SlideShare a Scribd company logo
Guided by;
D Sreehari Rao,
Assistant Professor, Dept. of Civil Engg.
By;
G Sireesha ( 11202012),
P Hari Krishna (11202024),
S Sri Hari (11202030).
In the present era the technology in communications has developed to a very
large extent. The communication industries have seen a tremendous increase in last few
years which have resulted in installation of large number of towers to increase the
coverage area and network consistency. In wireless communication network these towers
play a significant role hence failure of such structure in a disaster is a major concern.
Therefore utmost importance should be given in considering all possible extreme
conditions for designing these towers. In most of the studies, the researches have
considered the effect of wind only on the four legged self-supporting towers. In this
dissertation, a four legged lattice tower is analyzed and designed along with foundation
details.
BASED ON STRUCTURAL ACTION
SELF SUPPORTING
TOWERS
The towers that are supported
on ground or on buildings are
called as self-supporting
towers. Though the weight of
these towers is more they
require less base area and are
suitable in many situations.
Most of the TV, MW, Power
transmission, and flood light
towers are self-supporting
towers.
GUYED TOWERS
Guyed towers are normally
guyed in three directions. These
towers are much lighter than self
supporting type but require a
large free space to anchor guy
wires. Whenever large open
space is available, guyed towers
can be provided. There are other
restrictions to mount dish
antennae on these towers and
require large anchor blocks to
hold the ropes.
MONOPOLE
It is single self-supporting
pole, and is generally placed
over roofs of high raised
buildings, when number of
antennae required is less or
height of tower required is less
than 9m.
TYPES OF COMMUNICATION TOWERS
Self Supporting Tower Guyed Tower Monopole Tower
Based on the type of material sections :
Based on the sections used for fabrication, towers are classified into angular and hybrid
towers (with tubular and angle bracings). Lattice towers are usually made of bolted angles.
Towers with tubular members may be less than half the weight of angle towers because of the
reduced wind load on circular sections. However the extra cost of the tube and the more
complicated connection details can exceed the saving of steel weight and foundations.
Based on cross section of tower:
Towers can be classified, based on their cross section, into square, rectangular, triangular,
delta, hexagonal and polygonal towers. Triangular Lattice Towers have less weight but offer less
stiffness in torsion. With the increase in number of faces, it is observed that weight of tower
increases. The increase is 10% and 20% for square and hexagonal cross sections respectively.
Based on the number of segments:
The towers are classified based on the number of segments as Three slope tower; Two
slope tower; Single slope tower; Straight tower.
OBJECTIVES
The objective of this project is to design a Telecommunication tower, along with
foundation details, and to analyze it, below mentioned basic parameters are considered :
• Base width.
• Height of tower.
• Soil Bearing Capacity.
• Configuration of Tower.
Following research has to be carried out for meeting the above objectives:
• Soil exploration studies.
• Terminology of communication tower and its components.
• Different behaviors of towers.
• Methodology for analysis and design of communication towers.
To meet these objectives the following work has to be done:
• Towers are configured with keeping in mind all field and structural constraints on
AutoCAD 2015.
• Loading format including reliability, security and safety pattern are to be evaluated.
• Wind loading is calculated on the longitudinal face of the towers.
• Now all the towers are modelled and analyzed as a three dimensional structure
using STADD.Pro V8i and STAAD(X) Tower V8i.
• Finally tower members are designed as an angle sections.
DESIGN OF COMMUNICATION TOWERS
The following are the steps involved in design of communication tower:
• Selection of configuration of tower.
• Computation of loads acting on tower.
• Analysis of tower for appropriate loading conditions.
• Design of tower members according to codes of practices.
• Design of foundation according to codes of practices.
CONFIGURATION
A communication tower, like any other exposed structure, has a super
structure shaped, dimensioned and designed to suit the external loads and self-
weight
Selection of configuration of a tower involves fixing of top width, bottom
width, number of panels and their heights, type of bracing system and slope of
tower. The following are key parameters in configuration of tower.
• Width at bottom level = 4.00 m
• Width at top level = 1.20 m
• Overall Height = 30.00 m
• No. of levels = 09 levels
• Slope of outline of tower = 87º 8’ 15.34” (with horizontal)
ELEVATION OF LEVELS
LEVELS HEIGHT (M) BASE WIDTH (M) BRACING PATTERN OF
FACE
0 0 4 K2 Brace Down
1 6 3.3 Double K1 Brace Down
2 10.5 2.775 Double K1 Brace Down
3 14 2.367 Double K1 Brace Down
4 17 2.017 XX Bracing
5 19 1.783 XX Bracing
6 21 1.55 XX Bracing
7 22.5 1.375 XX Bracing
8 24 1.2 XX Bracing
9 30 1.2 XX Bracing
LOAD CONSIDERATIONS
In case of communication towers self-weight of tower is most important component
of tower design. The tele communication steel tower is a pin-jointed light structure, It is
still assumed that their behavior is similar to simple truss.
The percentage of openings in Tower structure will be more than 30%, so wind
loads acting on the tower will be of less magnitude compared to chimneys, but the major
cause of failures of telecommunication tower throughout the world though still remains to
be high intensity winds (HIW). The major problem faced is the difficulty in estimating
wind loads as they are based on a probabilistic approach. There has been several studies in
telecommunication towers taking into consideration the wind as well as dynamic effect.
The loadings which are considered during this project are:
1. Dead loads or Vertical loads
( i.e. self weight of tower members, Self weight of antennas, labour and
equipment during construction and maintenance.)
2. Transverse loads
(Wind load on exposed members of the tower and antenna.)
Wind load on tower:
The wind load on tower can be calculated using the Indian standards IS: 875(Part 3)-
1987[3] and BS: 8100 (Part 1)-1996[4].
Wind load on antennae:
Wind load on antennae shall be considered from Andrew’s catalogue. In the Andrew’s
catalogue the wind loads on antennas are given for 200kmph wind speed. The designer
has to calculate the antenna loads corresponding to designwind speed.
DESIGN WIND PRESSURE
•At Tirupati region, the design wind speed = 39 m/s
•Design speed at the site = Vz = K1K2K3Vb
Risk co-efficient = K1 for 100 years life = 1.08
K2 , terrain factor for 30 m and class B of Terrain category 3 = 1.03
Topography factor (K3) = 1+ Cs
For the given plain topography K3 = 1 ( As C=0 )
• Vz = 1.08*1.03*1*39 = 55.62 m/s
• Design wind pressure = Pz = 0.6 Vz
2 = 1.86 KN/m2
Similarly the design wind pressures for different levels are calculated and tabulated as
follows:
Height (m) Design wind pressure
(KN/m2 )
0 0
10 1.36
12 1.44
15 1.55
18 1.63
21 1.70
24 1.75
27 1.81
30 1.86
MODELLING AND ANALYSIS
The lattice tower model was analyzed in ANSYS as well as in STAAD. Pro
V8i and STAAD(X) Tower V8i software package. The model was created using the
coordinate data for the points and the element connectivity table and suitable cross
sectional properties were assigned to the elements created. The boundary condition
was stimulated in the model by fixing the three lowermost nodes of the modeled
structure. The loads calculated above are applied at appropriate nodes and the stress
parameters, deformation of the structure under the effect of the applied load is
studied.
DESIGN OF MEMBERS
Suitable steel sections are initially assumed as members of the tower for
analyzing the structure. Once the analysis is done members are finalized based on the
stresses developing in them, following the codal provisions provided by Indian
Standards.
• The maximum allowable stresses in the members are given in IS 802 (Part-1).
• Limiting slenderness ratios for members are given in IS 802(Part-1).
• Effective Length of compression members should be assumed as per IS
806(1968).
DESIGN OF FOUNDATION
DESIGN OF SLAB BASE
As per IS 800:2007,
• Bearing strength of concrete = 0.6fck
• But for practical consideration bearing strength = 0.45fck
∴ Area of plate required =
𝑃𝑢
0.45𝑓𝑐𝑘
• Where Pu = Factored load
• Load on each leg is = 400KN
• Factored load on each leg = 600KN
• Area of plate required =
600
0.45×25
= 53333.33 mm2
∴ Side of each base plate = 300 × 300 mm2
• Minimum thickness required (ts) = (
2.5𝑤(𝑎2−0.3𝑏2)𝛾𝑚𝑜
𝑓𝑦
)0.5
Where W =
𝑃𝑢
𝐴𝑟𝑒𝑎 𝑜𝑓 𝑏𝑎𝑠𝑒 𝑝𝑙𝑎𝑡𝑒
=
600×1000
300×300
= 6.66 N/mm2
a = 95 mm and b = 95 mm
∴ ts = (
2.5×6.66×(952−0.3×952)×1.1
250
)0.5
∴ ts =25 mm
(As ts >
tf (truss angle thickness ts = 12mm), hence safe.)
 Connect base plate to foundation concrete using 4 No’s 20mm diameter and
300mm long anchor bolts.
 If weld is to be used for connecting column to base plate check the weld length of
filler weeds.
DESIGN OF RAFT FOUNDATION
Initially assume footing size = 5m × 5m
Uniform load on footing (W) =
𝑎𝑥𝑖𝑎𝑙 𝑙𝑜𝑎𝑑
𝑎𝑟𝑒𝑎
=
800
25
= 32 KN/m2
Consider per meter width then load is = 32 KN/m
Maximum bending moment at center of footing = 100 KNm
Bending moment required Mu = 0.138fckbd2
100×106 = 0.138 × 25 × 1000 × d2
d = 170.25 mm
∴ d = 200 mm.
Area of steel required:
Mu = 0.87 fy Ast d (1-
𝐴𝑠𝑡×𝑓𝑦
𝑏𝑑×𝑓𝑐𝑘
)
100×106 = 0.87×415×Ast×200×(1-
𝐴𝑠𝑡×415
1000×200×25
)
Assume concrete grade = M20
Steel grade = Fe415
Ast required = 1596.36 mm2
Assume diameter of bars = 12 mm
No. of bars required =
1596.36
(
𝜋
4
)×122
= 15 bars
Spacing of bars =
5000
20
=250 mm
∴ 𝑃𝑟𝑜𝑣𝑖𝑑𝑒 20 𝑏𝑎𝑟𝑠 𝑜𝑓 12𝑚𝑚 𝑑𝑖𝑎 @ 250𝑚𝑚
𝐶
𝐶
𝑜𝑛 𝑏𝑜𝑡ℎ 𝑠𝑖𝑑𝑒𝑠.
Design of concrete column for slab base:
Axial load on the column = 600KN.
According to code axial load on column = 0.4fckAc + 0.67fyAst
(As per IS 456:2000)
600×103 = 0.4fckAc + 0.67fyAst
600×103 = 0.4×25×Ac + 0.67fyAst
 Assume 1% of steel of concrete area.
600×103 = 0.4×25×Ac + 0.67× 415 ×
1
100
Ac
∴ Ac = 46946.6 mm2 = 216.67 × 216.68 mm2
.
∴ Ac = 220 × 220 mm2
.
Hence provide 300 × 300 mm2 square column at 350mm from edge.
Height of this column above the raft footing = 450 mm
Area of steel = 1% of column cross section
= 0.01 × 300 × 300 = 900 mm2
Assume 20mm dia bars then No. of bars =
900
(
𝜋
4
)×202
= 3 bars
∴ 𝑃𝑟𝑜𝑣𝑖𝑑𝑒 4 𝑏𝑎𝑟𝑠 𝑜𝑓 20𝑚𝑚 𝑑𝑖𝑎 𝑤𝑖𝑡ℎ 8𝑚𝑚 𝑑𝑖𝑎 𝑙𝑎𝑡𝑒𝑟𝑎𝑙 𝑡𝑖𝑒 𝑏𝑎𝑟𝑠 𝑎𝑡 𝑠𝑢𝑖𝑡𝑎𝑏𝑙𝑒 𝑠𝑝𝑎𝑐𝑖𝑛𝑔
𝑎𝑠 𝑝𝑒𝑟 𝑐𝑜𝑑𝑎𝑙 𝑝𝑟𝑜𝑣𝑖𝑠𝑖𝑜𝑛𝑠.
RESULT
A Telecommunication tower of 30m high is analyzed and
designed.
1. The configuration of the tower is as follows:
• Height of tower = 30m
• Base width = 4m
• Top width = 1.2m
• Type of tower = Four legged lattice tower with two slopes.
• Number of members = 564
2. Wind load is calculated using STADD.Pro V8i using IS: 875(Part 3)-
1987[3].
The total wind load acting on the structure is 2719 Kg.
3. Design has been done according to IS: 802 using STADD.Pro and
following results are obtained:
• a. Total weight of steel required in superstructure = 9758 Kg.
• b. Materials required in super structure:
S. No Profile Length(m) Weight(Kg)
1. ISA 100x100x12 120.33 2130
2. ISA 80x80x10 170.63 2019
3. ISA 90x90x10 418.69 5609
Total = 9758
4. Raft foundation of 5m x 5m has been designed along with slab base
and column base to transfer the loads to raft. The details of foundation are:
a. Allowable Bearing Pressure = 250 KPa
b. Thickness of slab base = 25 mm
c. Thickness of column base = 450 mm
d. Thickness of Raft foundation = 22 mm
CONCLUSION
In the present era, technology is growing at a rapid phase which
require adequate communication means like mobile phones, internet, radio
communication etc. So there is need for proper communication systems
including radio stations, Communication towers. If we could optimize the
design of towers and use less resources, it will save a lot of money and
resources. In olden days angle sections are used in making of truss in
towers, currently tubular sections are preferred as they are more
economical.
The wind load acting on the telecommunication towers will be
comparatively less in magnitude as it is open structure with more openings,
but failure of the towers is mainly due to High Intensity Winds and
Earthquakes. So high factor of safety should be given to wind loads and
seismic loads.

More Related Content

What's hot

Design of column base plates anchor bolt
Design of column base plates anchor boltDesign of column base plates anchor bolt
Design of column base plates anchor bolt
Khaled Eid
 
Lec06 Analysis and Design of T Beams (Reinforced Concrete Design I & Prof. Ab...
Lec06 Analysis and Design of T Beams (Reinforced Concrete Design I & Prof. Ab...Lec06 Analysis and Design of T Beams (Reinforced Concrete Design I & Prof. Ab...
Lec06 Analysis and Design of T Beams (Reinforced Concrete Design I & Prof. Ab...
Hossam Shafiq II
 
Cold-Formed-Steel Design And Construction ( Steel Structure )
Cold-Formed-Steel Design And Construction ( Steel Structure )Cold-Formed-Steel Design And Construction ( Steel Structure )
Cold-Formed-Steel Design And Construction ( Steel Structure )
Hossam Shafiq I
 
Structurala Analysis Report
Structurala Analysis ReportStructurala Analysis Report
Structurala Analysis Report
surendra1985
 
Reinforced column design
Reinforced column design Reinforced column design
Reinforced column design
Mohamed Azeem Nijamdeen
 
problems on Staad.pro and analysis of a 5 storey building using Etabs
problems on Staad.pro and analysis of a 5 storey building using Etabsproblems on Staad.pro and analysis of a 5 storey building using Etabs
problems on Staad.pro and analysis of a 5 storey building using Etabs
srinivas cnu
 
Slab Design-(BNBC & ACI)
Slab Design-(BNBC & ACI)Slab Design-(BNBC & ACI)
Slab Design-(BNBC & ACI)
Priodeep Chowdhury
 
Analysis of warehouse in staad pro.
Analysis of warehouse in staad pro. Analysis of warehouse in staad pro.
Analysis of warehouse in staad pro.
CADmantra Technologies
 
Chapter27
Chapter27Chapter27
Wind load calculation
Wind load calculationWind load calculation
Wind load calculation
Godfrey James
 
Prestressed Concrete Design
Prestressed Concrete DesignPrestressed Concrete Design
Prestressed Concrete Design
Priodeep Chowdhury
 
T beam TYPES
T beam TYPEST beam TYPES
T beam TYPES
babji syed
 
Bridge loading
Bridge loadingBridge loading
Bridge loading
kapilpant12
 
Design of steel structure as per is 800(2007)
Design of steel structure as per is 800(2007)Design of steel structure as per is 800(2007)
Design of steel structure as per is 800(2007)
ahsanrabbani
 
Two way slab
Two way slabTwo way slab
Two way slab
Priodeep Chowdhury
 
Design of steel beams
Design of steel beamsDesign of steel beams
Design of steel beams
Ir. David Puen
 
1. Pile foundations (SL 1-143).pdf
1. Pile foundations (SL 1-143).pdf1. Pile foundations (SL 1-143).pdf
1. Pile foundations (SL 1-143).pdf
KRSrikrishnaSetty
 
DESIGN AND ANALAYSIS OF MULTI STOREY BUILDING USING STAAD PRO
DESIGN AND ANALAYSIS OF MULTI STOREY BUILDING USING STAAD PRODESIGN AND ANALAYSIS OF MULTI STOREY BUILDING USING STAAD PRO
DESIGN AND ANALAYSIS OF MULTI STOREY BUILDING USING STAAD PRO
Ali Meer
 
Design steps of foot bridge , stringer and cross girder
Design steps of foot bridge , stringer and cross girderDesign steps of foot bridge , stringer and cross girder
Design steps of foot bridge , stringer and cross girder
Gaurav Ghai
 

What's hot (20)

design of tower
design of towerdesign of tower
design of tower
 
Design of column base plates anchor bolt
Design of column base plates anchor boltDesign of column base plates anchor bolt
Design of column base plates anchor bolt
 
Lec06 Analysis and Design of T Beams (Reinforced Concrete Design I & Prof. Ab...
Lec06 Analysis and Design of T Beams (Reinforced Concrete Design I & Prof. Ab...Lec06 Analysis and Design of T Beams (Reinforced Concrete Design I & Prof. Ab...
Lec06 Analysis and Design of T Beams (Reinforced Concrete Design I & Prof. Ab...
 
Cold-Formed-Steel Design And Construction ( Steel Structure )
Cold-Formed-Steel Design And Construction ( Steel Structure )Cold-Formed-Steel Design And Construction ( Steel Structure )
Cold-Formed-Steel Design And Construction ( Steel Structure )
 
Structurala Analysis Report
Structurala Analysis ReportStructurala Analysis Report
Structurala Analysis Report
 
Reinforced column design
Reinforced column design Reinforced column design
Reinforced column design
 
problems on Staad.pro and analysis of a 5 storey building using Etabs
problems on Staad.pro and analysis of a 5 storey building using Etabsproblems on Staad.pro and analysis of a 5 storey building using Etabs
problems on Staad.pro and analysis of a 5 storey building using Etabs
 
Slab Design-(BNBC & ACI)
Slab Design-(BNBC & ACI)Slab Design-(BNBC & ACI)
Slab Design-(BNBC & ACI)
 
Analysis of warehouse in staad pro.
Analysis of warehouse in staad pro. Analysis of warehouse in staad pro.
Analysis of warehouse in staad pro.
 
Chapter27
Chapter27Chapter27
Chapter27
 
Wind load calculation
Wind load calculationWind load calculation
Wind load calculation
 
Prestressed Concrete Design
Prestressed Concrete DesignPrestressed Concrete Design
Prestressed Concrete Design
 
T beam TYPES
T beam TYPEST beam TYPES
T beam TYPES
 
Bridge loading
Bridge loadingBridge loading
Bridge loading
 
Design of steel structure as per is 800(2007)
Design of steel structure as per is 800(2007)Design of steel structure as per is 800(2007)
Design of steel structure as per is 800(2007)
 
Two way slab
Two way slabTwo way slab
Two way slab
 
Design of steel beams
Design of steel beamsDesign of steel beams
Design of steel beams
 
1. Pile foundations (SL 1-143).pdf
1. Pile foundations (SL 1-143).pdf1. Pile foundations (SL 1-143).pdf
1. Pile foundations (SL 1-143).pdf
 
DESIGN AND ANALAYSIS OF MULTI STOREY BUILDING USING STAAD PRO
DESIGN AND ANALAYSIS OF MULTI STOREY BUILDING USING STAAD PRODESIGN AND ANALAYSIS OF MULTI STOREY BUILDING USING STAAD PRO
DESIGN AND ANALAYSIS OF MULTI STOREY BUILDING USING STAAD PRO
 
Design steps of foot bridge , stringer and cross girder
Design steps of foot bridge , stringer and cross girderDesign steps of foot bridge , stringer and cross girder
Design steps of foot bridge , stringer and cross girder
 

Viewers also liked

Construction of telecommunication towers
Construction of telecommunication towersConstruction of telecommunication towers
Construction of telecommunication towers
snookala
 
Bts installation & commisioning.ppt
Bts installation & commisioning.pptBts installation & commisioning.ppt
Bts installation & commisioning.ppt
AIRTEL
 
Telecommunication Tower
Telecommunication TowerTelecommunication Tower
Telecommunication Tower
ayishairshad
 
Bts-site-installation
 Bts-site-installation Bts-site-installation
Bts-site-installationAli Usman
 
Cell tower, BTS & antennas
Cell tower, BTS & antennasCell tower, BTS & antennas
Cell tower, BTS & antennas
nimay1
 
telecommunication Towers
telecommunication Towerstelecommunication Towers
telecommunication Towers
Towerpeople
 

Viewers also liked (6)

Construction of telecommunication towers
Construction of telecommunication towersConstruction of telecommunication towers
Construction of telecommunication towers
 
Bts installation & commisioning.ppt
Bts installation & commisioning.pptBts installation & commisioning.ppt
Bts installation & commisioning.ppt
 
Telecommunication Tower
Telecommunication TowerTelecommunication Tower
Telecommunication Tower
 
Bts-site-installation
 Bts-site-installation Bts-site-installation
Bts-site-installation
 
Cell tower, BTS & antennas
Cell tower, BTS & antennasCell tower, BTS & antennas
Cell tower, BTS & antennas
 
telecommunication Towers
telecommunication Towerstelecommunication Towers
telecommunication Towers
 

Similar to analysis and design of telecommunication tower

Design and Analysis of Steel Tower Attachments for Domestic Wind Tower
Design and Analysis of Steel Tower Attachments for Domestic Wind TowerDesign and Analysis of Steel Tower Attachments for Domestic Wind Tower
Design and Analysis of Steel Tower Attachments for Domestic Wind Tower
IRJET Journal
 
IRJET- Review Paper on Comparative Study of Dynamic Analysis of Transmission ...
IRJET- Review Paper on Comparative Study of Dynamic Analysis of Transmission ...IRJET- Review Paper on Comparative Study of Dynamic Analysis of Transmission ...
IRJET- Review Paper on Comparative Study of Dynamic Analysis of Transmission ...
IRJET Journal
 
IRJET- Comparative Study of Dynamic Analysis of Transmission Towers
IRJET- Comparative Study of Dynamic Analysis of Transmission TowersIRJET- Comparative Study of Dynamic Analysis of Transmission Towers
IRJET- Comparative Study of Dynamic Analysis of Transmission Towers
IRJET Journal
 
uni arc
uni arcuni arc
uni arc
dafer sief
 
HV tower design 3
HV tower design 3HV tower design 3
HV tower design 3
Thy Khy
 
Analysis and Design of Power Transmission Lines Steel Towers.docx
Analysis and Design of Power Transmission Lines Steel Towers.docxAnalysis and Design of Power Transmission Lines Steel Towers.docx
Analysis and Design of Power Transmission Lines Steel Towers.docx
Adnan Lazem
 
Design of cell transmission tower with different bracing patterns
Design of cell transmission tower with different bracing patternsDesign of cell transmission tower with different bracing patterns
Design of cell transmission tower with different bracing patterns
IRJET Journal
 
IRJET- Response of Multistorey Building with Rooftop Telecommunication To...
IRJET-  	  Response of Multistorey Building with Rooftop Telecommunication To...IRJET-  	  Response of Multistorey Building with Rooftop Telecommunication To...
IRJET- Response of Multistorey Building with Rooftop Telecommunication To...
IRJET Journal
 
A012140107
A012140107A012140107
A012140107
IOSR Journals
 
Large Span Lattice Frame Industrial Roof Structure
Large Span Lattice Frame Industrial Roof StructureLarge Span Lattice Frame Industrial Roof Structure
Large Span Lattice Frame Industrial Roof Structure
IOSR Journals
 
Large Span Lattice Frame Industrial Roof Structure
Large Span Lattice Frame Industrial Roof StructureLarge Span Lattice Frame Industrial Roof Structure
Large Span Lattice Frame Industrial Roof Structure
IOSR Journals
 
Analysis of industrial shed
Analysis of industrial shedAnalysis of industrial shed
Analysis of industrial shed
CADmantra Technologies
 
Final Paper on Study and Design of Footbridge to connect the first floor of C...
Final Paper on Study and Design of Footbridge to connect the first floor of C...Final Paper on Study and Design of Footbridge to connect the first floor of C...
Final Paper on Study and Design of Footbridge to connect the first floor of C...
IRJET Journal
 
IRJET- A Study on Seismic Analysis of RC Framed Structures on Varying Slo...
IRJET-  	  A Study on Seismic Analysis of RC Framed Structures on Varying Slo...IRJET-  	  A Study on Seismic Analysis of RC Framed Structures on Varying Slo...
IRJET- A Study on Seismic Analysis of RC Framed Structures on Varying Slo...
IRJET Journal
 
IMPROVING THE STRUCTURAL EFFICIENCY OF STEEL TRUSSES BY COMPARATIVE STUDY
IMPROVING THE STRUCTURAL EFFICIENCY OF STEEL TRUSSES BY COMPARATIVE STUDYIMPROVING THE STRUCTURAL EFFICIENCY OF STEEL TRUSSES BY COMPARATIVE STUDY
IMPROVING THE STRUCTURAL EFFICIENCY OF STEEL TRUSSES BY COMPARATIVE STUDY
IRJET Journal
 
PARAMETRIC OPTIMIZATION OF MOBILE TOWER BY VARYING LOADING CONDITIONS WITH DI...
PARAMETRIC OPTIMIZATION OF MOBILE TOWER BY VARYING LOADING CONDITIONS WITH DI...PARAMETRIC OPTIMIZATION OF MOBILE TOWER BY VARYING LOADING CONDITIONS WITH DI...
PARAMETRIC OPTIMIZATION OF MOBILE TOWER BY VARYING LOADING CONDITIONS WITH DI...
IRJET Journal
 
Hospital building project
Hospital building projectHospital building project
Hospital building project
sasi vijayalakshmi
 
Structural Behaviors of Reinforced Concrete Dome with Shell System under Vari...
Structural Behaviors of Reinforced Concrete Dome with Shell System under Vari...Structural Behaviors of Reinforced Concrete Dome with Shell System under Vari...
Structural Behaviors of Reinforced Concrete Dome with Shell System under Vari...
ijtsrd
 
2 ijaems jul-2015-3-analysis and design of four leg steel transmission tower ...
2 ijaems jul-2015-3-analysis and design of four leg steel transmission tower ...2 ijaems jul-2015-3-analysis and design of four leg steel transmission tower ...
2 ijaems jul-2015-3-analysis and design of four leg steel transmission tower ...
INFOGAIN PUBLICATION
 

Similar to analysis and design of telecommunication tower (20)

Design and Analysis of Steel Tower Attachments for Domestic Wind Tower
Design and Analysis of Steel Tower Attachments for Domestic Wind TowerDesign and Analysis of Steel Tower Attachments for Domestic Wind Tower
Design and Analysis of Steel Tower Attachments for Domestic Wind Tower
 
IRJET- Review Paper on Comparative Study of Dynamic Analysis of Transmission ...
IRJET- Review Paper on Comparative Study of Dynamic Analysis of Transmission ...IRJET- Review Paper on Comparative Study of Dynamic Analysis of Transmission ...
IRJET- Review Paper on Comparative Study of Dynamic Analysis of Transmission ...
 
IRJET- Comparative Study of Dynamic Analysis of Transmission Towers
IRJET- Comparative Study of Dynamic Analysis of Transmission TowersIRJET- Comparative Study of Dynamic Analysis of Transmission Towers
IRJET- Comparative Study of Dynamic Analysis of Transmission Towers
 
2581
25812581
2581
 
uni arc
uni arcuni arc
uni arc
 
HV tower design 3
HV tower design 3HV tower design 3
HV tower design 3
 
Analysis and Design of Power Transmission Lines Steel Towers.docx
Analysis and Design of Power Transmission Lines Steel Towers.docxAnalysis and Design of Power Transmission Lines Steel Towers.docx
Analysis and Design of Power Transmission Lines Steel Towers.docx
 
Design of cell transmission tower with different bracing patterns
Design of cell transmission tower with different bracing patternsDesign of cell transmission tower with different bracing patterns
Design of cell transmission tower with different bracing patterns
 
IRJET- Response of Multistorey Building with Rooftop Telecommunication To...
IRJET-  	  Response of Multistorey Building with Rooftop Telecommunication To...IRJET-  	  Response of Multistorey Building with Rooftop Telecommunication To...
IRJET- Response of Multistorey Building with Rooftop Telecommunication To...
 
A012140107
A012140107A012140107
A012140107
 
Large Span Lattice Frame Industrial Roof Structure
Large Span Lattice Frame Industrial Roof StructureLarge Span Lattice Frame Industrial Roof Structure
Large Span Lattice Frame Industrial Roof Structure
 
Large Span Lattice Frame Industrial Roof Structure
Large Span Lattice Frame Industrial Roof StructureLarge Span Lattice Frame Industrial Roof Structure
Large Span Lattice Frame Industrial Roof Structure
 
Analysis of industrial shed
Analysis of industrial shedAnalysis of industrial shed
Analysis of industrial shed
 
Final Paper on Study and Design of Footbridge to connect the first floor of C...
Final Paper on Study and Design of Footbridge to connect the first floor of C...Final Paper on Study and Design of Footbridge to connect the first floor of C...
Final Paper on Study and Design of Footbridge to connect the first floor of C...
 
IRJET- A Study on Seismic Analysis of RC Framed Structures on Varying Slo...
IRJET-  	  A Study on Seismic Analysis of RC Framed Structures on Varying Slo...IRJET-  	  A Study on Seismic Analysis of RC Framed Structures on Varying Slo...
IRJET- A Study on Seismic Analysis of RC Framed Structures on Varying Slo...
 
IMPROVING THE STRUCTURAL EFFICIENCY OF STEEL TRUSSES BY COMPARATIVE STUDY
IMPROVING THE STRUCTURAL EFFICIENCY OF STEEL TRUSSES BY COMPARATIVE STUDYIMPROVING THE STRUCTURAL EFFICIENCY OF STEEL TRUSSES BY COMPARATIVE STUDY
IMPROVING THE STRUCTURAL EFFICIENCY OF STEEL TRUSSES BY COMPARATIVE STUDY
 
PARAMETRIC OPTIMIZATION OF MOBILE TOWER BY VARYING LOADING CONDITIONS WITH DI...
PARAMETRIC OPTIMIZATION OF MOBILE TOWER BY VARYING LOADING CONDITIONS WITH DI...PARAMETRIC OPTIMIZATION OF MOBILE TOWER BY VARYING LOADING CONDITIONS WITH DI...
PARAMETRIC OPTIMIZATION OF MOBILE TOWER BY VARYING LOADING CONDITIONS WITH DI...
 
Hospital building project
Hospital building projectHospital building project
Hospital building project
 
Structural Behaviors of Reinforced Concrete Dome with Shell System under Vari...
Structural Behaviors of Reinforced Concrete Dome with Shell System under Vari...Structural Behaviors of Reinforced Concrete Dome with Shell System under Vari...
Structural Behaviors of Reinforced Concrete Dome with Shell System under Vari...
 
2 ijaems jul-2015-3-analysis and design of four leg steel transmission tower ...
2 ijaems jul-2015-3-analysis and design of four leg steel transmission tower ...2 ijaems jul-2015-3-analysis and design of four leg steel transmission tower ...
2 ijaems jul-2015-3-analysis and design of four leg steel transmission tower ...
 

Recently uploaded

Planning Of Procurement o different goods and services
Planning Of Procurement o different goods and servicesPlanning Of Procurement o different goods and services
Planning Of Procurement o different goods and services
JoytuBarua2
 
Top 10 Oil and Gas Projects in Saudi Arabia 2024.pdf
Top 10 Oil and Gas Projects in Saudi Arabia 2024.pdfTop 10 Oil and Gas Projects in Saudi Arabia 2024.pdf
Top 10 Oil and Gas Projects in Saudi Arabia 2024.pdf
Teleport Manpower Consultant
 
NO1 Uk best vashikaran specialist in delhi vashikaran baba near me online vas...
NO1 Uk best vashikaran specialist in delhi vashikaran baba near me online vas...NO1 Uk best vashikaran specialist in delhi vashikaran baba near me online vas...
NO1 Uk best vashikaran specialist in delhi vashikaran baba near me online vas...
Amil Baba Dawood bangali
 
J.Yang, ICLR 2024, MLILAB, KAIST AI.pdf
J.Yang,  ICLR 2024, MLILAB, KAIST AI.pdfJ.Yang,  ICLR 2024, MLILAB, KAIST AI.pdf
J.Yang, ICLR 2024, MLILAB, KAIST AI.pdf
MLILAB
 
Final project report on grocery store management system..pdf
Final project report on grocery store management system..pdfFinal project report on grocery store management system..pdf
Final project report on grocery store management system..pdf
Kamal Acharya
 
Governing Equations for Fundamental Aerodynamics_Anderson2010.pdf
Governing Equations for Fundamental Aerodynamics_Anderson2010.pdfGoverning Equations for Fundamental Aerodynamics_Anderson2010.pdf
Governing Equations for Fundamental Aerodynamics_Anderson2010.pdf
WENKENLI1
 
Gen AI Study Jams _ For the GDSC Leads in India.pdf
Gen AI Study Jams _ For the GDSC Leads in India.pdfGen AI Study Jams _ For the GDSC Leads in India.pdf
Gen AI Study Jams _ For the GDSC Leads in India.pdf
gdsczhcet
 
road safety engineering r s e unit 3.pdf
road safety engineering  r s e unit 3.pdfroad safety engineering  r s e unit 3.pdf
road safety engineering r s e unit 3.pdf
VENKATESHvenky89705
 
Fundamentals of Electric Drives and its applications.pptx
Fundamentals of Electric Drives and its applications.pptxFundamentals of Electric Drives and its applications.pptx
Fundamentals of Electric Drives and its applications.pptx
manasideore6
 
Pile Foundation by Venkatesh Taduvai (Sub Geotechnical Engineering II)-conver...
Pile Foundation by Venkatesh Taduvai (Sub Geotechnical Engineering II)-conver...Pile Foundation by Venkatesh Taduvai (Sub Geotechnical Engineering II)-conver...
Pile Foundation by Venkatesh Taduvai (Sub Geotechnical Engineering II)-conver...
AJAYKUMARPUND1
 
DESIGN A COTTON SEED SEPARATION MACHINE.docx
DESIGN A COTTON SEED SEPARATION MACHINE.docxDESIGN A COTTON SEED SEPARATION MACHINE.docx
DESIGN A COTTON SEED SEPARATION MACHINE.docx
FluxPrime1
 
Runway Orientation Based on the Wind Rose Diagram.pptx
Runway Orientation Based on the Wind Rose Diagram.pptxRunway Orientation Based on the Wind Rose Diagram.pptx
Runway Orientation Based on the Wind Rose Diagram.pptx
SupreethSP4
 
ASME IX(9) 2007 Full Version .pdf
ASME IX(9)  2007 Full Version       .pdfASME IX(9)  2007 Full Version       .pdf
ASME IX(9) 2007 Full Version .pdf
AhmedHussein950959
 
Standard Reomte Control Interface - Neometrix
Standard Reomte Control Interface - NeometrixStandard Reomte Control Interface - Neometrix
Standard Reomte Control Interface - Neometrix
Neometrix_Engineering_Pvt_Ltd
 
ethical hacking-mobile hacking methods.ppt
ethical hacking-mobile hacking methods.pptethical hacking-mobile hacking methods.ppt
ethical hacking-mobile hacking methods.ppt
Jayaprasanna4
 
power quality voltage fluctuation UNIT - I.pptx
power quality voltage fluctuation UNIT - I.pptxpower quality voltage fluctuation UNIT - I.pptx
power quality voltage fluctuation UNIT - I.pptx
ViniHema
 
ethical hacking in wireless-hacking1.ppt
ethical hacking in wireless-hacking1.pptethical hacking in wireless-hacking1.ppt
ethical hacking in wireless-hacking1.ppt
Jayaprasanna4
 
The Benefits and Techniques of Trenchless Pipe Repair.pdf
The Benefits and Techniques of Trenchless Pipe Repair.pdfThe Benefits and Techniques of Trenchless Pipe Repair.pdf
The Benefits and Techniques of Trenchless Pipe Repair.pdf
Pipe Restoration Solutions
 
Architectural Portfolio Sean Lockwood
Architectural Portfolio Sean LockwoodArchitectural Portfolio Sean Lockwood
Architectural Portfolio Sean Lockwood
seandesed
 
一比一原版(UofT毕业证)多伦多大学毕业证成绩单如何办理
一比一原版(UofT毕业证)多伦多大学毕业证成绩单如何办理一比一原版(UofT毕业证)多伦多大学毕业证成绩单如何办理
一比一原版(UofT毕业证)多伦多大学毕业证成绩单如何办理
ydteq
 

Recently uploaded (20)

Planning Of Procurement o different goods and services
Planning Of Procurement o different goods and servicesPlanning Of Procurement o different goods and services
Planning Of Procurement o different goods and services
 
Top 10 Oil and Gas Projects in Saudi Arabia 2024.pdf
Top 10 Oil and Gas Projects in Saudi Arabia 2024.pdfTop 10 Oil and Gas Projects in Saudi Arabia 2024.pdf
Top 10 Oil and Gas Projects in Saudi Arabia 2024.pdf
 
NO1 Uk best vashikaran specialist in delhi vashikaran baba near me online vas...
NO1 Uk best vashikaran specialist in delhi vashikaran baba near me online vas...NO1 Uk best vashikaran specialist in delhi vashikaran baba near me online vas...
NO1 Uk best vashikaran specialist in delhi vashikaran baba near me online vas...
 
J.Yang, ICLR 2024, MLILAB, KAIST AI.pdf
J.Yang,  ICLR 2024, MLILAB, KAIST AI.pdfJ.Yang,  ICLR 2024, MLILAB, KAIST AI.pdf
J.Yang, ICLR 2024, MLILAB, KAIST AI.pdf
 
Final project report on grocery store management system..pdf
Final project report on grocery store management system..pdfFinal project report on grocery store management system..pdf
Final project report on grocery store management system..pdf
 
Governing Equations for Fundamental Aerodynamics_Anderson2010.pdf
Governing Equations for Fundamental Aerodynamics_Anderson2010.pdfGoverning Equations for Fundamental Aerodynamics_Anderson2010.pdf
Governing Equations for Fundamental Aerodynamics_Anderson2010.pdf
 
Gen AI Study Jams _ For the GDSC Leads in India.pdf
Gen AI Study Jams _ For the GDSC Leads in India.pdfGen AI Study Jams _ For the GDSC Leads in India.pdf
Gen AI Study Jams _ For the GDSC Leads in India.pdf
 
road safety engineering r s e unit 3.pdf
road safety engineering  r s e unit 3.pdfroad safety engineering  r s e unit 3.pdf
road safety engineering r s e unit 3.pdf
 
Fundamentals of Electric Drives and its applications.pptx
Fundamentals of Electric Drives and its applications.pptxFundamentals of Electric Drives and its applications.pptx
Fundamentals of Electric Drives and its applications.pptx
 
Pile Foundation by Venkatesh Taduvai (Sub Geotechnical Engineering II)-conver...
Pile Foundation by Venkatesh Taduvai (Sub Geotechnical Engineering II)-conver...Pile Foundation by Venkatesh Taduvai (Sub Geotechnical Engineering II)-conver...
Pile Foundation by Venkatesh Taduvai (Sub Geotechnical Engineering II)-conver...
 
DESIGN A COTTON SEED SEPARATION MACHINE.docx
DESIGN A COTTON SEED SEPARATION MACHINE.docxDESIGN A COTTON SEED SEPARATION MACHINE.docx
DESIGN A COTTON SEED SEPARATION MACHINE.docx
 
Runway Orientation Based on the Wind Rose Diagram.pptx
Runway Orientation Based on the Wind Rose Diagram.pptxRunway Orientation Based on the Wind Rose Diagram.pptx
Runway Orientation Based on the Wind Rose Diagram.pptx
 
ASME IX(9) 2007 Full Version .pdf
ASME IX(9)  2007 Full Version       .pdfASME IX(9)  2007 Full Version       .pdf
ASME IX(9) 2007 Full Version .pdf
 
Standard Reomte Control Interface - Neometrix
Standard Reomte Control Interface - NeometrixStandard Reomte Control Interface - Neometrix
Standard Reomte Control Interface - Neometrix
 
ethical hacking-mobile hacking methods.ppt
ethical hacking-mobile hacking methods.pptethical hacking-mobile hacking methods.ppt
ethical hacking-mobile hacking methods.ppt
 
power quality voltage fluctuation UNIT - I.pptx
power quality voltage fluctuation UNIT - I.pptxpower quality voltage fluctuation UNIT - I.pptx
power quality voltage fluctuation UNIT - I.pptx
 
ethical hacking in wireless-hacking1.ppt
ethical hacking in wireless-hacking1.pptethical hacking in wireless-hacking1.ppt
ethical hacking in wireless-hacking1.ppt
 
The Benefits and Techniques of Trenchless Pipe Repair.pdf
The Benefits and Techniques of Trenchless Pipe Repair.pdfThe Benefits and Techniques of Trenchless Pipe Repair.pdf
The Benefits and Techniques of Trenchless Pipe Repair.pdf
 
Architectural Portfolio Sean Lockwood
Architectural Portfolio Sean LockwoodArchitectural Portfolio Sean Lockwood
Architectural Portfolio Sean Lockwood
 
一比一原版(UofT毕业证)多伦多大学毕业证成绩单如何办理
一比一原版(UofT毕业证)多伦多大学毕业证成绩单如何办理一比一原版(UofT毕业证)多伦多大学毕业证成绩单如何办理
一比一原版(UofT毕业证)多伦多大学毕业证成绩单如何办理
 

analysis and design of telecommunication tower

  • 1. Guided by; D Sreehari Rao, Assistant Professor, Dept. of Civil Engg. By; G Sireesha ( 11202012), P Hari Krishna (11202024), S Sri Hari (11202030).
  • 2. In the present era the technology in communications has developed to a very large extent. The communication industries have seen a tremendous increase in last few years which have resulted in installation of large number of towers to increase the coverage area and network consistency. In wireless communication network these towers play a significant role hence failure of such structure in a disaster is a major concern. Therefore utmost importance should be given in considering all possible extreme conditions for designing these towers. In most of the studies, the researches have considered the effect of wind only on the four legged self-supporting towers. In this dissertation, a four legged lattice tower is analyzed and designed along with foundation details.
  • 3. BASED ON STRUCTURAL ACTION SELF SUPPORTING TOWERS The towers that are supported on ground or on buildings are called as self-supporting towers. Though the weight of these towers is more they require less base area and are suitable in many situations. Most of the TV, MW, Power transmission, and flood light towers are self-supporting towers. GUYED TOWERS Guyed towers are normally guyed in three directions. These towers are much lighter than self supporting type but require a large free space to anchor guy wires. Whenever large open space is available, guyed towers can be provided. There are other restrictions to mount dish antennae on these towers and require large anchor blocks to hold the ropes. MONOPOLE It is single self-supporting pole, and is generally placed over roofs of high raised buildings, when number of antennae required is less or height of tower required is less than 9m. TYPES OF COMMUNICATION TOWERS
  • 4. Self Supporting Tower Guyed Tower Monopole Tower
  • 5. Based on the type of material sections : Based on the sections used for fabrication, towers are classified into angular and hybrid towers (with tubular and angle bracings). Lattice towers are usually made of bolted angles. Towers with tubular members may be less than half the weight of angle towers because of the reduced wind load on circular sections. However the extra cost of the tube and the more complicated connection details can exceed the saving of steel weight and foundations. Based on cross section of tower: Towers can be classified, based on their cross section, into square, rectangular, triangular, delta, hexagonal and polygonal towers. Triangular Lattice Towers have less weight but offer less stiffness in torsion. With the increase in number of faces, it is observed that weight of tower increases. The increase is 10% and 20% for square and hexagonal cross sections respectively. Based on the number of segments: The towers are classified based on the number of segments as Three slope tower; Two slope tower; Single slope tower; Straight tower.
  • 6. OBJECTIVES The objective of this project is to design a Telecommunication tower, along with foundation details, and to analyze it, below mentioned basic parameters are considered : • Base width. • Height of tower. • Soil Bearing Capacity. • Configuration of Tower. Following research has to be carried out for meeting the above objectives: • Soil exploration studies. • Terminology of communication tower and its components. • Different behaviors of towers. • Methodology for analysis and design of communication towers.
  • 7. To meet these objectives the following work has to be done: • Towers are configured with keeping in mind all field and structural constraints on AutoCAD 2015. • Loading format including reliability, security and safety pattern are to be evaluated. • Wind loading is calculated on the longitudinal face of the towers. • Now all the towers are modelled and analyzed as a three dimensional structure using STADD.Pro V8i and STAAD(X) Tower V8i. • Finally tower members are designed as an angle sections.
  • 8. DESIGN OF COMMUNICATION TOWERS The following are the steps involved in design of communication tower: • Selection of configuration of tower. • Computation of loads acting on tower. • Analysis of tower for appropriate loading conditions. • Design of tower members according to codes of practices. • Design of foundation according to codes of practices.
  • 9. CONFIGURATION A communication tower, like any other exposed structure, has a super structure shaped, dimensioned and designed to suit the external loads and self- weight Selection of configuration of a tower involves fixing of top width, bottom width, number of panels and their heights, type of bracing system and slope of tower. The following are key parameters in configuration of tower. • Width at bottom level = 4.00 m • Width at top level = 1.20 m • Overall Height = 30.00 m • No. of levels = 09 levels • Slope of outline of tower = 87º 8’ 15.34” (with horizontal)
  • 10.
  • 11. ELEVATION OF LEVELS LEVELS HEIGHT (M) BASE WIDTH (M) BRACING PATTERN OF FACE 0 0 4 K2 Brace Down 1 6 3.3 Double K1 Brace Down 2 10.5 2.775 Double K1 Brace Down 3 14 2.367 Double K1 Brace Down 4 17 2.017 XX Bracing 5 19 1.783 XX Bracing 6 21 1.55 XX Bracing 7 22.5 1.375 XX Bracing 8 24 1.2 XX Bracing 9 30 1.2 XX Bracing
  • 12. LOAD CONSIDERATIONS In case of communication towers self-weight of tower is most important component of tower design. The tele communication steel tower is a pin-jointed light structure, It is still assumed that their behavior is similar to simple truss. The percentage of openings in Tower structure will be more than 30%, so wind loads acting on the tower will be of less magnitude compared to chimneys, but the major cause of failures of telecommunication tower throughout the world though still remains to be high intensity winds (HIW). The major problem faced is the difficulty in estimating wind loads as they are based on a probabilistic approach. There has been several studies in telecommunication towers taking into consideration the wind as well as dynamic effect.
  • 13. The loadings which are considered during this project are: 1. Dead loads or Vertical loads ( i.e. self weight of tower members, Self weight of antennas, labour and equipment during construction and maintenance.) 2. Transverse loads (Wind load on exposed members of the tower and antenna.) Wind load on tower: The wind load on tower can be calculated using the Indian standards IS: 875(Part 3)- 1987[3] and BS: 8100 (Part 1)-1996[4]. Wind load on antennae: Wind load on antennae shall be considered from Andrew’s catalogue. In the Andrew’s catalogue the wind loads on antennas are given for 200kmph wind speed. The designer has to calculate the antenna loads corresponding to designwind speed.
  • 14. DESIGN WIND PRESSURE •At Tirupati region, the design wind speed = 39 m/s •Design speed at the site = Vz = K1K2K3Vb Risk co-efficient = K1 for 100 years life = 1.08 K2 , terrain factor for 30 m and class B of Terrain category 3 = 1.03 Topography factor (K3) = 1+ Cs For the given plain topography K3 = 1 ( As C=0 ) • Vz = 1.08*1.03*1*39 = 55.62 m/s • Design wind pressure = Pz = 0.6 Vz 2 = 1.86 KN/m2
  • 15. Similarly the design wind pressures for different levels are calculated and tabulated as follows: Height (m) Design wind pressure (KN/m2 ) 0 0 10 1.36 12 1.44 15 1.55 18 1.63 21 1.70 24 1.75 27 1.81 30 1.86
  • 16.
  • 17.
  • 18. MODELLING AND ANALYSIS The lattice tower model was analyzed in ANSYS as well as in STAAD. Pro V8i and STAAD(X) Tower V8i software package. The model was created using the coordinate data for the points and the element connectivity table and suitable cross sectional properties were assigned to the elements created. The boundary condition was stimulated in the model by fixing the three lowermost nodes of the modeled structure. The loads calculated above are applied at appropriate nodes and the stress parameters, deformation of the structure under the effect of the applied load is studied.
  • 19.
  • 20. DESIGN OF MEMBERS Suitable steel sections are initially assumed as members of the tower for analyzing the structure. Once the analysis is done members are finalized based on the stresses developing in them, following the codal provisions provided by Indian Standards. • The maximum allowable stresses in the members are given in IS 802 (Part-1). • Limiting slenderness ratios for members are given in IS 802(Part-1). • Effective Length of compression members should be assumed as per IS 806(1968).
  • 21.
  • 23. DESIGN OF SLAB BASE As per IS 800:2007, • Bearing strength of concrete = 0.6fck • But for practical consideration bearing strength = 0.45fck ∴ Area of plate required = 𝑃𝑢 0.45𝑓𝑐𝑘 • Where Pu = Factored load • Load on each leg is = 400KN • Factored load on each leg = 600KN • Area of plate required = 600 0.45×25 = 53333.33 mm2 ∴ Side of each base plate = 300 × 300 mm2
  • 24. • Minimum thickness required (ts) = ( 2.5𝑤(𝑎2−0.3𝑏2)𝛾𝑚𝑜 𝑓𝑦 )0.5 Where W = 𝑃𝑢 𝐴𝑟𝑒𝑎 𝑜𝑓 𝑏𝑎𝑠𝑒 𝑝𝑙𝑎𝑡𝑒 = 600×1000 300×300 = 6.66 N/mm2 a = 95 mm and b = 95 mm ∴ ts = ( 2.5×6.66×(952−0.3×952)×1.1 250 )0.5 ∴ ts =25 mm (As ts > tf (truss angle thickness ts = 12mm), hence safe.)  Connect base plate to foundation concrete using 4 No’s 20mm diameter and 300mm long anchor bolts.  If weld is to be used for connecting column to base plate check the weld length of filler weeds.
  • 25. DESIGN OF RAFT FOUNDATION
  • 26. Initially assume footing size = 5m × 5m Uniform load on footing (W) = 𝑎𝑥𝑖𝑎𝑙 𝑙𝑜𝑎𝑑 𝑎𝑟𝑒𝑎 = 800 25 = 32 KN/m2 Consider per meter width then load is = 32 KN/m Maximum bending moment at center of footing = 100 KNm Bending moment required Mu = 0.138fckbd2 100×106 = 0.138 × 25 × 1000 × d2 d = 170.25 mm ∴ d = 200 mm. Area of steel required: Mu = 0.87 fy Ast d (1- 𝐴𝑠𝑡×𝑓𝑦 𝑏𝑑×𝑓𝑐𝑘 ) 100×106 = 0.87×415×Ast×200×(1- 𝐴𝑠𝑡×415 1000×200×25 )
  • 27. Assume concrete grade = M20 Steel grade = Fe415 Ast required = 1596.36 mm2 Assume diameter of bars = 12 mm No. of bars required = 1596.36 ( 𝜋 4 )×122 = 15 bars Spacing of bars = 5000 20 =250 mm ∴ 𝑃𝑟𝑜𝑣𝑖𝑑𝑒 20 𝑏𝑎𝑟𝑠 𝑜𝑓 12𝑚𝑚 𝑑𝑖𝑎 @ 250𝑚𝑚 𝐶 𝐶 𝑜𝑛 𝑏𝑜𝑡ℎ 𝑠𝑖𝑑𝑒𝑠. Design of concrete column for slab base: Axial load on the column = 600KN. According to code axial load on column = 0.4fckAc + 0.67fyAst (As per IS 456:2000) 600×103 = 0.4fckAc + 0.67fyAst 600×103 = 0.4×25×Ac + 0.67fyAst
  • 28.  Assume 1% of steel of concrete area. 600×103 = 0.4×25×Ac + 0.67× 415 × 1 100 Ac ∴ Ac = 46946.6 mm2 = 216.67 × 216.68 mm2 . ∴ Ac = 220 × 220 mm2 . Hence provide 300 × 300 mm2 square column at 350mm from edge. Height of this column above the raft footing = 450 mm Area of steel = 1% of column cross section = 0.01 × 300 × 300 = 900 mm2 Assume 20mm dia bars then No. of bars = 900 ( 𝜋 4 )×202 = 3 bars ∴ 𝑃𝑟𝑜𝑣𝑖𝑑𝑒 4 𝑏𝑎𝑟𝑠 𝑜𝑓 20𝑚𝑚 𝑑𝑖𝑎 𝑤𝑖𝑡ℎ 8𝑚𝑚 𝑑𝑖𝑎 𝑙𝑎𝑡𝑒𝑟𝑎𝑙 𝑡𝑖𝑒 𝑏𝑎𝑟𝑠 𝑎𝑡 𝑠𝑢𝑖𝑡𝑎𝑏𝑙𝑒 𝑠𝑝𝑎𝑐𝑖𝑛𝑔 𝑎𝑠 𝑝𝑒𝑟 𝑐𝑜𝑑𝑎𝑙 𝑝𝑟𝑜𝑣𝑖𝑠𝑖𝑜𝑛𝑠.
  • 29.
  • 30. RESULT A Telecommunication tower of 30m high is analyzed and designed. 1. The configuration of the tower is as follows: • Height of tower = 30m • Base width = 4m • Top width = 1.2m • Type of tower = Four legged lattice tower with two slopes. • Number of members = 564
  • 31. 2. Wind load is calculated using STADD.Pro V8i using IS: 875(Part 3)- 1987[3]. The total wind load acting on the structure is 2719 Kg. 3. Design has been done according to IS: 802 using STADD.Pro and following results are obtained: • a. Total weight of steel required in superstructure = 9758 Kg. • b. Materials required in super structure: S. No Profile Length(m) Weight(Kg) 1. ISA 100x100x12 120.33 2130 2. ISA 80x80x10 170.63 2019 3. ISA 90x90x10 418.69 5609 Total = 9758
  • 32. 4. Raft foundation of 5m x 5m has been designed along with slab base and column base to transfer the loads to raft. The details of foundation are: a. Allowable Bearing Pressure = 250 KPa b. Thickness of slab base = 25 mm c. Thickness of column base = 450 mm d. Thickness of Raft foundation = 22 mm
  • 33. CONCLUSION In the present era, technology is growing at a rapid phase which require adequate communication means like mobile phones, internet, radio communication etc. So there is need for proper communication systems including radio stations, Communication towers. If we could optimize the design of towers and use less resources, it will save a lot of money and resources. In olden days angle sections are used in making of truss in towers, currently tubular sections are preferred as they are more economical. The wind load acting on the telecommunication towers will be comparatively less in magnitude as it is open structure with more openings, but failure of the towers is mainly due to High Intensity Winds and Earthquakes. So high factor of safety should be given to wind loads and seismic loads.