15
Blade Boundary-Layer Flow
Spanwise velocity profiles: r/R = 0.7 (suction side)
Vt /Vref
100
y/c
-0.05 0.00 0.05 0.10 0.15
0.0
0.2
0.4
0.6
0.8
γ-Reθt , Tu=1.2%, µt /µ=500, 100δ/c=0.29
γ-Reθt , Tu=1.5%, µt /µ=500, 100δ/c=0.55
k-ω SST, Tu=1.0%, µt /µ=1, 100δ/c=0.64
Experimental (Smooth Blade)
s/c=0.31
Vt /Vref
100
y/c
-0.05 0.00 0.05 0.10 0.15
0.0
0.2
0.4
0.6
0.8
1.0
1.2
γ-Reθt , Tu=1.2%, µt /µ=500, 100δ/c=0.49
γ-Reθt , Tu=1.5%, µt /µ=500, 100δ/c=0.78
k-ω SST, Tu=1.0%, µt /µ=1, 100δ/c=1.01
Experimental (Smooth Blade)
s/c=0.5
Vt /Vref
100
y/c
-0.05 0.00 0.05 0.10 0.15
0.0
0.4
0.8
1.2
1.6
γ-Reθt , Tu=1.2%, µt /µ=500, 100δ/c=1.07
γ-Reθt , Tu=1.5%, µt /µ=500, 100δ/c=1.39
k-ω SST, Tu=1.0%, µt /µ=1, 100δ/c=1.60
Experimental (Smooth Blade)
s/c=0.77
MARINE 2019 Göteborg, Sweden May 13-15 16
Boundary-Layer Characteristics
(Streamwise)
Boundary-layer thickness δ estimation:
– total pressure-loss:
∆pt = P + 1/2ρV 2
t − Pinlet − 1/2ρ

V 2
inlet + (Ω0.7R)2

– C∆pt = ∆pt/(1/2ρV 2
ref ) = −0.01 (Vδ = 0.995Ve)
with V 2
e = Vs(δ)2 + Vt(δ)2
Displacement thickness δ∗
= 1
Ve
δ
R
0
(Vs(δ) − Vs(y))dy
Momentum thickness θ = 1
V 2
e
δ
R
0
(Vs(δ) − Vs(y))Vs(y)dy
Shape factor H = δ∗
θ
MARINE 2019 Göteborg, Sweden May 13-15 17
Boundary-Layer Characteristics
r/R = 0.7 (suction side)
s/c
100δ/c
0.0 0.2 0.4 0.6 0.8 1.0
0.0
0.5
1.0
1.5
2.0
2.5
γ-Reθt , Tu=1.2%, µt /µ=500
γ-Reθt , Tu=1.5%, µt /µ=500
k-ω SST, Tu=1.0%, µt/µ=1
Boundary-Layer Thickness
s/c
100δ
*
/c
0.0 0.2 0.4 0.6 0.8 1.0
0.0
0.1
0.2
0.3
0.4
γ-Reθt , Tu=1.2%, µt /µ=500
γ-Reθt , Tu=1.5%, µt /µ=500
k-ω SST, Tu=1.0%, µt/µ=1
Experimental (Tripped Blade)
Experimental (Smooth Blade)
Displacement Thickness
s/c
H
0.0 0.2 0.4 0.6 0.8 1.0
0.5
1.0
1.5
2.0
2.5
3.0
γ-Reθt , Tu=1.2%, µt /µ=500
γ-Reθt
, Tu=1.5%, µt
/µ=500
k-ω SST, Tu=1.0%, µt
/µ=1
Experimental (Tripped Blade)
Experimental (Smooth Blade)
Shape Factor
MARINE 2019 Göteborg, Sweden May 13-15 18
Boundary-Layer Characteristics
r/R = 0.7 (pressure side)
s/c
100δ/c
0.0 0.2 0.4 0.6 0.8 1.0
0.0
0.5
1.0
1.5
2.0
γ-Reθt , Tu=1.2%, µt /µ=500
γ-Reθt , Tu=1.5%, µt /µ=500
k-ω SST, Tu=1.0%, µt
/µ=1
Boundary-Layer Thickness
s/c
100δ
*
/c
0.0 0.2 0.4 0.6 0.8 1.0
0.0
0.1
0.2
0.3
0.4
γ-Reθt , Tu=1.2%, µt /µ=500
γ-Reθt , Tu=1.5%, µt /µ=500
k-ω SST, Tu=1.0%, µt
/µ=1
Experimental (Tripped Blade)
Experimental (Smooth Blade)
Displacement Thickness
s/c
H
0.0 0.2 0.4 0.6 0.8 1.0
1.0
1.5
2.0
2.5
3.0
γ-Reθt , Tu=1.2%, µt /µ=500
γ-Reθt
, Tu=1.5%, µt
/µ=500
k-ω SST, Tu=1.0%, µt
/µ=1
Experimental (Tripped Blade)
Experimental (Smooth Blade)
Shape Factor
MARINE 2019 Göteborg, Sweden May 13-15 19
Conclusions
Evaluation of numerical errors:
– γ − R̃eθt model does not satisfy iterative convergence criterion.
Expected small influence on propeller forces
– Low numerical uncertainties ( 2%) for force coefficients
k − ω SST model correctly predicts the velocity profiles in fully
turbulent region (tripped blade)
γ − R̃eθt model predicts laminar-turbulent transition:
– Strong sensitivity to inlet turbulence quantities
– Selection based on experimental velocity profiles (smooth blade)
– However, may limit the predictive capabilities of the model!
Evolution of the streamwise boundary-layer quantities show
typical laminar and turbulent flow behaviours
MARINE 2019 Göteborg, Sweden May 13-15 20
Influence of Grid Refinement
Variation of propeller force coefficients
Model k − ω SST γ − R̃eθt
Grid ∆KT ∆KQ ∆η0 ∆KT ∆KQ ∆η0
0.9M 1.0% 1.4% -0.4% -0.6% 2.4% -2.8%
1.9M 0.6% 0.8% -0.3% -0.7% 1.4% -2.1%
6.1M 0.4% 0.3% 0.0% -0.6% 0.6% -1.1%
9.9M 0.2% 0.2% 0.0% -0.6% 0.3% -0.8%
21.0M 0.1% 0.1% 0.0% -0.2% 0.1% -0.3%
37.6M 0.1416 0.2779 0.676 0.1450 0.2722 0.706
MARINE 2019 Göteborg, Sweden May 13-15 21
Influence of Grid Refinement
Suction side, s/c = 0.2, r/R = 0.7
Vs /Vref
100
y/c
0.0 0.2 0.4 0.6 0.8 1.0
0.0
0.1
0.2
0.3
0.4
0.5
Grid with 9.9M cells
Grid with 37.6M cells
k-ω SST Turbulence Model
Vs /Vref
100
y/c
0.0 0.2 0.4 0.6 0.8 1.0
0.0
0.1
0.2
0.3
0.4
Grid with 9.9M cells
Grid with 37.6M cells
γ-Reθt
Transition Model
MARINE 2019 Göteborg, Sweden May 13-15 22
Blade Boundary-Layer Flow
Chordwise velocity profiles: r/R = 0.7 (suction side)
Vs /Vref
100
y/c
0.0 0.2 0.4 0.6 0.8 1.0
0.0
0.2
0.4
0.6
0.8
γ-Reθt , Tu=1.2%, µt /µ=500, 100δ/c=0.23
γ-Reθt , Tu=1.5%, µt /µ=500, 100δ/c=0.22
k-ω SST, Tu=1.0%, µt /µ=1, 100δ/c=0.42
Experimental (Tripped Blade)
Experimental (Smooth Blade)
s/c=0.2
Vs /Vref
100
y/c
0.0 0.2 0.4 0.6 0.8 1.0
0.0
0.3
0.6
0.9
1.2
1.5
γ-Reθt , Tu=1.2%, µt /µ=500, 100δ/c=0.69
γ-Reθt , Tu=1.5%, µt /µ=500, 100δ/c=0.98
k-ω SST, Tu=1.0%, µt /µ=1, 100δ/c=1.23
Experimental (Tripped Blade)
Experimental (Smooth Blade)
s/c=0.6
Vs /Vref
100
y/c
0.0 0.2 0.4 0.6 0.8 1.0
0.0
0.5
1.0
1.5
2.0
2.5
γ-Reθt , Tu=1.2%, µt /µ=500, 100δ/c=1.47
γ-Reθt , Tu=1.5%, µt /µ=500, 100δ/c=1.83
k-ω SST, Tu=1.0%, µt /µ=1, 100δ/c=2.09
Experimental (Tripped Blade)
Experimental (Smooth Blade)
s/c=0.9
MARINE 2019 Göteborg, Sweden May 13-15 23
Blade Boundary-Layer Flow
Spanwise velocity profiles: r/R = 0.7 (suction side)
Vt /Vref
100
y/c
-0.05 0.00 0.05 0.10 0.15
0.0
0.2
0.4
0.6
0.8
1.0
γ-Reθt , Tu=1.2%, µt /µ=500, 100δ/c=0.36
γ-Reθt , Tu=1.5%, µt /µ=500, 100δ/c=0.55
k-ω SST, Tu=1.0%, µt /µ=1, 100δ/c=0.82
Experimental (Smooth Blade)
s/c=0.4
Vt /Vref
100
y/c
-0.05 0.00 0.05 0.10 0.15
0.0
0.4
0.8
1.2
1.6
γ-Reθt , Tu=1.2%, µt /µ=500, 100δ/c=0.69
γ-Reθt , Tu=1.5%, µt /µ=500, 100δ/c=0.98
k-ω SST, Tu=1.0%, µt /µ=1, 100δ/c=1.21
Experimental (Smooth Blade)
s/c=0.6
MARINE 2019 Göteborg, Sweden May 13-15 24

More Related Content

What's hot

Bifilar trifilar suspension apparatus
Bifilar trifilar suspension apparatusBifilar trifilar suspension apparatus
Bifilar trifilar suspension apparatus
LiaquatKhan17
 
French standard for deep foundations roger frank
French standard for deep foundations   roger frankFrench standard for deep foundations   roger frank
French standard for deep foundations roger frank
cfpbolivia
 
Spt energy calibration frank rausche
Spt energy calibration  frank rauscheSpt energy calibration  frank rausche
Spt energy calibration frank rausche
cfpbolivia
 
Mechanical vibration lab_manual
Mechanical vibration lab_manualMechanical vibration lab_manual
Mechanical vibration lab_manual
Rajnish kumar
 
All experiments 1
All experiments 1All experiments 1
All experiments 1
Khedija Ben Tourkia
 
SPECTRAL-BASED FATIGUE ASSESSMENT OF FSO
SPECTRAL-BASED FATIGUE ASSESSMENT OF FSOSPECTRAL-BASED FATIGUE ASSESSMENT OF FSO
SPECTRAL-BASED FATIGUE ASSESSMENT OF FSO
SUMARDIONO .
 
SPICE MODEL of SSM3K36FS (Professional+BDP Model) in SPICE PARK
SPICE MODEL of SSM3K36FS (Professional+BDP Model) in SPICE PARKSPICE MODEL of SSM3K36FS (Professional+BDP Model) in SPICE PARK
SPICE MODEL of SSM3K36FS (Professional+BDP Model) in SPICE PARK
Tsuyoshi Horigome
 

What's hot (7)

Bifilar trifilar suspension apparatus
Bifilar trifilar suspension apparatusBifilar trifilar suspension apparatus
Bifilar trifilar suspension apparatus
 
French standard for deep foundations roger frank
French standard for deep foundations   roger frankFrench standard for deep foundations   roger frank
French standard for deep foundations roger frank
 
Spt energy calibration frank rausche
Spt energy calibration  frank rauscheSpt energy calibration  frank rausche
Spt energy calibration frank rausche
 
Mechanical vibration lab_manual
Mechanical vibration lab_manualMechanical vibration lab_manual
Mechanical vibration lab_manual
 
All experiments 1
All experiments 1All experiments 1
All experiments 1
 
SPECTRAL-BASED FATIGUE ASSESSMENT OF FSO
SPECTRAL-BASED FATIGUE ASSESSMENT OF FSOSPECTRAL-BASED FATIGUE ASSESSMENT OF FSO
SPECTRAL-BASED FATIGUE ASSESSMENT OF FSO
 
SPICE MODEL of SSM3K36FS (Professional+BDP Model) in SPICE PARK
SPICE MODEL of SSM3K36FS (Professional+BDP Model) in SPICE PARKSPICE MODEL of SSM3K36FS (Professional+BDP Model) in SPICE PARK
SPICE MODEL of SSM3K36FS (Professional+BDP Model) in SPICE PARK
 

Similar to Analysis of the Blade Boundary-Layer Flow of a Marine Propeller with RANSE

Aircraft propulsion non ideal turbomachine 2 d
Aircraft propulsion   non ideal turbomachine 2 dAircraft propulsion   non ideal turbomachine 2 d
Aircraft propulsion non ideal turbomachine 2 d
Anurak Atthasit
 
データセンター省エネ化技術トレンド2018
データセンター省エネ化技術トレンド2018データセンター省エネ化技術トレンド2018
データセンター省エネ化技術トレンド2018
Tadashi Sugita
 
IRJET - Optical Emission Technique for Understanding the Spark Gap Discharge ...
IRJET - Optical Emission Technique for Understanding the Spark Gap Discharge ...IRJET - Optical Emission Technique for Understanding the Spark Gap Discharge ...
IRJET - Optical Emission Technique for Understanding the Spark Gap Discharge ...
IRJET Journal
 
Aircraft propulsion turbomachine 2 d
Aircraft propulsion   turbomachine 2 dAircraft propulsion   turbomachine 2 d
Aircraft propulsion turbomachine 2 d
Anurak Atthasit
 
Nir_pres_Hagana_v1
Nir_pres_Hagana_v1Nir_pres_Hagana_v1
Nir_pres_Hagana_v1
Nir Morgulis
 
Modelling of Laminar-to-Turbulent Flow Transition on a Marine Propeller Using...
Modelling of Laminar-to-Turbulent Flow Transition on a Marine Propeller Using...Modelling of Laminar-to-Turbulent Flow Transition on a Marine Propeller Using...
Modelling of Laminar-to-Turbulent Flow Transition on a Marine Propeller Using...
João Baltazar
 
Advantage of HRAM
Advantage of HRAMAdvantage of HRAM
Advantage of HRAM
Manoj Kushwaha
 
FAST実験4:大気蛍光望遠鏡による極高エネルギー宇宙線観測報告
FAST実験4:大気蛍光望遠鏡による極高エネルギー宇宙線観測報告FAST実験4:大気蛍光望遠鏡による極高エネルギー宇宙線観測報告
FAST実験4:大気蛍光望遠鏡による極高エネルギー宇宙線観測報告
Toshihiro FUJII
 
Original MOSFET N-CHANNEL FQPF11N70 11N70 TO-220 11A 700V New Fairchild
Original MOSFET N-CHANNEL FQPF11N70 11N70 TO-220 11A 700V New FairchildOriginal MOSFET N-CHANNEL FQPF11N70 11N70 TO-220 11A 700V New Fairchild
Original MOSFET N-CHANNEL FQPF11N70 11N70 TO-220 11A 700V New Fairchild
AUTHELECTRONIC
 
Solutions Manual for Water-Resources Engineering 3rd Edition by Chin
Solutions Manual for Water-Resources Engineering 3rd Edition by ChinSolutions Manual for Water-Resources Engineering 3rd Edition by Chin
Solutions Manual for Water-Resources Engineering 3rd Edition by Chin
MolinaLan
 
SPICE MODEL of SSM3K36FS (Standard+BDS Model) in SPICE PARK
SPICE MODEL of SSM3K36FS (Standard+BDS Model) in SPICE PARKSPICE MODEL of SSM3K36FS (Standard+BDS Model) in SPICE PARK
SPICE MODEL of SSM3K36FS (Standard+BDS Model) in SPICE PARK
Tsuyoshi Horigome
 
FAST実験5:新型大気蛍光望遠鏡の遠隔運用と宇宙線観測報告
FAST実験5:新型大気蛍光望遠鏡の遠隔運用と宇宙線観測報告FAST実験5:新型大気蛍光望遠鏡の遠隔運用と宇宙線観測報告
FAST実験5:新型大気蛍光望遠鏡の遠隔運用と宇宙線観測報告
Toshihiro FUJII
 
Presentation1.pptx
Presentation1.pptxPresentation1.pptx
Presentation1.pptx
ssusere58e49
 
SPICE MODEL of TPCP8405 (Standard+BDS Model) in SPICE PARK
SPICE MODEL of TPCP8405 (Standard+BDS Model) in SPICE PARKSPICE MODEL of TPCP8405 (Standard+BDS Model) in SPICE PARK
SPICE MODEL of TPCP8405 (Standard+BDS Model) in SPICE PARK
Tsuyoshi Horigome
 
Axial fan design
Axial fan designAxial fan design
Axial fan design
Mert G
 
Water Resources Engineering 3rd Edition Chin Solutions Manual
Water Resources Engineering 3rd Edition Chin Solutions ManualWater Resources Engineering 3rd Edition Chin Solutions Manual
Water Resources Engineering 3rd Edition Chin Solutions Manual
femisoguc
 
Aofd farid
Aofd faridAofd farid
Original Mosfet N 8N80C 8N80 FQPF8N80C FQPF8N80 8A 800V TO-220 New Fairchild
Original Mosfet N 8N80C 8N80 FQPF8N80C FQPF8N80 8A 800V TO-220 New FairchildOriginal Mosfet N 8N80C 8N80 FQPF8N80C FQPF8N80 8A 800V TO-220 New Fairchild
Original Mosfet N 8N80C 8N80 FQPF8N80C FQPF8N80 8A 800V TO-220 New Fairchild
AUTHELECTRONIC
 
Yutong Liu - Poster - ACF-PEDOT Supercap
Yutong Liu - Poster - ACF-PEDOT SupercapYutong Liu - Poster - ACF-PEDOT Supercap
Yutong Liu - Poster - ACF-PEDOT Supercap
Yutong Liu
 
Jardim bot2010 jc
Jardim bot2010 jcJardim bot2010 jc
Jardim bot2010 jc
jhcapelo
 

Similar to Analysis of the Blade Boundary-Layer Flow of a Marine Propeller with RANSE (20)

Aircraft propulsion non ideal turbomachine 2 d
Aircraft propulsion   non ideal turbomachine 2 dAircraft propulsion   non ideal turbomachine 2 d
Aircraft propulsion non ideal turbomachine 2 d
 
データセンター省エネ化技術トレンド2018
データセンター省エネ化技術トレンド2018データセンター省エネ化技術トレンド2018
データセンター省エネ化技術トレンド2018
 
IRJET - Optical Emission Technique for Understanding the Spark Gap Discharge ...
IRJET - Optical Emission Technique for Understanding the Spark Gap Discharge ...IRJET - Optical Emission Technique for Understanding the Spark Gap Discharge ...
IRJET - Optical Emission Technique for Understanding the Spark Gap Discharge ...
 
Aircraft propulsion turbomachine 2 d
Aircraft propulsion   turbomachine 2 dAircraft propulsion   turbomachine 2 d
Aircraft propulsion turbomachine 2 d
 
Nir_pres_Hagana_v1
Nir_pres_Hagana_v1Nir_pres_Hagana_v1
Nir_pres_Hagana_v1
 
Modelling of Laminar-to-Turbulent Flow Transition on a Marine Propeller Using...
Modelling of Laminar-to-Turbulent Flow Transition on a Marine Propeller Using...Modelling of Laminar-to-Turbulent Flow Transition on a Marine Propeller Using...
Modelling of Laminar-to-Turbulent Flow Transition on a Marine Propeller Using...
 
Advantage of HRAM
Advantage of HRAMAdvantage of HRAM
Advantage of HRAM
 
FAST実験4:大気蛍光望遠鏡による極高エネルギー宇宙線観測報告
FAST実験4:大気蛍光望遠鏡による極高エネルギー宇宙線観測報告FAST実験4:大気蛍光望遠鏡による極高エネルギー宇宙線観測報告
FAST実験4:大気蛍光望遠鏡による極高エネルギー宇宙線観測報告
 
Original MOSFET N-CHANNEL FQPF11N70 11N70 TO-220 11A 700V New Fairchild
Original MOSFET N-CHANNEL FQPF11N70 11N70 TO-220 11A 700V New FairchildOriginal MOSFET N-CHANNEL FQPF11N70 11N70 TO-220 11A 700V New Fairchild
Original MOSFET N-CHANNEL FQPF11N70 11N70 TO-220 11A 700V New Fairchild
 
Solutions Manual for Water-Resources Engineering 3rd Edition by Chin
Solutions Manual for Water-Resources Engineering 3rd Edition by ChinSolutions Manual for Water-Resources Engineering 3rd Edition by Chin
Solutions Manual for Water-Resources Engineering 3rd Edition by Chin
 
SPICE MODEL of SSM3K36FS (Standard+BDS Model) in SPICE PARK
SPICE MODEL of SSM3K36FS (Standard+BDS Model) in SPICE PARKSPICE MODEL of SSM3K36FS (Standard+BDS Model) in SPICE PARK
SPICE MODEL of SSM3K36FS (Standard+BDS Model) in SPICE PARK
 
FAST実験5:新型大気蛍光望遠鏡の遠隔運用と宇宙線観測報告
FAST実験5:新型大気蛍光望遠鏡の遠隔運用と宇宙線観測報告FAST実験5:新型大気蛍光望遠鏡の遠隔運用と宇宙線観測報告
FAST実験5:新型大気蛍光望遠鏡の遠隔運用と宇宙線観測報告
 
Presentation1.pptx
Presentation1.pptxPresentation1.pptx
Presentation1.pptx
 
SPICE MODEL of TPCP8405 (Standard+BDS Model) in SPICE PARK
SPICE MODEL of TPCP8405 (Standard+BDS Model) in SPICE PARKSPICE MODEL of TPCP8405 (Standard+BDS Model) in SPICE PARK
SPICE MODEL of TPCP8405 (Standard+BDS Model) in SPICE PARK
 
Axial fan design
Axial fan designAxial fan design
Axial fan design
 
Water Resources Engineering 3rd Edition Chin Solutions Manual
Water Resources Engineering 3rd Edition Chin Solutions ManualWater Resources Engineering 3rd Edition Chin Solutions Manual
Water Resources Engineering 3rd Edition Chin Solutions Manual
 
Aofd farid
Aofd faridAofd farid
Aofd farid
 
Original Mosfet N 8N80C 8N80 FQPF8N80C FQPF8N80 8A 800V TO-220 New Fairchild
Original Mosfet N 8N80C 8N80 FQPF8N80C FQPF8N80 8A 800V TO-220 New FairchildOriginal Mosfet N 8N80C 8N80 FQPF8N80C FQPF8N80 8A 800V TO-220 New Fairchild
Original Mosfet N 8N80C 8N80 FQPF8N80C FQPF8N80 8A 800V TO-220 New Fairchild
 
Yutong Liu - Poster - ACF-PEDOT Supercap
Yutong Liu - Poster - ACF-PEDOT SupercapYutong Liu - Poster - ACF-PEDOT Supercap
Yutong Liu - Poster - ACF-PEDOT Supercap
 
Jardim bot2010 jc
Jardim bot2010 jcJardim bot2010 jc
Jardim bot2010 jc
 

More from João Baltazar

PROPAN - Propeller Panel Code
PROPAN - Propeller Panel CodePROPAN - Propeller Panel Code
PROPAN - Propeller Panel Code
João Baltazar
 
Unsteady Potential Flow Calculations on a Horizontal Axis Marine Current Turb...
Unsteady Potential Flow Calculations on a Horizontal Axis Marine Current Turb...Unsteady Potential Flow Calculations on a Horizontal Axis Marine Current Turb...
Unsteady Potential Flow Calculations on a Horizontal Axis Marine Current Turb...
João Baltazar
 
Recent Developments in Computational Methods for the Analysis of Ducted Prope...
Recent Developments in Computational Methods for the Analysis of Ducted Prope...Recent Developments in Computational Methods for the Analysis of Ducted Prope...
Recent Developments in Computational Methods for the Analysis of Ducted Prope...
João Baltazar
 
Potential Flow Modelling of Ducted Propellers with Blunt Trailing Edge Duct U...
Potential Flow Modelling of Ducted Propellers with Blunt Trailing Edge Duct U...Potential Flow Modelling of Ducted Propellers with Blunt Trailing Edge Duct U...
Potential Flow Modelling of Ducted Propellers with Blunt Trailing Edge Duct U...
João Baltazar
 
Prediction of the Propeller Performance at Different Reynolds Number Regimes ...
Prediction of the Propeller Performance at Different Reynolds Number Regimes ...Prediction of the Propeller Performance at Different Reynolds Number Regimes ...
Prediction of the Propeller Performance at Different Reynolds Number Regimes ...
João Baltazar
 
Design of a Horizontal Axis Marine Current Turbine with Dedicated Hydrofoil S...
Design of a Horizontal Axis Marine Current Turbine with Dedicated Hydrofoil S...Design of a Horizontal Axis Marine Current Turbine with Dedicated Hydrofoil S...
Design of a Horizontal Axis Marine Current Turbine with Dedicated Hydrofoil S...
João Baltazar
 
Prediction of Sheet Cavitation on Marine Current Turbines With a Boundary Ele...
Prediction of Sheet Cavitation on Marine Current Turbines With a Boundary Ele...Prediction of Sheet Cavitation on Marine Current Turbines With a Boundary Ele...
Prediction of Sheet Cavitation on Marine Current Turbines With a Boundary Ele...
João Baltazar
 
Hydrodynamic Design and Analysis of Horizontal Axis Marine Current Turbines W...
Hydrodynamic Design and Analysis of Horizontal Axis Marine Current Turbines W...Hydrodynamic Design and Analysis of Horizontal Axis Marine Current Turbines W...
Hydrodynamic Design and Analysis of Horizontal Axis Marine Current Turbines W...
João Baltazar
 
Numerical Studies for Verification and Validation of Open-Water Propeller RAN...
Numerical Studies for Verification and Validation of Open-Water Propeller RAN...Numerical Studies for Verification and Validation of Open-Water Propeller RAN...
Numerical Studies for Verification and Validation of Open-Water Propeller RAN...
João Baltazar
 
Prediction of Unsteady Sheet Cavitation on Marine Current Turbines With a Bou...
Prediction of Unsteady Sheet Cavitation on Marine Current Turbines With a Bou...Prediction of Unsteady Sheet Cavitation on Marine Current Turbines With a Bou...
Prediction of Unsteady Sheet Cavitation on Marine Current Turbines With a Bou...
João Baltazar
 
An Iteratively Coupled Solution Method for Partial and Super-Cavitation Predi...
An Iteratively Coupled Solution Method for Partial and Super-Cavitation Predi...An Iteratively Coupled Solution Method for Partial and Super-Cavitation Predi...
An Iteratively Coupled Solution Method for Partial and Super-Cavitation Predi...
João Baltazar
 
A Comparison of Panel Method and RANS Calculations for a Horizontal Axis Mari...
A Comparison of Panel Method and RANS Calculations for a Horizontal Axis Mari...A Comparison of Panel Method and RANS Calculations for a Horizontal Axis Mari...
A Comparison of Panel Method and RANS Calculations for a Horizontal Axis Mari...
João Baltazar
 
A Numerical Study on the Application of BEM to Steady Cavitating Potential Fl...
A Numerical Study on the Application of BEM to Steady Cavitating Potential Fl...A Numerical Study on the Application of BEM to Steady Cavitating Potential Fl...
A Numerical Study on the Application of BEM to Steady Cavitating Potential Fl...
João Baltazar
 
Leading-Edge Vortex Flow Modelling Around Delta Wings Using a Boundary Elemen...
Leading-Edge Vortex Flow Modelling Around Delta Wings Using a Boundary Elemen...Leading-Edge Vortex Flow Modelling Around Delta Wings Using a Boundary Elemen...
Leading-Edge Vortex Flow Modelling Around Delta Wings Using a Boundary Elemen...
João Baltazar
 
A Numerical Study on the Iterative Techniques to Solve Partial Cavitation on ...
A Numerical Study on the Iterative Techniques to Solve Partial Cavitation on ...A Numerical Study on the Iterative Techniques to Solve Partial Cavitation on ...
A Numerical Study on the Iterative Techniques to Solve Partial Cavitation on ...
João Baltazar
 
A Boundary Element Method for the Unsteady Hydrodynamic Analysis of Marine Cu...
A Boundary Element Method for the Unsteady Hydrodynamic Analysis of Marine Cu...A Boundary Element Method for the Unsteady Hydrodynamic Analysis of Marine Cu...
A Boundary Element Method for the Unsteady Hydrodynamic Analysis of Marine Cu...
João Baltazar
 
Hydrodynamic Analysis of a Horizontal Axis Marine Current Turbine with a Boun...
Hydrodynamic Analysis of a Horizontal Axis Marine Current Turbine with a Boun...Hydrodynamic Analysis of a Horizontal Axis Marine Current Turbine with a Boun...
Hydrodynamic Analysis of a Horizontal Axis Marine Current Turbine with a Boun...
João Baltazar
 
Numerical Modelling of the Potential Flow Around Ducted Propellers
Numerical Modelling of the Potential Flow Around Ducted PropellersNumerical Modelling of the Potential Flow Around Ducted Propellers
Numerical Modelling of the Potential Flow Around Ducted Propellers
João Baltazar
 
Estudo Experimental do Balanço Transversal
Estudo Experimental do Balanço TransversalEstudo Experimental do Balanço Transversal
Estudo Experimental do Balanço Transversal
João Baltazar
 
A Surface Grid Generation Technique for Practical Applications of Boundary El...
A Surface Grid Generation Technique for Practical Applications of Boundary El...A Surface Grid Generation Technique for Practical Applications of Boundary El...
A Surface Grid Generation Technique for Practical Applications of Boundary El...
João Baltazar
 

More from João Baltazar (20)

PROPAN - Propeller Panel Code
PROPAN - Propeller Panel CodePROPAN - Propeller Panel Code
PROPAN - Propeller Panel Code
 
Unsteady Potential Flow Calculations on a Horizontal Axis Marine Current Turb...
Unsteady Potential Flow Calculations on a Horizontal Axis Marine Current Turb...Unsteady Potential Flow Calculations on a Horizontal Axis Marine Current Turb...
Unsteady Potential Flow Calculations on a Horizontal Axis Marine Current Turb...
 
Recent Developments in Computational Methods for the Analysis of Ducted Prope...
Recent Developments in Computational Methods for the Analysis of Ducted Prope...Recent Developments in Computational Methods for the Analysis of Ducted Prope...
Recent Developments in Computational Methods for the Analysis of Ducted Prope...
 
Potential Flow Modelling of Ducted Propellers with Blunt Trailing Edge Duct U...
Potential Flow Modelling of Ducted Propellers with Blunt Trailing Edge Duct U...Potential Flow Modelling of Ducted Propellers with Blunt Trailing Edge Duct U...
Potential Flow Modelling of Ducted Propellers with Blunt Trailing Edge Duct U...
 
Prediction of the Propeller Performance at Different Reynolds Number Regimes ...
Prediction of the Propeller Performance at Different Reynolds Number Regimes ...Prediction of the Propeller Performance at Different Reynolds Number Regimes ...
Prediction of the Propeller Performance at Different Reynolds Number Regimes ...
 
Design of a Horizontal Axis Marine Current Turbine with Dedicated Hydrofoil S...
Design of a Horizontal Axis Marine Current Turbine with Dedicated Hydrofoil S...Design of a Horizontal Axis Marine Current Turbine with Dedicated Hydrofoil S...
Design of a Horizontal Axis Marine Current Turbine with Dedicated Hydrofoil S...
 
Prediction of Sheet Cavitation on Marine Current Turbines With a Boundary Ele...
Prediction of Sheet Cavitation on Marine Current Turbines With a Boundary Ele...Prediction of Sheet Cavitation on Marine Current Turbines With a Boundary Ele...
Prediction of Sheet Cavitation on Marine Current Turbines With a Boundary Ele...
 
Hydrodynamic Design and Analysis of Horizontal Axis Marine Current Turbines W...
Hydrodynamic Design and Analysis of Horizontal Axis Marine Current Turbines W...Hydrodynamic Design and Analysis of Horizontal Axis Marine Current Turbines W...
Hydrodynamic Design and Analysis of Horizontal Axis Marine Current Turbines W...
 
Numerical Studies for Verification and Validation of Open-Water Propeller RAN...
Numerical Studies for Verification and Validation of Open-Water Propeller RAN...Numerical Studies for Verification and Validation of Open-Water Propeller RAN...
Numerical Studies for Verification and Validation of Open-Water Propeller RAN...
 
Prediction of Unsteady Sheet Cavitation on Marine Current Turbines With a Bou...
Prediction of Unsteady Sheet Cavitation on Marine Current Turbines With a Bou...Prediction of Unsteady Sheet Cavitation on Marine Current Turbines With a Bou...
Prediction of Unsteady Sheet Cavitation on Marine Current Turbines With a Bou...
 
An Iteratively Coupled Solution Method for Partial and Super-Cavitation Predi...
An Iteratively Coupled Solution Method for Partial and Super-Cavitation Predi...An Iteratively Coupled Solution Method for Partial and Super-Cavitation Predi...
An Iteratively Coupled Solution Method for Partial and Super-Cavitation Predi...
 
A Comparison of Panel Method and RANS Calculations for a Horizontal Axis Mari...
A Comparison of Panel Method and RANS Calculations for a Horizontal Axis Mari...A Comparison of Panel Method and RANS Calculations for a Horizontal Axis Mari...
A Comparison of Panel Method and RANS Calculations for a Horizontal Axis Mari...
 
A Numerical Study on the Application of BEM to Steady Cavitating Potential Fl...
A Numerical Study on the Application of BEM to Steady Cavitating Potential Fl...A Numerical Study on the Application of BEM to Steady Cavitating Potential Fl...
A Numerical Study on the Application of BEM to Steady Cavitating Potential Fl...
 
Leading-Edge Vortex Flow Modelling Around Delta Wings Using a Boundary Elemen...
Leading-Edge Vortex Flow Modelling Around Delta Wings Using a Boundary Elemen...Leading-Edge Vortex Flow Modelling Around Delta Wings Using a Boundary Elemen...
Leading-Edge Vortex Flow Modelling Around Delta Wings Using a Boundary Elemen...
 
A Numerical Study on the Iterative Techniques to Solve Partial Cavitation on ...
A Numerical Study on the Iterative Techniques to Solve Partial Cavitation on ...A Numerical Study on the Iterative Techniques to Solve Partial Cavitation on ...
A Numerical Study on the Iterative Techniques to Solve Partial Cavitation on ...
 
A Boundary Element Method for the Unsteady Hydrodynamic Analysis of Marine Cu...
A Boundary Element Method for the Unsteady Hydrodynamic Analysis of Marine Cu...A Boundary Element Method for the Unsteady Hydrodynamic Analysis of Marine Cu...
A Boundary Element Method for the Unsteady Hydrodynamic Analysis of Marine Cu...
 
Hydrodynamic Analysis of a Horizontal Axis Marine Current Turbine with a Boun...
Hydrodynamic Analysis of a Horizontal Axis Marine Current Turbine with a Boun...Hydrodynamic Analysis of a Horizontal Axis Marine Current Turbine with a Boun...
Hydrodynamic Analysis of a Horizontal Axis Marine Current Turbine with a Boun...
 
Numerical Modelling of the Potential Flow Around Ducted Propellers
Numerical Modelling of the Potential Flow Around Ducted PropellersNumerical Modelling of the Potential Flow Around Ducted Propellers
Numerical Modelling of the Potential Flow Around Ducted Propellers
 
Estudo Experimental do Balanço Transversal
Estudo Experimental do Balanço TransversalEstudo Experimental do Balanço Transversal
Estudo Experimental do Balanço Transversal
 
A Surface Grid Generation Technique for Practical Applications of Boundary El...
A Surface Grid Generation Technique for Practical Applications of Boundary El...A Surface Grid Generation Technique for Practical Applications of Boundary El...
A Surface Grid Generation Technique for Practical Applications of Boundary El...
 

Recently uploaded

哪里办理(csu毕业证书)查尔斯特大学毕业证硕士学历原版一模一样
哪里办理(csu毕业证书)查尔斯特大学毕业证硕士学历原版一模一样哪里办理(csu毕业证书)查尔斯特大学毕业证硕士学历原版一模一样
哪里办理(csu毕业证书)查尔斯特大学毕业证硕士学历原版一模一样
insn4465
 
basic-wireline-operations-course-mahmoud-f-radwan.pdf
basic-wireline-operations-course-mahmoud-f-radwan.pdfbasic-wireline-operations-course-mahmoud-f-radwan.pdf
basic-wireline-operations-course-mahmoud-f-radwan.pdf
NidhalKahouli2
 
Computational Engineering IITH Presentation
Computational Engineering IITH PresentationComputational Engineering IITH Presentation
Computational Engineering IITH Presentation
co23btech11018
 
Generative AI leverages algorithms to create various forms of content
Generative AI leverages algorithms to create various forms of contentGenerative AI leverages algorithms to create various forms of content
Generative AI leverages algorithms to create various forms of content
Hitesh Mohapatra
 
5214-1693458878915-Unit 6 2023 to 2024 academic year assignment (AutoRecovere...
5214-1693458878915-Unit 6 2023 to 2024 academic year assignment (AutoRecovere...5214-1693458878915-Unit 6 2023 to 2024 academic year assignment (AutoRecovere...
5214-1693458878915-Unit 6 2023 to 2024 academic year assignment (AutoRecovere...
ihlasbinance2003
 
Textile Chemical Processing and Dyeing.pdf
Textile Chemical Processing and Dyeing.pdfTextile Chemical Processing and Dyeing.pdf
Textile Chemical Processing and Dyeing.pdf
NazakatAliKhoso2
 
A review on techniques and modelling methodologies used for checking electrom...
A review on techniques and modelling methodologies used for checking electrom...A review on techniques and modelling methodologies used for checking electrom...
A review on techniques and modelling methodologies used for checking electrom...
nooriasukmaningtyas
 
22CYT12-Unit-V-E Waste and its Management.ppt
22CYT12-Unit-V-E Waste and its Management.ppt22CYT12-Unit-V-E Waste and its Management.ppt
22CYT12-Unit-V-E Waste and its Management.ppt
KrishnaveniKrishnara1
 
Iron and Steel Technology Roadmap - Towards more sustainable steelmaking.pdf
Iron and Steel Technology Roadmap - Towards more sustainable steelmaking.pdfIron and Steel Technology Roadmap - Towards more sustainable steelmaking.pdf
Iron and Steel Technology Roadmap - Towards more sustainable steelmaking.pdf
RadiNasr
 
2008 BUILDING CONSTRUCTION Illustrated - Ching Chapter 02 The Building.pdf
2008 BUILDING CONSTRUCTION Illustrated - Ching Chapter 02 The Building.pdf2008 BUILDING CONSTRUCTION Illustrated - Ching Chapter 02 The Building.pdf
2008 BUILDING CONSTRUCTION Illustrated - Ching Chapter 02 The Building.pdf
Yasser Mahgoub
 
Question paper of renewable energy sources
Question paper of renewable energy sourcesQuestion paper of renewable energy sources
Question paper of renewable energy sources
mahammadsalmanmech
 
Harnessing WebAssembly for Real-time Stateless Streaming Pipelines
Harnessing WebAssembly for Real-time Stateless Streaming PipelinesHarnessing WebAssembly for Real-time Stateless Streaming Pipelines
Harnessing WebAssembly for Real-time Stateless Streaming Pipelines
Christina Lin
 
ML Based Model for NIDS MSc Updated Presentation.v2.pptx
ML Based Model for NIDS MSc Updated Presentation.v2.pptxML Based Model for NIDS MSc Updated Presentation.v2.pptx
ML Based Model for NIDS MSc Updated Presentation.v2.pptx
JamalHussainArman
 
TIME DIVISION MULTIPLEXING TECHNIQUE FOR COMMUNICATION SYSTEM
TIME DIVISION MULTIPLEXING TECHNIQUE FOR COMMUNICATION SYSTEMTIME DIVISION MULTIPLEXING TECHNIQUE FOR COMMUNICATION SYSTEM
TIME DIVISION MULTIPLEXING TECHNIQUE FOR COMMUNICATION SYSTEM
HODECEDSIET
 
CHINA’S GEO-ECONOMIC OUTREACH IN CENTRAL ASIAN COUNTRIES AND FUTURE PROSPECT
CHINA’S GEO-ECONOMIC OUTREACH IN CENTRAL ASIAN COUNTRIES AND FUTURE PROSPECTCHINA’S GEO-ECONOMIC OUTREACH IN CENTRAL ASIAN COUNTRIES AND FUTURE PROSPECT
CHINA’S GEO-ECONOMIC OUTREACH IN CENTRAL ASIAN COUNTRIES AND FUTURE PROSPECT
jpsjournal1
 
IEEE Aerospace and Electronic Systems Society as a Graduate Student Member
IEEE Aerospace and Electronic Systems Society as a Graduate Student MemberIEEE Aerospace and Electronic Systems Society as a Graduate Student Member
IEEE Aerospace and Electronic Systems Society as a Graduate Student Member
VICTOR MAESTRE RAMIREZ
 
KuberTENes Birthday Bash Guadalajara - K8sGPT first impressions
KuberTENes Birthday Bash Guadalajara - K8sGPT first impressionsKuberTENes Birthday Bash Guadalajara - K8sGPT first impressions
KuberTENes Birthday Bash Guadalajara - K8sGPT first impressions
Victor Morales
 
ACEP Magazine edition 4th launched on 05.06.2024
ACEP Magazine edition 4th launched on 05.06.2024ACEP Magazine edition 4th launched on 05.06.2024
ACEP Magazine edition 4th launched on 05.06.2024
Rahul
 
Electric vehicle and photovoltaic advanced roles in enhancing the financial p...
Electric vehicle and photovoltaic advanced roles in enhancing the financial p...Electric vehicle and photovoltaic advanced roles in enhancing the financial p...
Electric vehicle and photovoltaic advanced roles in enhancing the financial p...
IJECEIAES
 
New techniques for characterising damage in rock slopes.pdf
New techniques for characterising damage in rock slopes.pdfNew techniques for characterising damage in rock slopes.pdf
New techniques for characterising damage in rock slopes.pdf
wisnuprabawa3
 

Recently uploaded (20)

哪里办理(csu毕业证书)查尔斯特大学毕业证硕士学历原版一模一样
哪里办理(csu毕业证书)查尔斯特大学毕业证硕士学历原版一模一样哪里办理(csu毕业证书)查尔斯特大学毕业证硕士学历原版一模一样
哪里办理(csu毕业证书)查尔斯特大学毕业证硕士学历原版一模一样
 
basic-wireline-operations-course-mahmoud-f-radwan.pdf
basic-wireline-operations-course-mahmoud-f-radwan.pdfbasic-wireline-operations-course-mahmoud-f-radwan.pdf
basic-wireline-operations-course-mahmoud-f-radwan.pdf
 
Computational Engineering IITH Presentation
Computational Engineering IITH PresentationComputational Engineering IITH Presentation
Computational Engineering IITH Presentation
 
Generative AI leverages algorithms to create various forms of content
Generative AI leverages algorithms to create various forms of contentGenerative AI leverages algorithms to create various forms of content
Generative AI leverages algorithms to create various forms of content
 
5214-1693458878915-Unit 6 2023 to 2024 academic year assignment (AutoRecovere...
5214-1693458878915-Unit 6 2023 to 2024 academic year assignment (AutoRecovere...5214-1693458878915-Unit 6 2023 to 2024 academic year assignment (AutoRecovere...
5214-1693458878915-Unit 6 2023 to 2024 academic year assignment (AutoRecovere...
 
Textile Chemical Processing and Dyeing.pdf
Textile Chemical Processing and Dyeing.pdfTextile Chemical Processing and Dyeing.pdf
Textile Chemical Processing and Dyeing.pdf
 
A review on techniques and modelling methodologies used for checking electrom...
A review on techniques and modelling methodologies used for checking electrom...A review on techniques and modelling methodologies used for checking electrom...
A review on techniques and modelling methodologies used for checking electrom...
 
22CYT12-Unit-V-E Waste and its Management.ppt
22CYT12-Unit-V-E Waste and its Management.ppt22CYT12-Unit-V-E Waste and its Management.ppt
22CYT12-Unit-V-E Waste and its Management.ppt
 
Iron and Steel Technology Roadmap - Towards more sustainable steelmaking.pdf
Iron and Steel Technology Roadmap - Towards more sustainable steelmaking.pdfIron and Steel Technology Roadmap - Towards more sustainable steelmaking.pdf
Iron and Steel Technology Roadmap - Towards more sustainable steelmaking.pdf
 
2008 BUILDING CONSTRUCTION Illustrated - Ching Chapter 02 The Building.pdf
2008 BUILDING CONSTRUCTION Illustrated - Ching Chapter 02 The Building.pdf2008 BUILDING CONSTRUCTION Illustrated - Ching Chapter 02 The Building.pdf
2008 BUILDING CONSTRUCTION Illustrated - Ching Chapter 02 The Building.pdf
 
Question paper of renewable energy sources
Question paper of renewable energy sourcesQuestion paper of renewable energy sources
Question paper of renewable energy sources
 
Harnessing WebAssembly for Real-time Stateless Streaming Pipelines
Harnessing WebAssembly for Real-time Stateless Streaming PipelinesHarnessing WebAssembly for Real-time Stateless Streaming Pipelines
Harnessing WebAssembly for Real-time Stateless Streaming Pipelines
 
ML Based Model for NIDS MSc Updated Presentation.v2.pptx
ML Based Model for NIDS MSc Updated Presentation.v2.pptxML Based Model for NIDS MSc Updated Presentation.v2.pptx
ML Based Model for NIDS MSc Updated Presentation.v2.pptx
 
TIME DIVISION MULTIPLEXING TECHNIQUE FOR COMMUNICATION SYSTEM
TIME DIVISION MULTIPLEXING TECHNIQUE FOR COMMUNICATION SYSTEMTIME DIVISION MULTIPLEXING TECHNIQUE FOR COMMUNICATION SYSTEM
TIME DIVISION MULTIPLEXING TECHNIQUE FOR COMMUNICATION SYSTEM
 
CHINA’S GEO-ECONOMIC OUTREACH IN CENTRAL ASIAN COUNTRIES AND FUTURE PROSPECT
CHINA’S GEO-ECONOMIC OUTREACH IN CENTRAL ASIAN COUNTRIES AND FUTURE PROSPECTCHINA’S GEO-ECONOMIC OUTREACH IN CENTRAL ASIAN COUNTRIES AND FUTURE PROSPECT
CHINA’S GEO-ECONOMIC OUTREACH IN CENTRAL ASIAN COUNTRIES AND FUTURE PROSPECT
 
IEEE Aerospace and Electronic Systems Society as a Graduate Student Member
IEEE Aerospace and Electronic Systems Society as a Graduate Student MemberIEEE Aerospace and Electronic Systems Society as a Graduate Student Member
IEEE Aerospace and Electronic Systems Society as a Graduate Student Member
 
KuberTENes Birthday Bash Guadalajara - K8sGPT first impressions
KuberTENes Birthday Bash Guadalajara - K8sGPT first impressionsKuberTENes Birthday Bash Guadalajara - K8sGPT first impressions
KuberTENes Birthday Bash Guadalajara - K8sGPT first impressions
 
ACEP Magazine edition 4th launched on 05.06.2024
ACEP Magazine edition 4th launched on 05.06.2024ACEP Magazine edition 4th launched on 05.06.2024
ACEP Magazine edition 4th launched on 05.06.2024
 
Electric vehicle and photovoltaic advanced roles in enhancing the financial p...
Electric vehicle and photovoltaic advanced roles in enhancing the financial p...Electric vehicle and photovoltaic advanced roles in enhancing the financial p...
Electric vehicle and photovoltaic advanced roles in enhancing the financial p...
 
New techniques for characterising damage in rock slopes.pdf
New techniques for characterising damage in rock slopes.pdfNew techniques for characterising damage in rock slopes.pdf
New techniques for characterising damage in rock slopes.pdf
 

Analysis of the Blade Boundary-Layer Flow of a Marine Propeller with RANSE

  • 1. Analysis of the Blade Boundary-Layer Flow of a Marine Propeller With RANSE J. Baltazar1 , D. Melo1 , D. Rijpkema2 1Instituto Superior Técnico, Universidade de Lisboa, Portugal 2Maritime Research Institute Netherlands, Wageningen, the Netherlands MARINE 2019 Göteborg, Sweden May 13-15 1
  • 2. Objectives Comparison between RANS simulations and experimental data from LDV measurements in the DTRC water tunnel for marine propeller P4119 (Jessup, 1989): D [m] 0.3048 c0.7R [m] 0.1409 Z 3 P/D0.7R 1.0839 AE /A0 0.5 Contribute to the understanding of the blade boundary-layer flow modelling. MARINE 2019 Göteborg, Sweden May 13-15 2
  • 3. Performance Prediction at Model-Scale RANSE solver ReFRESCO Finite-volume discretisation Flow variables defined in cell-centres Turbulence model: – k − ω SST (Menter et al., 2003) – Not developed for transition Transition model: – γ − R̃eθt (Langtry and Menter, 2009) – Strong dependency to turbulence intensity Tu and eddy-viscosity ratio µt/µ MARINE 2019 Göteborg, Sweden May 13-15 3
  • 4. Numerical Set-Up Cylindrical domain (5D) 6 multi-block structured grids: 1M to 38M cells No wall functions are used (y+ ∼ 1) Uniform inflow (open-water) Discretisation of convective flux: – Momentum: QUICK – Turbulence/Transition: Upwind MARINE 2019 Göteborg, Sweden May 13-15 4
  • 5. Grid Generation Grid Volume Blade y+ max G1 37.6M 73.9k 0.20 G2 21.0M 42.3k 0.24 G3 9.9M 25.6k 0.31 G4 6.1M 18.6k 0.39 G5 1.9M 8.6k 0.51 G6 0.9M 4.9k 0.66 MARINE 2019 Göteborg, Sweden May 13-15 5
  • 6. Results Summary RANS simulations at model-scale (Re ' 9.5 × 105 ) Comparison with experimental data (Jdesign = 0.833) Evaluation of numerical errors: – Iterative errors – Numerical uncertainty estimation Influence of turbulence quantities: – Blade flow (limiting streamlines and skin friction) – Propeller forces Chordwise and spanwise velocity profiles Boundary-layer parameters MARINE 2019 Göteborg, Sweden May 13-15 6
  • 7. Evaluation of Iterative Error k − ω SST turbulence model (Tu =1.0% and µt/µ = 1) Iteration L ∞ 0 20000 40000 60000 80000 100000 10 -8 10 -7 10-6 10 -5 10 -4 10 -3 10 -2 10 -1 UX UY UZ P k ω L∞ Norm Iteration L 2 0 20000 40000 60000 80000 100000 10 -10 10 -9 10-8 10 -7 10 -6 10 -5 10 -4 10 -3 UX UY UZ P k ω L2 Norm Iteration 0 20000 40000 60000 80000 100000 0.10 0.15 0.20 0.25 0.30 Iteration 0 20000 40000 60000 80000 100000 0.10 0.15 0.20 0.25 0.30 KT 10KQ Propeller Force Coefficients MARINE 2019 Göteborg, Sweden May 13-15 7
  • 8. Evaluation of Iterative Error γ − R̃eθt transition model (Tu =1.5% and µt/µ = 500) Iteration L ∞ 0 5000 10000 15000 20000 25000 10 -7 10 -6 10-5 10 -4 10 -3 10 -2 10 -1 100 10 1 UX UY UZ P k ω γ Reθ L∞ Norm Iteration L 2 0 5000 10000 15000 20000 25000 10 -9 10-8 10 -7 10 -6 10 -5 10 -4 10-3 10 -2 10 -1 10 0 UX UY UZ P k ω γ Reθ L2 Norm Iteration 0 5000 10000 15000 20000 25000 0.10 0.15 0.20 0.25 0.30 Iteration 0 5000 10000 15000 20000 25000 0.10 0.15 0.20 0.25 0.30 KT 10KQ Propeller Force Coefficients MARINE 2019 Göteborg, Sweden May 13-15 8
  • 9. Numerical Uncertainty Estimation Eça and Hoekstra (2014) procedure hi /h1 K T 0 1 2 3 4 0.140 0.142 0.144 0.146 0.148 k-ω SST : p=0.96 , Unum =0.55 % γ-Reθ : p=1.16 , Unum =1.03 % hi /h1 10K Q 0 1 2 3 4 0.270 0.273 0.276 0.279 0.282 0.285 k-ω SST : p=1.84 , Unum =0.20 % γ-Reθ : p=1.64 , Unum =0.51 % MARINE 2019 Göteborg, Sweden May 13-15 9
  • 10. Limiting Streamlines and Skin Friction Coefficient γ − R̃eθt transition model (Tu =1.2% and µt/µ = 500) Pressure Side Suction Side MARINE 2019 Göteborg, Sweden May 13-15 10
  • 11. Limiting Streamlines and Skin Friction Coefficient γ − R̃eθt transition model (Tu =1.5% and µt/µ = 500) Pressure Side Suction Side MARINE 2019 Göteborg, Sweden May 13-15 11
  • 12. Limiting Streamlines and Skin Friction Coefficient k − ω SST turbulence model (Tu =1.0% and µt/µ = 1) Pressure Side Suction Side MARINE 2019 Göteborg, Sweden May 13-15 12
  • 13. Influence of Turbulence Quantities Thrust and torque coefficients (pressure p and friction f contributions) Model Tu µt/µ KTp KTf KT γ − R̃eθt 1.2% 500 0.1498 -0.002470 0.1473 γ − R̃eθt 1.5% 500 0.1476 -0.003373 0.1442 k − ω SST 1.0% 1 0.1463 -0.004460 0.1419 Exp. – – – – 0.146 Model Tu µt/µ 10KQp 10KQf 10KQ γ − R̃eθt 1.2% 500 0.2529 0.01771 0.2706 γ − R̃eθt 1.5% 500 0.2489 0.02422 0.2731 k − ω SST 1.0% 1 0.2472 0.03117 0.2784 Exp. – – – – 0.280 MARINE 2019 Göteborg, Sweden May 13-15 13
  • 14. Blade Boundary-Layer Flow Chordwise velocity profiles: r/R = 0.7 (suction side) Vs /Vref 100 y/c 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 γ-Reθt , Tu=1.2%, µt /µ=500, 100δ/c=0.29 γ-Reθt , Tu=1.5%, µt /µ=500, 100δ/c=0.34 k-ω SST, Tu=1.0%, µt /µ=1, 100δ/c=0.63 Experimental (Tripped Blade) Experimental (Smooth Blade) s/c=0.3 Vs /Vref 100 y/c 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 1.2 γ-Reθt , Tu=1.2%, µt /µ=500, 100δ/c=0.49 γ-Reθt , Tu=1.5%, µt /µ=500, 100δ/c=0.78 k-ω SST, Tu=1.0%, µt /µ=1, 100δ/c=1.01 Experimental (Tripped Blade) Experimental (Smooth Blade) s/c=0.5 Vs /Vref 100 y/c 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.3 0.6 0.9 1.2 1.5 1.8 γ-Reθt , Tu=1.2%, µt /µ=500, 100δ/c=0.92 γ-Reθt , Tu=1.5%, µt /µ=500, 100δ/c=1.24 k-ω SST, Tu=1.0%, µt /µ=1, 100δ/c=1.48 Experimental (Tripped Blade) Experimental (Smooth Blade) s/c=0.7 MARINE 2019 Göteborg, Sweden May 13-15 14
  • 15. Blade Boundary-Layer Flow Chordwise velocity profiles: r/R = 0.7 (pressure side) Vs /Vref 100 y/c 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 γ-Reθt , Tu=1.2%, µt /µ=500, 100δ/c=0.31 γ-Reθt , Tu=1.5%, µt /µ=500, 100δ/c=0.32 k-ω SST, Tu=1.0%, µt /µ=1, 100δ/c=0.75 Experimental (Tripped Blade) Experimental (Smooth Blade) s/c=0.39 Vs /Vref 100 y/c 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.3 0.6 0.9 1.2 1.5 γ-Reθt , Tu=1.2%, µt /µ=500, 100δ/c=0.39 γ-Reθt , Tu=1.5%, µt /µ=500, 100δ/c=0.51 k-ω SST, Tu=1.0%, µt /µ=1, 100δ/c=1.09 Experimental (Tripped Blade) Experimental (Smooth Blade) s/c=0.608 Vs /Vref 100 y/c 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.4 0.8 1.2 1.6 2.0 γ-Reθt , Tu=1.2%, µt /µ=500, 100δ/c=0.50 γ-Reθt , Tu=1.5%, µt /µ=500, 100δ/c=0.99 k-ω SST, Tu=1.0%, µt /µ=1, 100δ/c=1.53 Experimental (Tripped Blade) Experimental (Smooth Blade) s/c=0.859 MARINE 2019 Göteborg, Sweden May 13-15 15
  • 16. Blade Boundary-Layer Flow Spanwise velocity profiles: r/R = 0.7 (suction side) Vt /Vref 100 y/c -0.05 0.00 0.05 0.10 0.15 0.0 0.2 0.4 0.6 0.8 γ-Reθt , Tu=1.2%, µt /µ=500, 100δ/c=0.29 γ-Reθt , Tu=1.5%, µt /µ=500, 100δ/c=0.55 k-ω SST, Tu=1.0%, µt /µ=1, 100δ/c=0.64 Experimental (Smooth Blade) s/c=0.31 Vt /Vref 100 y/c -0.05 0.00 0.05 0.10 0.15 0.0 0.2 0.4 0.6 0.8 1.0 1.2 γ-Reθt , Tu=1.2%, µt /µ=500, 100δ/c=0.49 γ-Reθt , Tu=1.5%, µt /µ=500, 100δ/c=0.78 k-ω SST, Tu=1.0%, µt /µ=1, 100δ/c=1.01 Experimental (Smooth Blade) s/c=0.5 Vt /Vref 100 y/c -0.05 0.00 0.05 0.10 0.15 0.0 0.4 0.8 1.2 1.6 γ-Reθt , Tu=1.2%, µt /µ=500, 100δ/c=1.07 γ-Reθt , Tu=1.5%, µt /µ=500, 100δ/c=1.39 k-ω SST, Tu=1.0%, µt /µ=1, 100δ/c=1.60 Experimental (Smooth Blade) s/c=0.77 MARINE 2019 Göteborg, Sweden May 13-15 16
  • 17. Boundary-Layer Characteristics (Streamwise) Boundary-layer thickness δ estimation: – total pressure-loss: ∆pt = P + 1/2ρV 2 t − Pinlet − 1/2ρ V 2 inlet + (Ω0.7R)2 – C∆pt = ∆pt/(1/2ρV 2 ref ) = −0.01 (Vδ = 0.995Ve) with V 2 e = Vs(δ)2 + Vt(δ)2 Displacement thickness δ∗ = 1 Ve δ R 0 (Vs(δ) − Vs(y))dy Momentum thickness θ = 1 V 2 e δ R 0 (Vs(δ) − Vs(y))Vs(y)dy Shape factor H = δ∗ θ MARINE 2019 Göteborg, Sweden May 13-15 17
  • 18. Boundary-Layer Characteristics r/R = 0.7 (suction side) s/c 100δ/c 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.5 1.0 1.5 2.0 2.5 γ-Reθt , Tu=1.2%, µt /µ=500 γ-Reθt , Tu=1.5%, µt /µ=500 k-ω SST, Tu=1.0%, µt/µ=1 Boundary-Layer Thickness s/c 100δ * /c 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.1 0.2 0.3 0.4 γ-Reθt , Tu=1.2%, µt /µ=500 γ-Reθt , Tu=1.5%, µt /µ=500 k-ω SST, Tu=1.0%, µt/µ=1 Experimental (Tripped Blade) Experimental (Smooth Blade) Displacement Thickness s/c H 0.0 0.2 0.4 0.6 0.8 1.0 0.5 1.0 1.5 2.0 2.5 3.0 γ-Reθt , Tu=1.2%, µt /µ=500 γ-Reθt , Tu=1.5%, µt /µ=500 k-ω SST, Tu=1.0%, µt /µ=1 Experimental (Tripped Blade) Experimental (Smooth Blade) Shape Factor MARINE 2019 Göteborg, Sweden May 13-15 18
  • 19. Boundary-Layer Characteristics r/R = 0.7 (pressure side) s/c 100δ/c 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.5 1.0 1.5 2.0 γ-Reθt , Tu=1.2%, µt /µ=500 γ-Reθt , Tu=1.5%, µt /µ=500 k-ω SST, Tu=1.0%, µt /µ=1 Boundary-Layer Thickness s/c 100δ * /c 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.1 0.2 0.3 0.4 γ-Reθt , Tu=1.2%, µt /µ=500 γ-Reθt , Tu=1.5%, µt /µ=500 k-ω SST, Tu=1.0%, µt /µ=1 Experimental (Tripped Blade) Experimental (Smooth Blade) Displacement Thickness s/c H 0.0 0.2 0.4 0.6 0.8 1.0 1.0 1.5 2.0 2.5 3.0 γ-Reθt , Tu=1.2%, µt /µ=500 γ-Reθt , Tu=1.5%, µt /µ=500 k-ω SST, Tu=1.0%, µt /µ=1 Experimental (Tripped Blade) Experimental (Smooth Blade) Shape Factor MARINE 2019 Göteborg, Sweden May 13-15 19
  • 20. Conclusions Evaluation of numerical errors: – γ − R̃eθt model does not satisfy iterative convergence criterion. Expected small influence on propeller forces – Low numerical uncertainties ( 2%) for force coefficients k − ω SST model correctly predicts the velocity profiles in fully turbulent region (tripped blade) γ − R̃eθt model predicts laminar-turbulent transition: – Strong sensitivity to inlet turbulence quantities – Selection based on experimental velocity profiles (smooth blade) – However, may limit the predictive capabilities of the model! Evolution of the streamwise boundary-layer quantities show typical laminar and turbulent flow behaviours MARINE 2019 Göteborg, Sweden May 13-15 20
  • 21. Influence of Grid Refinement Variation of propeller force coefficients Model k − ω SST γ − R̃eθt Grid ∆KT ∆KQ ∆η0 ∆KT ∆KQ ∆η0 0.9M 1.0% 1.4% -0.4% -0.6% 2.4% -2.8% 1.9M 0.6% 0.8% -0.3% -0.7% 1.4% -2.1% 6.1M 0.4% 0.3% 0.0% -0.6% 0.6% -1.1% 9.9M 0.2% 0.2% 0.0% -0.6% 0.3% -0.8% 21.0M 0.1% 0.1% 0.0% -0.2% 0.1% -0.3% 37.6M 0.1416 0.2779 0.676 0.1450 0.2722 0.706 MARINE 2019 Göteborg, Sweden May 13-15 21
  • 22. Influence of Grid Refinement Suction side, s/c = 0.2, r/R = 0.7 Vs /Vref 100 y/c 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.1 0.2 0.3 0.4 0.5 Grid with 9.9M cells Grid with 37.6M cells k-ω SST Turbulence Model Vs /Vref 100 y/c 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.1 0.2 0.3 0.4 Grid with 9.9M cells Grid with 37.6M cells γ-Reθt Transition Model MARINE 2019 Göteborg, Sweden May 13-15 22
  • 23. Blade Boundary-Layer Flow Chordwise velocity profiles: r/R = 0.7 (suction side) Vs /Vref 100 y/c 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 γ-Reθt , Tu=1.2%, µt /µ=500, 100δ/c=0.23 γ-Reθt , Tu=1.5%, µt /µ=500, 100δ/c=0.22 k-ω SST, Tu=1.0%, µt /µ=1, 100δ/c=0.42 Experimental (Tripped Blade) Experimental (Smooth Blade) s/c=0.2 Vs /Vref 100 y/c 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.3 0.6 0.9 1.2 1.5 γ-Reθt , Tu=1.2%, µt /µ=500, 100δ/c=0.69 γ-Reθt , Tu=1.5%, µt /µ=500, 100δ/c=0.98 k-ω SST, Tu=1.0%, µt /µ=1, 100δ/c=1.23 Experimental (Tripped Blade) Experimental (Smooth Blade) s/c=0.6 Vs /Vref 100 y/c 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.5 1.0 1.5 2.0 2.5 γ-Reθt , Tu=1.2%, µt /µ=500, 100δ/c=1.47 γ-Reθt , Tu=1.5%, µt /µ=500, 100δ/c=1.83 k-ω SST, Tu=1.0%, µt /µ=1, 100δ/c=2.09 Experimental (Tripped Blade) Experimental (Smooth Blade) s/c=0.9 MARINE 2019 Göteborg, Sweden May 13-15 23
  • 24. Blade Boundary-Layer Flow Spanwise velocity profiles: r/R = 0.7 (suction side) Vt /Vref 100 y/c -0.05 0.00 0.05 0.10 0.15 0.0 0.2 0.4 0.6 0.8 1.0 γ-Reθt , Tu=1.2%, µt /µ=500, 100δ/c=0.36 γ-Reθt , Tu=1.5%, µt /µ=500, 100δ/c=0.55 k-ω SST, Tu=1.0%, µt /µ=1, 100δ/c=0.82 Experimental (Smooth Blade) s/c=0.4 Vt /Vref 100 y/c -0.05 0.00 0.05 0.10 0.15 0.0 0.4 0.8 1.2 1.6 γ-Reθt , Tu=1.2%, µt /µ=500, 100δ/c=0.69 γ-Reθt , Tu=1.5%, µt /µ=500, 100δ/c=0.98 k-ω SST, Tu=1.0%, µt /µ=1, 100δ/c=1.21 Experimental (Smooth Blade) s/c=0.6 MARINE 2019 Göteborg, Sweden May 13-15 24