SlideShare a Scribd company logo
EXPERIMENT 8
PRECIPITATION HARDENING IN 2024 ALUMINUM
Objective
To study the time and temperature variations in the hardness of Al-4% Cu alloy on
isothermal aging.
Introduction
Materials can be hardened by inhibiting the motion of crystal defects called dislocations. In
pure metals, the presence of defects (such as vacancies, interstitials, dislocations and grain
boundaries) can enhance the strength. In single phase alloys, additional resistance to
deformation may arise from the presence of foreign atoms. In two-phase alloys, additional
stress is needed to enable the dislocation to intersect the second-phase particles. A finely
dispersed precipitate may, therefore, strengthen the material. This phenomenon is termed
precipitation hardening.
The thermodynamics of precipitation in 2024 Al can best be understood by referring to the
binary phase diagram of Aluminum-Copper in the aluminum-rich region in Figure 8-1.
When the aluminum-copper alloy of less than 5 wt% copper is heated to a temperature just
above the solvus line, only one phase (kappa, ) is thermodynamically stable. Other solid
phases dissolve (disappear). This process is called solution treatment. The only requirement
is that the specimen must be kept at this temperature for a long enough time. To solution
treat a sample of 2024 Al (4 wt% Cu), the sample should be heated to 930°
F (500°
C) and held
for 30 minutes.
When a solution treated sample is rapidly cooled (quenched) to below the solvus line (Figure
8-1), two phases are thermodynamically stable (kappa and theta). These phases are two
different solids, physically distinct, and separated by a phase boundary. The process is
similar to precipitation of salt in supersaturated brine.
The process of precipitation is not instantaneous, as is often the case in liquid-solid
precipitation. The process involves the formation of embryos of theta through thermal
fluctuations and their subsequent growth, once they achieve stability. With time, more and
more precipitates form. This process is called aging. Once the solution achieves an
equilibrium composition given by the solvus line for the aging temperature, precipitation
stops. For example, the precipitation of the copper-rich theta phase depletes the kappa phase
of copper to approximately 1-1/2 wt% Cu at 715°
F (380°
C).
The distribution of precipitates affects the hardness and yield strength. The hardness and
yield strength are greater when the precipitates are small and finely dispersed in the kappa
matrix than when the precipitates are large and not finely scattered. Therefore, to gain
hardness in 2024 Al, the specimen should be heat treated to produce a fine dispersion of
small precipitates.
Unfortunately, there is a tendency when thermodynamic equilibrium is reached for large
precipitates to grow and small precipitates to shrink. This will lower the surface to volume
ratio of the precipitates, the surface energy, and therefore the energy of the system. As a
result, at some point in the aging of 2024 Al, the precipitates begin to coarsen and (on
average) the spacing between them gradually increases. At this point, the hardness and the
yield point will begin to decrease with time of aging.
The process of aging is a function of temperature; the higher the temperature, the wider the
spacing of the precipitates. They form initially on cooling from the solution treatment. Also,
because coarsening is dependent upon the movement of copper atoms in kappa, the
maximum point is generally reached sooner at a higher temperature than at a lower
temperature, as shown in Figure 8-2.
In the present experiment, the precipitation hardening behavior of the Al-4%Cu alloy will be
studied by measuring changes in hardness as a function of aging time.
Materials and Equipment
Five pieces of Al-4%Cu alloy (2024 Al)
Furnace for heat treating specimens at 500°C (930°F)
Pail of water
Hardness testers
Aging furnace at 190°C (370°F)
Procedures
1. Stamp the five 2024 Al specimens with an identifying mark.
2. Measure the hardness of all of the specimens using Rockwell B.
3. Place all five in a heat-treatment crucible and into a furnace for solution treatment at
500°C (930°F) for 30 minutes.
4. Natural Aging - Remove one specimen and drop into a pail of water. Once the specimen
is cool, measure the Rockwell B hardness at intervals of approximately 30 min, 90 min, 1
day, and 1 week for this specimen. It will be necessary for one member to come back to
the lab during the week when the lab is in session to measure the hardness.
5. Artificial Aging - Remove the remaining four specimens and drop them into a pail of
water. Once the specimens are cool remove them from the quenching bucket. Measure the
Rockwell B hardness. Next, transfer the specimens to a furnace set at 190°C (370°F).
Remove one sample after 3 min, 10 min, 60 min and 90 min. Quench into water and
measure the Rockwell B hardness. After one week, again measure the Rockwell B
hardness of the 3- and 10-minute artificially aged specimens.
Glossary of Terms
Understanding the following terms will aid in understanding this experiment.
Age hardening. A special dispersion-strengthening heat treatment. By solution treatment,
quenching and aging, a coherent precipitate forms that provides a substantial strengthening effect by
acting as obstacles to dislocation movement.
Artificial aging. Reheating a solution-treated and quenched alloy to a temperature below the solvus
to provide the thermal energy required for a precipitate to form.
Coherent precipitate. A precipitate whose crystal structure and atomic arrangement have a
continuous relationship with the matrix from which the precipitate formed. The coherent precipitate
provides excellent disruption of the atomic arrangement in the matrix and provides excellent
strengthening.
Dislocation. A line imperfection in the lattice of a crystalline material. Movement of dislocations
helps explain how materials deform. Interference with the movement of dislocations helps explain
how materials are strengthened.
Grain boundary. A surface defect representing the boundary between two grains. The lattice has a
different orientation on either side of the grain boundary.
Interstitialcy. Atom occupying an interstitial site not normally occupied by an atom in the perfect
crystal structure or an extra atom inserted into the perfect crystal such that two atoms occupy
positions close to a singly occupied atomic site in the perfect structure.
Natural aging. When a coherent precipitate forms from a solution-treated and quenched age
hardenable alloy at room temperature, providing optimum strengthening.
Solid solution. A solid phase that contains a mixture of more than one element, with the elements
combining to give a uniform composition everywhere.
Solution treatment. The first step in the age-hardening heat treatment. The alloy is heated above the
solvus temperature to dissolve any second phase and to produce a homogeneous single-phase
structure.
Solvus. A solubility line that separates a single solid phase region from a two solid phase region in
the phase diagram.
Strain energy. The energy required to permit a precipitate to fit into the surrounding matrix during
nucleation and growth of the precipitate.
Supersaturated solid solution. The solid solution formed when a material is rapidly cooled from a
high-temperature single-phase region to a low-temperature two-phase region without the second
phase precipitating. Because the quenched phase contains more alloying element than the solubility
limit, it is supersaturated in that element.
Vacancy. A vacancy is created when an atom is missing from a lattice point.
Write Up
1. Prepare a memo report.
2. Plot the hardness vs. time of aging for each aging temperature, using Excel.
3. How does aging temperature affect the time and hardness?
4. What happens to the 190°
C (370°
F) 3 and 10 minute specimens after one week? Why?
5. If you were going to use 2024 Al in an application at a temperature of 190°
C (370°
F),
what problems could be encountered?
6. Discuss errors in this experiment and their sources.
References
1. ASM Handbook, Vol. 2 - Heat Treating and Cleaning of Metals
2. D. Callister Jr, Fundamentals of Materials Science and Engineering, J. Wiley & Sons, NY,
3rd Ed. 2008.
3. Smith, Science and Engineering Materials, Chapter 8
4. Flinn & Trojan, Engineering Materials and Their Applications, Chapters 4 and 5
MSE 227L Name ________________________
Precipitation hardening
Poor Fair Average Good Excellent
Memorandum Format Used 1 2 3 4 5
Spelling, grammar, & punctuation correct 1 2 3 4 5
Report includes: Poor Fair Average Good Excellent
Graph hardness vs. time of aging for
specified aging temperatures. (Final result
will be 1 natural and 1 artificial curve
overlayed; take log of time for X-axis, use
Excel).
5 10 15 20 25
Discuss how aging temperature affects the
aging time and hardness.
1 2 3 4 5
Discuss what happens to the 190°
C, 3 and 10
minute specimens after one week.
1 2 3 4 5
Discuss reason for changes in the 190°
C, 3
and 10 minute specimens after one week.
1 2 3 4 5
Discuss the use of 2024 Al in an application
at a temperature of 190°
C (370°
F).
1 2 3 4 5
Discuss errors in this experiment and their
sources.
1 2 3 4 5
Include table of results and data collected 1 2 3 4 5
Column Subtotals
Poor Fair Average Good Excellent
Overall level of effort apparent 1 2 3 4 5
Quality of graphs 1 2 3 4 5
Quality of Abstract 1 2 3 4 5
Quality of work description 1 2 3 4 5
Quality of conclusions 1 2 3 4 5
Column Subtotals

More Related Content

What's hot

Hydrogen Embrittlement : Causes, Effects, Prevention.
Hydrogen Embrittlement : Causes, Effects, Prevention.Hydrogen Embrittlement : Causes, Effects, Prevention.
Hydrogen Embrittlement : Causes, Effects, Prevention.
Sidheshwar Kumar
 
01 introduction to_mechanical_metallurgy
01 introduction to_mechanical_metallurgy01 introduction to_mechanical_metallurgy
01 introduction to_mechanical_metallurgy
jojim1980
 

What's hot (20)

Ladle Metallurgy: Basics, Objectives and Processes
Ladle Metallurgy: Basics, Objectives and ProcessesLadle Metallurgy: Basics, Objectives and Processes
Ladle Metallurgy: Basics, Objectives and Processes
 
Hydrogen Embrittlement : Causes, Effects, Prevention.
Hydrogen Embrittlement : Causes, Effects, Prevention.Hydrogen Embrittlement : Causes, Effects, Prevention.
Hydrogen Embrittlement : Causes, Effects, Prevention.
 
Recovery recrystallization grain_growth
Recovery recrystallization grain_growthRecovery recrystallization grain_growth
Recovery recrystallization grain_growth
 
Pitting Corrosion_Rahul
Pitting Corrosion_RahulPitting Corrosion_Rahul
Pitting Corrosion_Rahul
 
Solidification Mechanisms 1
Solidification Mechanisms 1Solidification Mechanisms 1
Solidification Mechanisms 1
 
Strengthening Mechanisms of Metals and alloys
Strengthening Mechanisms of Metals and alloysStrengthening Mechanisms of Metals and alloys
Strengthening Mechanisms of Metals and alloys
 
ch8_intergranular_corrosion
ch8_intergranular_corrosionch8_intergranular_corrosion
ch8_intergranular_corrosion
 
Blast furnace presentation
Blast furnace presentation Blast furnace presentation
Blast furnace presentation
 
Stress corrosion cracking
Stress corrosion crackingStress corrosion cracking
Stress corrosion cracking
 
Welding metallurgy
Welding metallurgyWelding metallurgy
Welding metallurgy
 
Dispersion strengthening of metals
Dispersion strengthening of metalsDispersion strengthening of metals
Dispersion strengthening of metals
 
Principles of corrosion
Principles of corrosionPrinciples of corrosion
Principles of corrosion
 
Rheocasting
RheocastingRheocasting
Rheocasting
 
Hydrogen Damage
Hydrogen DamageHydrogen Damage
Hydrogen Damage
 
05 dislocation theory
05 dislocation theory05 dislocation theory
05 dislocation theory
 
01 introduction to_mechanical_metallurgy
01 introduction to_mechanical_metallurgy01 introduction to_mechanical_metallurgy
01 introduction to_mechanical_metallurgy
 
Extractive Metallurgy
Extractive MetallurgyExtractive Metallurgy
Extractive Metallurgy
 
Heat treatment of steels- I
Heat treatment of steels- IHeat treatment of steels- I
Heat treatment of steels- I
 
Heat affected zone
Heat affected zoneHeat affected zone
Heat affected zone
 
precipitation hardening
precipitation hardeningprecipitation hardening
precipitation hardening
 

Viewers also liked

Study of the effect of aging condition on strength & hardness of 6063 t5 alloy
Study of the effect of aging condition on strength & hardness of 6063 t5 alloyStudy of the effect of aging condition on strength & hardness of 6063 t5 alloy
Study of the effect of aging condition on strength & hardness of 6063 t5 alloy
Anushka Ekanayake
 
Precipitation hardening hydrogen embrittlement
Precipitation hardening hydrogen embrittlementPrecipitation hardening hydrogen embrittlement
Precipitation hardening hydrogen embrittlement
Asif Ali
 
Aluminium and it’s alloys
Aluminium and it’s alloysAluminium and it’s alloys
Aluminium and it’s alloys
Kunal Rathod
 
Presentation On Copper, Cu
Presentation On Copper, CuPresentation On Copper, Cu
Presentation On Copper, Cu
cthame1
 

Viewers also liked (12)

Age hardening
Age hardeningAge hardening
Age hardening
 
TALAT Lecture 1204: Precipitation Hardening
TALAT Lecture 1204: Precipitation HardeningTALAT Lecture 1204: Precipitation Hardening
TALAT Lecture 1204: Precipitation Hardening
 
Study of the effect of aging condition on strength & hardness of 6063 t5 alloy
Study of the effect of aging condition on strength & hardness of 6063 t5 alloyStudy of the effect of aging condition on strength & hardness of 6063 t5 alloy
Study of the effect of aging condition on strength & hardness of 6063 t5 alloy
 
Dispersion strengthening
Dispersion strengtheningDispersion strengthening
Dispersion strengthening
 
Precipitation hardening hydrogen embrittlement
Precipitation hardening hydrogen embrittlementPrecipitation hardening hydrogen embrittlement
Precipitation hardening hydrogen embrittlement
 
Aluminium alloys
Aluminium alloysAluminium alloys
Aluminium alloys
 
hardening
hardeninghardening
hardening
 
Alloys in prosthodontics
Alloys  in prosthodonticsAlloys  in prosthodontics
Alloys in prosthodontics
 
Mechanisms of strengthening in metals
Mechanisms of strengthening in metalsMechanisms of strengthening in metals
Mechanisms of strengthening in metals
 
Aluminium and it’s alloys
Aluminium and it’s alloysAluminium and it’s alloys
Aluminium and it’s alloys
 
Aluminium
AluminiumAluminium
Aluminium
 
Presentation On Copper, Cu
Presentation On Copper, CuPresentation On Copper, Cu
Presentation On Copper, Cu
 

Similar to 8 precipitation hardening-of_aluminum

EXPERIMENT 8 PRECIPITATION HARDENING IN 2024 ALUMINUM .docx
EXPERIMENT 8 PRECIPITATION HARDENING IN 2024 ALUMINUM  .docxEXPERIMENT 8 PRECIPITATION HARDENING IN 2024 ALUMINUM  .docx
EXPERIMENT 8 PRECIPITATION HARDENING IN 2024 ALUMINUM .docx
SANSKAR20
 
6 heat treatment-of_steel
6 heat treatment-of_steel6 heat treatment-of_steel
6 heat treatment-of_steel
Mukhlis Adam
 
DJJ3213 MATERIAL SCIENCE CHAPTER 4 NOTE.ppt
DJJ3213 MATERIAL SCIENCE CHAPTER 4 NOTE.pptDJJ3213 MATERIAL SCIENCE CHAPTER 4 NOTE.ppt
DJJ3213 MATERIAL SCIENCE CHAPTER 4 NOTE.ppt
fieyzaadn
 

Similar to 8 precipitation hardening-of_aluminum (20)

EXPERIMENT 8 PRECIPITATION HARDENING IN 2024 ALUMINUM .docx
EXPERIMENT 8 PRECIPITATION HARDENING IN 2024 ALUMINUM  .docxEXPERIMENT 8 PRECIPITATION HARDENING IN 2024 ALUMINUM  .docx
EXPERIMENT 8 PRECIPITATION HARDENING IN 2024 ALUMINUM .docx
 
f-precipitationhardening-131118222304-phpapp01.pdf
f-precipitationhardening-131118222304-phpapp01.pdff-precipitationhardening-131118222304-phpapp01.pdf
f-precipitationhardening-131118222304-phpapp01.pdf
 
Heat treatment part 1
Heat treatment part 1Heat treatment part 1
Heat treatment part 1
 
Age hardnening
Age hardneningAge hardnening
Age hardnening
 
Annealing
AnnealingAnnealing
Annealing
 
Solo swiss heat treatment glossary
Solo swiss heat treatment glossarySolo swiss heat treatment glossary
Solo swiss heat treatment glossary
 
EFFECT OF SCANDIUM ON THE SOFTENING BEHAVIOUR OF DIFFERENT DEGREE OF COLD ROL...
EFFECT OF SCANDIUM ON THE SOFTENING BEHAVIOUR OF DIFFERENT DEGREE OF COLD ROL...EFFECT OF SCANDIUM ON THE SOFTENING BEHAVIOUR OF DIFFERENT DEGREE OF COLD ROL...
EFFECT OF SCANDIUM ON THE SOFTENING BEHAVIOUR OF DIFFERENT DEGREE OF COLD ROL...
 
Effect of Scandium on the Softening Behaviour of Different Degree of Cold Rol...
Effect of Scandium on the Softening Behaviour of Different Degree of Cold Rol...Effect of Scandium on the Softening Behaviour of Different Degree of Cold Rol...
Effect of Scandium on the Softening Behaviour of Different Degree of Cold Rol...
 
Heat tratment bykotkar ss
Heat tratment bykotkar ssHeat tratment bykotkar ss
Heat tratment bykotkar ss
 
Solved paper msmt 2
Solved paper msmt 2Solved paper msmt 2
Solved paper msmt 2
 
Annealing
AnnealingAnnealing
Annealing
 
annealing
annealingannealing
annealing
 
6 heat treatment-of_steel
6 heat treatment-of_steel6 heat treatment-of_steel
6 heat treatment-of_steel
 
6 heat treatment-of_steel
6 heat treatment-of_steel6 heat treatment-of_steel
6 heat treatment-of_steel
 
DJJ3213 MATERIAL SCIENCE CHAPTER 4 NOTE.ppt
DJJ3213 MATERIAL SCIENCE CHAPTER 4 NOTE.pptDJJ3213 MATERIAL SCIENCE CHAPTER 4 NOTE.ppt
DJJ3213 MATERIAL SCIENCE CHAPTER 4 NOTE.ppt
 
Heat treatment
Heat treatmentHeat treatment
Heat treatment
 
Heat treatment part 2
Heat treatment part 2Heat treatment part 2
Heat treatment part 2
 
ppt and disp hardening.pdf
ppt and disp hardening.pdfppt and disp hardening.pdf
ppt and disp hardening.pdf
 
effect of vanadium on PAG and mechanical properties in martensitic steel
effect of vanadium on PAG and mechanical properties in martensitic steeleffect of vanadium on PAG and mechanical properties in martensitic steel
effect of vanadium on PAG and mechanical properties in martensitic steel
 
WARM ROLLING OF PURE IRON.pptx
WARM ROLLING OF PURE IRON.pptxWARM ROLLING OF PURE IRON.pptx
WARM ROLLING OF PURE IRON.pptx
 

More from Mukhlis Adam

Pedoman pelaksanaan perwalian
Pedoman pelaksanaan perwalianPedoman pelaksanaan perwalian
Pedoman pelaksanaan perwalian
Mukhlis Adam
 
702 florent lefevre-schlick_november_2005
702 florent lefevre-schlick_november_2005702 florent lefevre-schlick_november_2005
702 florent lefevre-schlick_november_2005
Mukhlis Adam
 
Basic crystallography
Basic crystallographyBasic crystallography
Basic crystallography
Mukhlis Adam
 
Career science,tech,eng,math
Career science,tech,eng,mathCareer science,tech,eng,math
Career science,tech,eng,math
Mukhlis Adam
 
554 pengetahuan bahan-teknik
554 pengetahuan bahan-teknik554 pengetahuan bahan-teknik
554 pengetahuan bahan-teknik
Mukhlis Adam
 

More from Mukhlis Adam (7)

boiler
boilerboiler
boiler
 
Pedoman pelaksanaan perwalian
Pedoman pelaksanaan perwalianPedoman pelaksanaan perwalian
Pedoman pelaksanaan perwalian
 
702 florent lefevre-schlick_november_2005
702 florent lefevre-schlick_november_2005702 florent lefevre-schlick_november_2005
702 florent lefevre-schlick_november_2005
 
4 tension test
4 tension test4 tension test
4 tension test
 
Basic crystallography
Basic crystallographyBasic crystallography
Basic crystallography
 
Career science,tech,eng,math
Career science,tech,eng,mathCareer science,tech,eng,math
Career science,tech,eng,math
 
554 pengetahuan bahan-teknik
554 pengetahuan bahan-teknik554 pengetahuan bahan-teknik
554 pengetahuan bahan-teknik
 

8 precipitation hardening-of_aluminum

  • 1. EXPERIMENT 8 PRECIPITATION HARDENING IN 2024 ALUMINUM Objective To study the time and temperature variations in the hardness of Al-4% Cu alloy on isothermal aging. Introduction Materials can be hardened by inhibiting the motion of crystal defects called dislocations. In pure metals, the presence of defects (such as vacancies, interstitials, dislocations and grain boundaries) can enhance the strength. In single phase alloys, additional resistance to deformation may arise from the presence of foreign atoms. In two-phase alloys, additional stress is needed to enable the dislocation to intersect the second-phase particles. A finely dispersed precipitate may, therefore, strengthen the material. This phenomenon is termed precipitation hardening. The thermodynamics of precipitation in 2024 Al can best be understood by referring to the binary phase diagram of Aluminum-Copper in the aluminum-rich region in Figure 8-1. When the aluminum-copper alloy of less than 5 wt% copper is heated to a temperature just above the solvus line, only one phase (kappa, ) is thermodynamically stable. Other solid phases dissolve (disappear). This process is called solution treatment. The only requirement is that the specimen must be kept at this temperature for a long enough time. To solution treat a sample of 2024 Al (4 wt% Cu), the sample should be heated to 930° F (500° C) and held for 30 minutes. When a solution treated sample is rapidly cooled (quenched) to below the solvus line (Figure 8-1), two phases are thermodynamically stable (kappa and theta). These phases are two
  • 2. different solids, physically distinct, and separated by a phase boundary. The process is similar to precipitation of salt in supersaturated brine. The process of precipitation is not instantaneous, as is often the case in liquid-solid precipitation. The process involves the formation of embryos of theta through thermal fluctuations and their subsequent growth, once they achieve stability. With time, more and more precipitates form. This process is called aging. Once the solution achieves an equilibrium composition given by the solvus line for the aging temperature, precipitation stops. For example, the precipitation of the copper-rich theta phase depletes the kappa phase of copper to approximately 1-1/2 wt% Cu at 715° F (380° C). The distribution of precipitates affects the hardness and yield strength. The hardness and yield strength are greater when the precipitates are small and finely dispersed in the kappa matrix than when the precipitates are large and not finely scattered. Therefore, to gain hardness in 2024 Al, the specimen should be heat treated to produce a fine dispersion of small precipitates. Unfortunately, there is a tendency when thermodynamic equilibrium is reached for large precipitates to grow and small precipitates to shrink. This will lower the surface to volume ratio of the precipitates, the surface energy, and therefore the energy of the system. As a result, at some point in the aging of 2024 Al, the precipitates begin to coarsen and (on average) the spacing between them gradually increases. At this point, the hardness and the yield point will begin to decrease with time of aging. The process of aging is a function of temperature; the higher the temperature, the wider the spacing of the precipitates. They form initially on cooling from the solution treatment. Also, because coarsening is dependent upon the movement of copper atoms in kappa, the maximum point is generally reached sooner at a higher temperature than at a lower temperature, as shown in Figure 8-2.
  • 3. In the present experiment, the precipitation hardening behavior of the Al-4%Cu alloy will be studied by measuring changes in hardness as a function of aging time. Materials and Equipment Five pieces of Al-4%Cu alloy (2024 Al) Furnace for heat treating specimens at 500°C (930°F) Pail of water Hardness testers Aging furnace at 190°C (370°F) Procedures 1. Stamp the five 2024 Al specimens with an identifying mark. 2. Measure the hardness of all of the specimens using Rockwell B. 3. Place all five in a heat-treatment crucible and into a furnace for solution treatment at 500°C (930°F) for 30 minutes. 4. Natural Aging - Remove one specimen and drop into a pail of water. Once the specimen is cool, measure the Rockwell B hardness at intervals of approximately 30 min, 90 min, 1 day, and 1 week for this specimen. It will be necessary for one member to come back to the lab during the week when the lab is in session to measure the hardness. 5. Artificial Aging - Remove the remaining four specimens and drop them into a pail of water. Once the specimens are cool remove them from the quenching bucket. Measure the Rockwell B hardness. Next, transfer the specimens to a furnace set at 190°C (370°F). Remove one sample after 3 min, 10 min, 60 min and 90 min. Quench into water and measure the Rockwell B hardness. After one week, again measure the Rockwell B hardness of the 3- and 10-minute artificially aged specimens. Glossary of Terms Understanding the following terms will aid in understanding this experiment. Age hardening. A special dispersion-strengthening heat treatment. By solution treatment, quenching and aging, a coherent precipitate forms that provides a substantial strengthening effect by acting as obstacles to dislocation movement. Artificial aging. Reheating a solution-treated and quenched alloy to a temperature below the solvus to provide the thermal energy required for a precipitate to form. Coherent precipitate. A precipitate whose crystal structure and atomic arrangement have a continuous relationship with the matrix from which the precipitate formed. The coherent precipitate provides excellent disruption of the atomic arrangement in the matrix and provides excellent strengthening. Dislocation. A line imperfection in the lattice of a crystalline material. Movement of dislocations helps explain how materials deform. Interference with the movement of dislocations helps explain how materials are strengthened. Grain boundary. A surface defect representing the boundary between two grains. The lattice has a different orientation on either side of the grain boundary.
  • 4. Interstitialcy. Atom occupying an interstitial site not normally occupied by an atom in the perfect crystal structure or an extra atom inserted into the perfect crystal such that two atoms occupy positions close to a singly occupied atomic site in the perfect structure. Natural aging. When a coherent precipitate forms from a solution-treated and quenched age hardenable alloy at room temperature, providing optimum strengthening. Solid solution. A solid phase that contains a mixture of more than one element, with the elements combining to give a uniform composition everywhere. Solution treatment. The first step in the age-hardening heat treatment. The alloy is heated above the solvus temperature to dissolve any second phase and to produce a homogeneous single-phase structure. Solvus. A solubility line that separates a single solid phase region from a two solid phase region in the phase diagram. Strain energy. The energy required to permit a precipitate to fit into the surrounding matrix during nucleation and growth of the precipitate. Supersaturated solid solution. The solid solution formed when a material is rapidly cooled from a high-temperature single-phase region to a low-temperature two-phase region without the second phase precipitating. Because the quenched phase contains more alloying element than the solubility limit, it is supersaturated in that element. Vacancy. A vacancy is created when an atom is missing from a lattice point. Write Up 1. Prepare a memo report. 2. Plot the hardness vs. time of aging for each aging temperature, using Excel. 3. How does aging temperature affect the time and hardness? 4. What happens to the 190° C (370° F) 3 and 10 minute specimens after one week? Why? 5. If you were going to use 2024 Al in an application at a temperature of 190° C (370° F), what problems could be encountered? 6. Discuss errors in this experiment and their sources. References 1. ASM Handbook, Vol. 2 - Heat Treating and Cleaning of Metals 2. D. Callister Jr, Fundamentals of Materials Science and Engineering, J. Wiley & Sons, NY, 3rd Ed. 2008. 3. Smith, Science and Engineering Materials, Chapter 8 4. Flinn & Trojan, Engineering Materials and Their Applications, Chapters 4 and 5
  • 5. MSE 227L Name ________________________ Precipitation hardening Poor Fair Average Good Excellent Memorandum Format Used 1 2 3 4 5 Spelling, grammar, & punctuation correct 1 2 3 4 5 Report includes: Poor Fair Average Good Excellent Graph hardness vs. time of aging for specified aging temperatures. (Final result will be 1 natural and 1 artificial curve overlayed; take log of time for X-axis, use Excel). 5 10 15 20 25 Discuss how aging temperature affects the aging time and hardness. 1 2 3 4 5 Discuss what happens to the 190° C, 3 and 10 minute specimens after one week. 1 2 3 4 5 Discuss reason for changes in the 190° C, 3 and 10 minute specimens after one week. 1 2 3 4 5 Discuss the use of 2024 Al in an application at a temperature of 190° C (370° F). 1 2 3 4 5 Discuss errors in this experiment and their sources. 1 2 3 4 5 Include table of results and data collected 1 2 3 4 5 Column Subtotals Poor Fair Average Good Excellent Overall level of effort apparent 1 2 3 4 5 Quality of graphs 1 2 3 4 5 Quality of Abstract 1 2 3 4 5 Quality of work description 1 2 3 4 5 Quality of conclusions 1 2 3 4 5 Column Subtotals