SlideShare a Scribd company logo
1 of 63
Download to read offline
Example 2
Example 2
Let’s find the integral:
Example 2
Let’s find the integral:
x sin xdx
Example 2
Let’s find the integral:
x sin xdx
Let’s write again the formula of integration by parts:
Example 2
Let’s find the integral:
x sin xdx
Let’s write again the formula of integration by parts:
u(x)v (x)dx = u(x)v(x) − u (x)v(x)dx
Example 2
Let’s find the integral:
x sin xdx
Let’s write again the formula of integration by parts:
u(x)v (x)dx = u(x)v(x) − u (x)v(x)dx
In this case we choose:
Example 2
Let’s find the integral:
x sin xdx
Let’s write again the formula of integration by parts:
u(x)v (x)dx = u(x)v(x) − u (x)v(x)dx
In this case we choose:
u(x) = x
Example 2
Let’s find the integral:
x sin xdx
Let’s write again the formula of integration by parts:
u(x)v (x)dx = u(x)v(x) − u (x)v(x)dx
In this case we choose:
u(x) = x v (x) = sin x
Example 2
Let’s find the integral:
x sin xdx
Let’s write again the formula of integration by parts:
u(x)v (x)dx = u(x)v(x) − u (x)v(x)dx
In this case we choose:
u(x) = x v (x) = sin x
u (x) = 1
Example 2
Let’s find the integral:
x sin xdx
Let’s write again the formula of integration by parts:
u(x)v (x)dx = u(x)v(x) − u (x)v(x)dx
In this case we choose:
u(x) = x v (x) = sin x
u (x) = 1 v(x) = − cos x
Example 2
Let’s find the integral:
x sin xdx
Let’s write again the formula of integration by parts:
u(x)v (x)dx = u(x)v(x) − u (x)v(x)dx
In this case we choose:
u(x) = x v (x) = sin x
u (x) = 1 v(x) = − cos x
So, we have that:
Example 2
Let’s find the integral:
x sin xdx
Let’s write again the formula of integration by parts:
u(x)v (x)dx = u(x)v(x) − u (x)v(x)dx
In this case we choose:
u(x) = x v (x) = sin x
u (x) = 1 v(x) = − cos x
So, we have that:
x sin xdx
Example 2
Let’s find the integral:
x sin xdx
Let’s write again the formula of integration by parts:
u(x)v (x)dx = u(x)v(x) − u (x)v(x)dx
In this case we choose:
u(x) = x v (x) = sin x
u (x) = 1 v(x) = − cos x
So, we have that:
 
u(x)
x sin xdx
Example 2
Let’s find the integral:
x sin xdx
Let’s write again the formula of integration by parts:
u(x)v (x)dx = u(x)v(x) − u (x)v(x)dx
In this case we choose:
u(x) = x v (x) = sin x
u (x) = 1 v(x) = − cos x
So, we have that:
x$$$Xv (x)
sin xdx
Example 2
Let’s find the integral:
x sin xdx
Let’s write again the formula of integration by parts:
u(x)v (x)dx = u(x)v(x) − u (x)v(x)dx
In this case we choose:
u(x) = x v (x) = sin x
u (x) = 1 v(x) = − cos x
So, we have that:
x sin xdx =
Example 2
Let’s find the integral:
x sin xdx
Let’s write again the formula of integration by parts:
u(x)v (x)dx = u(x)v(x) − u (x)v(x)dx
In this case we choose:
u(x) = x v (x) = sin x
u (x) = 1 v(x) = − cos x
So, we have that:
x sin xdx = x
Example 2
Let’s find the integral:
x sin xdx
Let’s write again the formula of integration by parts:
u(x)v (x)dx = u(x)v(x) − u (x)v(x)dx
In this case we choose:
u(x) = x v (x) = sin x
u (x) = 1 v(x) = − cos x
So, we have that:
x sin xdx = x(− cos x)
Example 2
Let’s find the integral:
x sin xdx
Let’s write again the formula of integration by parts:
u(x)v (x)dx = u(x)v(x) − u (x)v(x)dx
In this case we choose:
u(x) = x v (x) = sin x
u (x) = 1 v(x) = − cos x
So, we have that:
x sin xdx =  
u(x)
x(− cos x)
Example 2
Let’s find the integral:
x sin xdx
Let’s write again the formula of integration by parts:
u(x)v (x)dx = u(x)v(x) − u (x)v(x)dx
In this case we choose:
u(x) = x v (x) = sin x
u (x) = 1 v(x) = − cos x
So, we have that:
x sin xdx = x$$$$$Xv(x)
(− cos x)
Example 2
Let’s find the integral:
x sin xdx
Let’s write again the formula of integration by parts:
u(x)v (x)dx = u(x)v(x) − u (x)v(x)dx
In this case we choose:
u(x) = x v (x) = sin x
u (x) = 1 v(x) = − cos x
So, we have that:
x sin xdx = x(− cos x)−
Example 2
Let’s find the integral:
x sin xdx
Let’s write again the formula of integration by parts:
u(x)v (x)dx = u(x)v(x) − u (x)v(x)dx
In this case we choose:
u(x) = x v (x) = sin x
u (x) = 1 v(x) = − cos x
So, we have that:
x sin xdx = x(− cos x) − 1. (− cos x) dx
Example 2
Let’s find the integral:
x sin xdx
Let’s write again the formula of integration by parts:
u(x)v (x)dx = u(x)v(x) − u (x)v(x)dx
In this case we choose:
u(x) = x v (x) = sin x
u (x) = 1 v(x) = − cos x
So, we have that:
x sin xdx = x(− cos x) − ¡¡!
u (x)
1. (− cos x) dx
Example 2
Let’s find the integral:
x sin xdx
Let’s write again the formula of integration by parts:
u(x)v (x)dx = u(x)v(x) − u (x)v(x)dx
In this case we choose:
u(x) = x v (x) = sin x
u (x) = 1 v(x) = − cos x
So, we have that:
x sin xdx = x(− cos x) − 1.$$$$$Xv(x)
(− cos x)dx
Example 2
Example 2
So our integral becomes:
Example 2
So our integral becomes:
x sin xdx = −x cos x + cos xdx
Example 2
So our integral becomes:
x sin xdx = −x cos x + cos xdx
And that’s easy to solve:
Example 2
So our integral becomes:
x sin xdx = −x cos x + cos xdx
And that’s easy to solve:
x sin xdx = −x cos x + sin x
Example 2
So our integral becomes:
x sin xdx = −x cos x + cos xdx
And that’s easy to solve:
x sin xdx = −x cos x + sin x
Trick Number 1
Trick Number 1
Take v (x) = 1.
Trick Number 1
Take v (x) = 1. For example:
Trick Number 1
Take v (x) = 1. For example:
ln xdx
Trick Number 1
Take v (x) = 1. For example:
ln xdx
We take:
Trick Number 1
Take v (x) = 1. For example:
ln xdx
We take:
u(x) = ln x
Trick Number 1
Take v (x) = 1. For example:
ln xdx
We take:
u(x) = ln x v (x) = 1
Trick Number 1
Take v (x) = 1. For example:
ln xdx
We take:
u(x) = ln x v (x) = 1
u (x) = 1
x
Trick Number 1
Take v (x) = 1. For example:
ln xdx
We take:
u(x) = ln x v (x) = 1
u (x) = 1
x v(x) = x
Trick Number 1
Take v (x) = 1. For example:
ln xdx
We take:
u(x) = ln x v (x) = 1
u (x) = 1
x v(x) = x
So we have:
Trick Number 1
Take v (x) = 1. For example:
ln xdx
We take:
u(x) = ln x v (x) = 1
u (x) = 1
x v(x) = x
So we have:
ln xdx
Trick Number 1
Take v (x) = 1. For example:
ln xdx
We take:
u(x) = ln x v (x) = 1
u (x) = 1
x v(x) = x
So we have:
ln xdx =
Trick Number 1
Take v (x) = 1. For example:
ln xdx
We take:
u(x) = ln x v (x) = 1
u (x) = 1
x v(x) = x
So we have:
ln xdx = ln x.1dx
Trick Number 1
Take v (x) = 1. For example:
ln xdx
We take:
u(x) = ln x v (x) = 1
u (x) = 1
x v(x) = x
So we have:
ln xdx = ¨¨¨B
u(x)
ln x.1dx
Trick Number 1
Take v (x) = 1. For example:
ln xdx
We take:
u(x) = ln x v (x) = 1
u (x) = 1
x v(x) = x
So we have:
ln xdx = ln x.¡¡!
v (x)
1dx
Trick Number 1
Take v (x) = 1. For example:
ln xdx
We take:
u(x) = ln x v (x) = 1
u (x) = 1
x v(x) = x
So we have:
ln xdx = ln x.¡¡!
v (x)
1dx
= ln x
Trick Number 1
Take v (x) = 1. For example:
ln xdx
We take:
u(x) = ln x v (x) = 1
u (x) = 1
x v(x) = x
So we have:
ln xdx = ln x.¡¡!
v (x)
1dx
= ln x.x
Trick Number 1
Take v (x) = 1. For example:
ln xdx
We take:
u(x) = ln x v (x) = 1
u (x) = 1
x v(x) = x
So we have:
ln xdx = ln x.¡¡!
v (x)
1dx
= ¨
¨¨B
u(x)
ln x.x
Trick Number 1
Take v (x) = 1. For example:
ln xdx
We take:
u(x) = ln x v (x) = 1
u (x) = 1
x v(x) = x
So we have:
ln xdx = ln x.¡¡!
v (x)
1dx
= ln x. 
v(x)
x
Trick Number 1
Take v (x) = 1. For example:
ln xdx
We take:
u(x) = ln x v (x) = 1
u (x) = 1
x v(x) = x
So we have:
ln xdx = ln x.¡¡!
v (x)
1dx
= ln x.x−
Trick Number 1
Take v (x) = 1. For example:
ln xdx
We take:
u(x) = ln x v (x) = 1
u (x) = 1
x v(x) = x
So we have:
ln xdx = ln x.¡¡!
v (x)
1dx
= ln x.x −
1
x
.xdx
Trick Number 1
Take v (x) = 1. For example:
ln xdx
We take:
u(x) = ln x v (x) = 1
u (x) = 1
x v(x) = x
So we have:
ln xdx = ln x.¡¡!
v (x)
1dx
= ln x.x −
£
£
£#
u (x)
1
x
.xdx
Trick Number 1
Take v (x) = 1. For example:
ln xdx
We take:
u(x) = ln x v (x) = 1
u (x) = 1
x v(x) = x
So we have:
ln xdx = ln x.¡¡!
v (x)
1dx
= ln x.x −
1
x
. 
v(x)
xdx
Trick Number 1
Take v (x) = 1. For example:
ln xdx
We take:
u(x) = ln x v (x) = 1
u (x) = 1
x v(x) = x
So we have:
ln xdx = ln x.¡¡!
v (x)
1dx
= ln x.x −
1
x
.xdx
Trick Number 1
Take v (x) = 1. For example:
ln xdx
We take:
u(x) = ln x v (x) = 1
u (x) = 1
x v(x) = x
So we have:
ln xdx = ln x.¡¡!
v (x)
1dx
= ln x.x −
1
x
.xdx
Trick Number 1
Take v (x) = 1. For example:
ln xdx
We take:
u(x) = ln x v (x) = 1
u (x) = 1
x v(x) = x
So we have:
ln xdx = ln x.¡¡!
v (x)
1dx
= ln x.x −
1
x
.xdx = x ln x − dx
Trick Number 1
Take v (x) = 1. For example:
ln xdx
We take:
u(x) = ln x v (x) = 1
u (x) = 1
x v(x) = x
So we have:
ln xdx = ln x.¡¡!
v (x)
1dx
= ln x.x −
1
x
.xdx = x ln x − dx = x ln x − x
Trick Number 1
Trick Number 1
So we have:
Trick Number 1
So we have:
ln xdx = x (ln x − 1)
Trick Number 1
So we have:
ln xdx = x (ln x − 1) + C
Integration by Parts, Part 2

More Related Content

What's hot

Higher order derivatives for N -body simulations
Higher order derivatives for N -body simulationsHigher order derivatives for N -body simulations
Higher order derivatives for N -body simulationsKeigo Nitadori
 
Lesson 16: Derivatives of Exponential and Logarithmic Functions
Lesson 16: Derivatives of Exponential and Logarithmic FunctionsLesson 16: Derivatives of Exponential and Logarithmic Functions
Lesson 16: Derivatives of Exponential and Logarithmic FunctionsMatthew Leingang
 
Differential calculus
Differential calculusDifferential calculus
Differential calculusChit Laplana
 
3.7 Indexed families of sets
3.7 Indexed families of sets3.7 Indexed families of sets
3.7 Indexed families of setsJan Plaza
 
Newton-Raphson Method
Newton-Raphson MethodNewton-Raphson Method
Newton-Raphson MethodJigisha Dabhi
 
Lesson 10: The Chain Rule (slides)
Lesson 10: The Chain Rule (slides)Lesson 10: The Chain Rule (slides)
Lesson 10: The Chain Rule (slides)Matthew Leingang
 
04 random-variables-probability-distributionsrv
04 random-variables-probability-distributionsrv04 random-variables-probability-distributionsrv
04 random-variables-probability-distributionsrvPooja Sakhla
 
Lesson 9: Basic Differentiation Rules
Lesson 9: Basic Differentiation RulesLesson 9: Basic Differentiation Rules
Lesson 9: Basic Differentiation RulesMatthew Leingang
 
Interpolation with unequal interval
Interpolation with unequal intervalInterpolation with unequal interval
Interpolation with unequal intervalDr. Nirav Vyas
 
Beam theory
Beam theoryBeam theory
Beam theorybissla19
 
Profº. Marcelo Santos Chaves - Cálculo I (Limites e Continuidades) - Exercíci...
Profº. Marcelo Santos Chaves - Cálculo I (Limites e Continuidades) - Exercíci...Profº. Marcelo Santos Chaves - Cálculo I (Limites e Continuidades) - Exercíci...
Profº. Marcelo Santos Chaves - Cálculo I (Limites e Continuidades) - Exercíci...MarcelloSantosChaves
 
Qt random variables notes
Qt random variables notesQt random variables notes
Qt random variables notesRohan Bhatkar
 
Probability statistics assignment help
Probability statistics assignment helpProbability statistics assignment help
Probability statistics assignment helpHomeworkAssignmentHe
 
Engr 213 midterm 1a sol 2010
Engr 213 midterm 1a sol 2010Engr 213 midterm 1a sol 2010
Engr 213 midterm 1a sol 2010akabaka12
 

What's hot (20)

Derivatives
DerivativesDerivatives
Derivatives
 
Least Squares
Least SquaresLeast Squares
Least Squares
 
Imc2017 day1-solutions
Imc2017 day1-solutionsImc2017 day1-solutions
Imc2017 day1-solutions
 
Higher order derivatives for N -body simulations
Higher order derivatives for N -body simulationsHigher order derivatives for N -body simulations
Higher order derivatives for N -body simulations
 
Lesson 16: Derivatives of Exponential and Logarithmic Functions
Lesson 16: Derivatives of Exponential and Logarithmic FunctionsLesson 16: Derivatives of Exponential and Logarithmic Functions
Lesson 16: Derivatives of Exponential and Logarithmic Functions
 
Differential calculus
Differential calculusDifferential calculus
Differential calculus
 
Complex varible
Complex varibleComplex varible
Complex varible
 
3.7 Indexed families of sets
3.7 Indexed families of sets3.7 Indexed families of sets
3.7 Indexed families of sets
 
125 5.3
125 5.3125 5.3
125 5.3
 
Newton-Raphson Method
Newton-Raphson MethodNewton-Raphson Method
Newton-Raphson Method
 
Lesson 10: The Chain Rule (slides)
Lesson 10: The Chain Rule (slides)Lesson 10: The Chain Rule (slides)
Lesson 10: The Chain Rule (slides)
 
04 random-variables-probability-distributionsrv
04 random-variables-probability-distributionsrv04 random-variables-probability-distributionsrv
04 random-variables-probability-distributionsrv
 
Lesson 9: Basic Differentiation Rules
Lesson 9: Basic Differentiation RulesLesson 9: Basic Differentiation Rules
Lesson 9: Basic Differentiation Rules
 
Interpolation with unequal interval
Interpolation with unequal intervalInterpolation with unequal interval
Interpolation with unequal interval
 
Beam theory
Beam theoryBeam theory
Beam theory
 
Profº. Marcelo Santos Chaves - Cálculo I (Limites e Continuidades) - Exercíci...
Profº. Marcelo Santos Chaves - Cálculo I (Limites e Continuidades) - Exercíci...Profº. Marcelo Santos Chaves - Cálculo I (Limites e Continuidades) - Exercíci...
Profº. Marcelo Santos Chaves - Cálculo I (Limites e Continuidades) - Exercíci...
 
Qt random variables notes
Qt random variables notesQt random variables notes
Qt random variables notes
 
Probability statistics assignment help
Probability statistics assignment helpProbability statistics assignment help
Probability statistics assignment help
 
Legendre
LegendreLegendre
Legendre
 
Engr 213 midterm 1a sol 2010
Engr 213 midterm 1a sol 2010Engr 213 midterm 1a sol 2010
Engr 213 midterm 1a sol 2010
 

Viewers also liked

COMPARE-OR-CONTRAST-TWO-MOVIE (1).docx
COMPARE-OR-CONTRAST-TWO-MOVIE (1).docxCOMPARE-OR-CONTRAST-TWO-MOVIE (1).docx
COMPARE-OR-CONTRAST-TWO-MOVIE (1).docxBridget Hsu
 
Agenda de eventos do SEBRAE-SP
Agenda de eventos do SEBRAE-SPAgenda de eventos do SEBRAE-SP
Agenda de eventos do SEBRAE-SPSebrae-SaoPaulo
 
Sean dunn and ying xin mobile - 2012
Sean dunn and ying xin   mobile - 2012Sean dunn and ying xin   mobile - 2012
Sean dunn and ying xin mobile - 2012Ray Poynter
 
Magdus Awards 2015
Magdus Awards 2015Magdus Awards 2015
Magdus Awards 2015Magdus
 
Agenda de eventos do SEBRAE-SP
Agenda de eventos do SEBRAE-SPAgenda de eventos do SEBRAE-SP
Agenda de eventos do SEBRAE-SPSebrae-SaoPaulo
 
Lateral flow in MedLab Magazine 2010
Lateral flow in MedLab Magazine 2010Lateral flow in MedLab Magazine 2010
Lateral flow in MedLab Magazine 2010Fabrice Sultan
 
Agenda de eventos do SEBRAE-SP
Agenda de eventos do SEBRAE-SPAgenda de eventos do SEBRAE-SP
Agenda de eventos do SEBRAE-SPSebrae-SaoPaulo
 
Reglamento Ambiental Uruapan
Reglamento Ambiental UruapanReglamento Ambiental Uruapan
Reglamento Ambiental UruapanNancy A.
 
Yully solano salamanca
Yully solano salamancaYully solano salamanca
Yully solano salamancayullyz25
 
Sistemas económicos,
Sistemas económicos,Sistemas económicos,
Sistemas económicos,juli3282
 
The Downside Dangers Regarding EGA Futura programa de facturacion sail Who No...
The Downside Dangers Regarding EGA Futura programa de facturacion sail Who No...The Downside Dangers Regarding EGA Futura programa de facturacion sail Who No...
The Downside Dangers Regarding EGA Futura programa de facturacion sail Who No...eastpaul3
 

Viewers also liked (12)

COMPARE-OR-CONTRAST-TWO-MOVIE (1).docx
COMPARE-OR-CONTRAST-TWO-MOVIE (1).docxCOMPARE-OR-CONTRAST-TWO-MOVIE (1).docx
COMPARE-OR-CONTRAST-TWO-MOVIE (1).docx
 
Agenda de eventos do SEBRAE-SP
Agenda de eventos do SEBRAE-SPAgenda de eventos do SEBRAE-SP
Agenda de eventos do SEBRAE-SP
 
Sean dunn and ying xin mobile - 2012
Sean dunn and ying xin   mobile - 2012Sean dunn and ying xin   mobile - 2012
Sean dunn and ying xin mobile - 2012
 
Magdus Awards 2015
Magdus Awards 2015Magdus Awards 2015
Magdus Awards 2015
 
Agenda de eventos do SEBRAE-SP
Agenda de eventos do SEBRAE-SPAgenda de eventos do SEBRAE-SP
Agenda de eventos do SEBRAE-SP
 
Lateral flow in MedLab Magazine 2010
Lateral flow in MedLab Magazine 2010Lateral flow in MedLab Magazine 2010
Lateral flow in MedLab Magazine 2010
 
Agenda de eventos do SEBRAE-SP
Agenda de eventos do SEBRAE-SPAgenda de eventos do SEBRAE-SP
Agenda de eventos do SEBRAE-SP
 
Using the keyboard
Using the keyboardUsing the keyboard
Using the keyboard
 
Reglamento Ambiental Uruapan
Reglamento Ambiental UruapanReglamento Ambiental Uruapan
Reglamento Ambiental Uruapan
 
Yully solano salamanca
Yully solano salamancaYully solano salamanca
Yully solano salamanca
 
Sistemas económicos,
Sistemas económicos,Sistemas económicos,
Sistemas económicos,
 
The Downside Dangers Regarding EGA Futura programa de facturacion sail Who No...
The Downside Dangers Regarding EGA Futura programa de facturacion sail Who No...The Downside Dangers Regarding EGA Futura programa de facturacion sail Who No...
The Downside Dangers Regarding EGA Futura programa de facturacion sail Who No...
 

Similar to Integration by Parts, Part 2

Integration by Parts, Part 3
Integration by Parts, Part 3Integration by Parts, Part 3
Integration by Parts, Part 3Pablo Antuna
 
Derivatives of Trigonometric Functions, Part 2
Derivatives of Trigonometric Functions, Part 2Derivatives of Trigonometric Functions, Part 2
Derivatives of Trigonometric Functions, Part 2Pablo Antuna
 
DerivativesXP.ppt
DerivativesXP.pptDerivativesXP.ppt
DerivativesXP.pptSnehSinha6
 
Differentiation
DifferentiationDifferentiation
Differentiationpuspitaaya
 
Differential Calculus
Differential Calculus Differential Calculus
Differential Calculus OlooPundit
 
Extra Help 19- differential equations.pptx
Extra Help 19- differential equations.pptxExtra Help 19- differential equations.pptx
Extra Help 19- differential equations.pptxmahamoh6
 
Rodriguez_THINK_TANK_Difficult_Problem_12
Rodriguez_THINK_TANK_Difficult_Problem_12Rodriguez_THINK_TANK_Difficult_Problem_12
Rodriguez_THINK_TANK_Difficult_Problem_12​Iván Rodríguez
 
Expectation of Discrete Random Variable.ppt
Expectation of Discrete Random Variable.pptExpectation of Discrete Random Variable.ppt
Expectation of Discrete Random Variable.pptAlyasarJabbarli
 
Integration - Mathematics - UoZ
Integration - Mathematics - UoZ Integration - Mathematics - UoZ
Integration - Mathematics - UoZ Safen D Taha
 
Local linear approximation
Local linear approximationLocal linear approximation
Local linear approximationTarun Gehlot
 
Physical Chemistry Assignment Help
Physical Chemistry Assignment HelpPhysical Chemistry Assignment Help
Physical Chemistry Assignment HelpEdu Assignment Help
 
Maths Notes - Differential Equations
Maths Notes - Differential EquationsMaths Notes - Differential Equations
Maths Notes - Differential EquationsJames McMurray
 

Similar to Integration by Parts, Part 2 (20)

Integration by Parts, Part 3
Integration by Parts, Part 3Integration by Parts, Part 3
Integration by Parts, Part 3
 
Integration by parts
Integration by partsIntegration by parts
Integration by parts
 
Derivatives of Trigonometric Functions, Part 2
Derivatives of Trigonometric Functions, Part 2Derivatives of Trigonometric Functions, Part 2
Derivatives of Trigonometric Functions, Part 2
 
Integration by parts
Integration by partsIntegration by parts
Integration by parts
 
Integral calculus
Integral calculusIntegral calculus
Integral calculus
 
Integral calculus
Integral calculus Integral calculus
Integral calculus
 
251exn
251exn251exn
251exn
 
DerivativesXP.ppt
DerivativesXP.pptDerivativesXP.ppt
DerivativesXP.ppt
 
Differentiation
DifferentiationDifferentiation
Differentiation
 
Differential Calculus
Differential Calculus Differential Calculus
Differential Calculus
 
Extra Help 19- differential equations.pptx
Extra Help 19- differential equations.pptxExtra Help 19- differential equations.pptx
Extra Help 19- differential equations.pptx
 
Rodriguez_THINK_TANK_Difficult_Problem_12
Rodriguez_THINK_TANK_Difficult_Problem_12Rodriguez_THINK_TANK_Difficult_Problem_12
Rodriguez_THINK_TANK_Difficult_Problem_12
 
Expectation of Discrete Random Variable.ppt
Expectation of Discrete Random Variable.pptExpectation of Discrete Random Variable.ppt
Expectation of Discrete Random Variable.ppt
 
Calculus ebook
Calculus ebookCalculus ebook
Calculus ebook
 
Integration - Mathematics - UoZ
Integration - Mathematics - UoZ Integration - Mathematics - UoZ
Integration - Mathematics - UoZ
 
Local linear approximation
Local linear approximationLocal linear approximation
Local linear approximation
 
Taylor problem
Taylor problemTaylor problem
Taylor problem
 
Physical Chemistry Assignment Help
Physical Chemistry Assignment HelpPhysical Chemistry Assignment Help
Physical Chemistry Assignment Help
 
Maths Notes - Differential Equations
Maths Notes - Differential EquationsMaths Notes - Differential Equations
Maths Notes - Differential Equations
 
Statistical Method In Economics
Statistical Method In EconomicsStatistical Method In Economics
Statistical Method In Economics
 

Integration by Parts, Part 2

  • 1.
  • 2.
  • 4. Example 2 Let’s find the integral:
  • 5. Example 2 Let’s find the integral: x sin xdx
  • 6. Example 2 Let’s find the integral: x sin xdx Let’s write again the formula of integration by parts:
  • 7. Example 2 Let’s find the integral: x sin xdx Let’s write again the formula of integration by parts: u(x)v (x)dx = u(x)v(x) − u (x)v(x)dx
  • 8. Example 2 Let’s find the integral: x sin xdx Let’s write again the formula of integration by parts: u(x)v (x)dx = u(x)v(x) − u (x)v(x)dx In this case we choose:
  • 9. Example 2 Let’s find the integral: x sin xdx Let’s write again the formula of integration by parts: u(x)v (x)dx = u(x)v(x) − u (x)v(x)dx In this case we choose: u(x) = x
  • 10. Example 2 Let’s find the integral: x sin xdx Let’s write again the formula of integration by parts: u(x)v (x)dx = u(x)v(x) − u (x)v(x)dx In this case we choose: u(x) = x v (x) = sin x
  • 11. Example 2 Let’s find the integral: x sin xdx Let’s write again the formula of integration by parts: u(x)v (x)dx = u(x)v(x) − u (x)v(x)dx In this case we choose: u(x) = x v (x) = sin x u (x) = 1
  • 12. Example 2 Let’s find the integral: x sin xdx Let’s write again the formula of integration by parts: u(x)v (x)dx = u(x)v(x) − u (x)v(x)dx In this case we choose: u(x) = x v (x) = sin x u (x) = 1 v(x) = − cos x
  • 13. Example 2 Let’s find the integral: x sin xdx Let’s write again the formula of integration by parts: u(x)v (x)dx = u(x)v(x) − u (x)v(x)dx In this case we choose: u(x) = x v (x) = sin x u (x) = 1 v(x) = − cos x So, we have that:
  • 14. Example 2 Let’s find the integral: x sin xdx Let’s write again the formula of integration by parts: u(x)v (x)dx = u(x)v(x) − u (x)v(x)dx In this case we choose: u(x) = x v (x) = sin x u (x) = 1 v(x) = − cos x So, we have that: x sin xdx
  • 15. Example 2 Let’s find the integral: x sin xdx Let’s write again the formula of integration by parts: u(x)v (x)dx = u(x)v(x) − u (x)v(x)dx In this case we choose: u(x) = x v (x) = sin x u (x) = 1 v(x) = − cos x So, we have that:   u(x) x sin xdx
  • 16. Example 2 Let’s find the integral: x sin xdx Let’s write again the formula of integration by parts: u(x)v (x)dx = u(x)v(x) − u (x)v(x)dx In this case we choose: u(x) = x v (x) = sin x u (x) = 1 v(x) = − cos x So, we have that: x$$$Xv (x) sin xdx
  • 17. Example 2 Let’s find the integral: x sin xdx Let’s write again the formula of integration by parts: u(x)v (x)dx = u(x)v(x) − u (x)v(x)dx In this case we choose: u(x) = x v (x) = sin x u (x) = 1 v(x) = − cos x So, we have that: x sin xdx =
  • 18. Example 2 Let’s find the integral: x sin xdx Let’s write again the formula of integration by parts: u(x)v (x)dx = u(x)v(x) − u (x)v(x)dx In this case we choose: u(x) = x v (x) = sin x u (x) = 1 v(x) = − cos x So, we have that: x sin xdx = x
  • 19. Example 2 Let’s find the integral: x sin xdx Let’s write again the formula of integration by parts: u(x)v (x)dx = u(x)v(x) − u (x)v(x)dx In this case we choose: u(x) = x v (x) = sin x u (x) = 1 v(x) = − cos x So, we have that: x sin xdx = x(− cos x)
  • 20. Example 2 Let’s find the integral: x sin xdx Let’s write again the formula of integration by parts: u(x)v (x)dx = u(x)v(x) − u (x)v(x)dx In this case we choose: u(x) = x v (x) = sin x u (x) = 1 v(x) = − cos x So, we have that: x sin xdx =   u(x) x(− cos x)
  • 21. Example 2 Let’s find the integral: x sin xdx Let’s write again the formula of integration by parts: u(x)v (x)dx = u(x)v(x) − u (x)v(x)dx In this case we choose: u(x) = x v (x) = sin x u (x) = 1 v(x) = − cos x So, we have that: x sin xdx = x$$$$$Xv(x) (− cos x)
  • 22. Example 2 Let’s find the integral: x sin xdx Let’s write again the formula of integration by parts: u(x)v (x)dx = u(x)v(x) − u (x)v(x)dx In this case we choose: u(x) = x v (x) = sin x u (x) = 1 v(x) = − cos x So, we have that: x sin xdx = x(− cos x)−
  • 23. Example 2 Let’s find the integral: x sin xdx Let’s write again the formula of integration by parts: u(x)v (x)dx = u(x)v(x) − u (x)v(x)dx In this case we choose: u(x) = x v (x) = sin x u (x) = 1 v(x) = − cos x So, we have that: x sin xdx = x(− cos x) − 1. (− cos x) dx
  • 24. Example 2 Let’s find the integral: x sin xdx Let’s write again the formula of integration by parts: u(x)v (x)dx = u(x)v(x) − u (x)v(x)dx In this case we choose: u(x) = x v (x) = sin x u (x) = 1 v(x) = − cos x So, we have that: x sin xdx = x(− cos x) − ¡¡! u (x) 1. (− cos x) dx
  • 25. Example 2 Let’s find the integral: x sin xdx Let’s write again the formula of integration by parts: u(x)v (x)dx = u(x)v(x) − u (x)v(x)dx In this case we choose: u(x) = x v (x) = sin x u (x) = 1 v(x) = − cos x So, we have that: x sin xdx = x(− cos x) − 1.$$$$$Xv(x) (− cos x)dx
  • 27. Example 2 So our integral becomes:
  • 28. Example 2 So our integral becomes: x sin xdx = −x cos x + cos xdx
  • 29. Example 2 So our integral becomes: x sin xdx = −x cos x + cos xdx And that’s easy to solve:
  • 30. Example 2 So our integral becomes: x sin xdx = −x cos x + cos xdx And that’s easy to solve: x sin xdx = −x cos x + sin x
  • 31. Example 2 So our integral becomes: x sin xdx = −x cos x + cos xdx And that’s easy to solve: x sin xdx = −x cos x + sin x
  • 33. Trick Number 1 Take v (x) = 1.
  • 34. Trick Number 1 Take v (x) = 1. For example:
  • 35. Trick Number 1 Take v (x) = 1. For example: ln xdx
  • 36. Trick Number 1 Take v (x) = 1. For example: ln xdx We take:
  • 37. Trick Number 1 Take v (x) = 1. For example: ln xdx We take: u(x) = ln x
  • 38. Trick Number 1 Take v (x) = 1. For example: ln xdx We take: u(x) = ln x v (x) = 1
  • 39. Trick Number 1 Take v (x) = 1. For example: ln xdx We take: u(x) = ln x v (x) = 1 u (x) = 1 x
  • 40. Trick Number 1 Take v (x) = 1. For example: ln xdx We take: u(x) = ln x v (x) = 1 u (x) = 1 x v(x) = x
  • 41. Trick Number 1 Take v (x) = 1. For example: ln xdx We take: u(x) = ln x v (x) = 1 u (x) = 1 x v(x) = x So we have:
  • 42. Trick Number 1 Take v (x) = 1. For example: ln xdx We take: u(x) = ln x v (x) = 1 u (x) = 1 x v(x) = x So we have: ln xdx
  • 43. Trick Number 1 Take v (x) = 1. For example: ln xdx We take: u(x) = ln x v (x) = 1 u (x) = 1 x v(x) = x So we have: ln xdx =
  • 44. Trick Number 1 Take v (x) = 1. For example: ln xdx We take: u(x) = ln x v (x) = 1 u (x) = 1 x v(x) = x So we have: ln xdx = ln x.1dx
  • 45. Trick Number 1 Take v (x) = 1. For example: ln xdx We take: u(x) = ln x v (x) = 1 u (x) = 1 x v(x) = x So we have: ln xdx = ¨¨¨B u(x) ln x.1dx
  • 46. Trick Number 1 Take v (x) = 1. For example: ln xdx We take: u(x) = ln x v (x) = 1 u (x) = 1 x v(x) = x So we have: ln xdx = ln x.¡¡! v (x) 1dx
  • 47. Trick Number 1 Take v (x) = 1. For example: ln xdx We take: u(x) = ln x v (x) = 1 u (x) = 1 x v(x) = x So we have: ln xdx = ln x.¡¡! v (x) 1dx = ln x
  • 48. Trick Number 1 Take v (x) = 1. For example: ln xdx We take: u(x) = ln x v (x) = 1 u (x) = 1 x v(x) = x So we have: ln xdx = ln x.¡¡! v (x) 1dx = ln x.x
  • 49. Trick Number 1 Take v (x) = 1. For example: ln xdx We take: u(x) = ln x v (x) = 1 u (x) = 1 x v(x) = x So we have: ln xdx = ln x.¡¡! v (x) 1dx = ¨ ¨¨B u(x) ln x.x
  • 50. Trick Number 1 Take v (x) = 1. For example: ln xdx We take: u(x) = ln x v (x) = 1 u (x) = 1 x v(x) = x So we have: ln xdx = ln x.¡¡! v (x) 1dx = ln x.  v(x) x
  • 51. Trick Number 1 Take v (x) = 1. For example: ln xdx We take: u(x) = ln x v (x) = 1 u (x) = 1 x v(x) = x So we have: ln xdx = ln x.¡¡! v (x) 1dx = ln x.x−
  • 52. Trick Number 1 Take v (x) = 1. For example: ln xdx We take: u(x) = ln x v (x) = 1 u (x) = 1 x v(x) = x So we have: ln xdx = ln x.¡¡! v (x) 1dx = ln x.x − 1 x .xdx
  • 53. Trick Number 1 Take v (x) = 1. For example: ln xdx We take: u(x) = ln x v (x) = 1 u (x) = 1 x v(x) = x So we have: ln xdx = ln x.¡¡! v (x) 1dx = ln x.x − £ £ £# u (x) 1 x .xdx
  • 54. Trick Number 1 Take v (x) = 1. For example: ln xdx We take: u(x) = ln x v (x) = 1 u (x) = 1 x v(x) = x So we have: ln xdx = ln x.¡¡! v (x) 1dx = ln x.x − 1 x .  v(x) xdx
  • 55. Trick Number 1 Take v (x) = 1. For example: ln xdx We take: u(x) = ln x v (x) = 1 u (x) = 1 x v(x) = x So we have: ln xdx = ln x.¡¡! v (x) 1dx = ln x.x − 1 x .xdx
  • 56. Trick Number 1 Take v (x) = 1. For example: ln xdx We take: u(x) = ln x v (x) = 1 u (x) = 1 x v(x) = x So we have: ln xdx = ln x.¡¡! v (x) 1dx = ln x.x − 1 x .xdx
  • 57. Trick Number 1 Take v (x) = 1. For example: ln xdx We take: u(x) = ln x v (x) = 1 u (x) = 1 x v(x) = x So we have: ln xdx = ln x.¡¡! v (x) 1dx = ln x.x − 1 x .xdx = x ln x − dx
  • 58. Trick Number 1 Take v (x) = 1. For example: ln xdx We take: u(x) = ln x v (x) = 1 u (x) = 1 x v(x) = x So we have: ln xdx = ln x.¡¡! v (x) 1dx = ln x.x − 1 x .xdx = x ln x − dx = x ln x − x
  • 60. Trick Number 1 So we have:
  • 61. Trick Number 1 So we have: ln xdx = x (ln x − 1)
  • 62. Trick Number 1 So we have: ln xdx = x (ln x − 1) + C