SlideShare a Scribd company logo
glmnet
第48回 勉強会@東京(#TokyoR)
@teramonagi
5分でわかるかもしれない
誰や?
俺や
• ID: @teramonagi
• 職種:データ分析おじさん
• 業務:ブカーの育成&会議&翻訳
• 言語:/R/F#/Ruby/Python/C++/
• 特技:早起き・根回し
3
優秀な新人怖い
glmnetとは
glmnet = glm+愛の鞭
4
※glm:一般化線形モデル(用の関数)
※一般化線形モデルの解説はしない

Recommended for you

StanとRでベイズ統計モデリングに関する読書会(Osaka.stan) 第四章
StanとRでベイズ統計モデリングに関する読書会(Osaka.stan) 第四章StanとRでベイズ統計モデリングに関する読書会(Osaka.stan) 第四章
StanとRでベイズ統計モデリングに関する読書会(Osaka.stan) 第四章

StanとRでベイズ統計モデリングに関する読書会(Osaka.stan)第二回における,第四章の発表資料です

ベイズ最適化によるハイパラーパラメータ探索
ベイズ最適化によるハイパラーパラメータ探索ベイズ最適化によるハイパラーパラメータ探索
ベイズ最適化によるハイパラーパラメータ探索

ベイズ最適化によるハイパーパラメータ探索についてざっくりと解説しました。 今回紹介する内容の元となった論文 Bergstra, James, et al. "Algorithms for hyper-parameter optimization." 25th annual conference on neural information processing systems (NIPS 2011). Vol. 24. Neural Information Processing Systems Foundation, 2011. https://hal.inria.fr/hal-00642998/

machine learningbayesian optimizationhyperparameter
Rで学ぶロバスト推定
Rで学ぶロバスト推定Rで学ぶロバスト推定
Rで学ぶロバスト推定
r robust-estimation tokyor
glmnetとは
• 愛の鞭(正則化)を一般化線形モデル
(GLM)に適用できるパッケージ
• 愛の鞭(正則化)の種類
–Lasso (ラッソ, L1正則化)
–Ridge(リッジ , L2正則化)
–Elastic-net(L1+L2正則化)
• カバーされているGLMなモデル
–線形、(多項 or 多クラス)ロジス
ティック、ポアソン、コックスモデル
5
モデルの目的関数
6
ラッソリッジ
尤度関数(モデル依存) 愛の鞭(正則化)
Elastic-Net
※パラメーター推計の際には
これが最小化される
パラメータ計算
• パラメーター推定のアルゴリズム
–Coordinate Descent
• 詳細
–Friedman, J., Hastie, T. and Tibshirani,
R. (2008) Regularization Paths for
Generalized Linear Models via
Coordinate Descent, Journal of
Statistical Software, Vol. 33(1), 1-22
Feb 2010
–http://www.jstatsoft.org/v33/i01/
7
早速、使ってみる
8
#パッケージをインストールして読み込む
install.packages("glmnet")
library(glmnet)

Recommended for you

Prophet入門【R編】Facebookの時系列予測ツール
Prophet入門【R編】Facebookの時系列予測ツールProphet入門【R編】Facebookの時系列予測ツール
Prophet入門【R編】Facebookの時系列予測ツール

第63回R勉強会@東京(#TokyoR)発表資料 https://atnd.org/events/89482

tokyor
StanとRでベイズ統計モデリング読書会 導入編(1章~3章)
StanとRでベイズ統計モデリング読書会 導入編(1章~3章)StanとRでベイズ統計モデリング読書会 導入編(1章~3章)
StanとRでベイズ統計モデリング読書会 導入編(1章~3章)

「StanとRでベイズ統計モデリング」の読書会発表資料です。 今回の発表は導入編(1章~3章)です。 初回ということもあって,本の内容以外に清水が補足説明を加えているところもあります。

statisticsstanr
Stan超初心者入門
Stan超初心者入門Stan超初心者入門
Stan超初心者入門

Stanの初心者が基本的な統計モデルを実行するまでの解説です。プログラミング初心者向けに書いているので,やや説明が遠回りなところもあります。

rstanpsychometrics
データの取得
• irisじゃつまらないので、 UCI machine learning
repositoryからワインデータ取得
9
library(dplyr)
#ワインデータの読み込み(ダウンロード)
URL <- "http://archive.ics.uci.edu/ml/machine-learning-
databases/wine-quality/winequality-white.csv"
df <- read.csv(URL, sep = ";", stringsAsFactor=FALSE)
#ワインの質(quality)が5, 6のものだけ残して,0,1化する
wine <- df %>%
filter(quality==5|quality==6) %>%
mutate(quality=quality-5)
glmとの比較(2クラス分類)
10
#statsパッケージのglm(説明変数は適当)
wine_glm <- glm(
quality ~ residual.sugar+sulphates+alcohol,
data=wine, family=binomial)
#質(quality)の予測(確率が0.5以上ならクラス1)
quality_glm <- predict(wine_glm, wine, type='response')
table(wine$quality, round(quality_glm))
※glmでの答え(混同行列)
glmとの比較(2クラス分類)
11
#いちいち行列に変換する必要がある
x <- wine %>%
select(residual.sugar, sulphates, alcohol) %>%
as.matrix
y <- wine %>% select(quality) %>% unlist
#glmと同じ結果を出させる
#lambda単一の値は非推奨(らしい)が動く…
#lamdbaに複数入れておいて、predictの引数をs=0にするでもOK
wine_glmnet <- glmnet(x, y, family=“binomial”, lambda=0)
quality_glmnet <- predict(wine_glmnet, newx=x, type=“class”)
table(wine$quality, quality_glmnet)
※glmnetでの答え(混同行列)
※愛の鞭なしでglmと一致
glmnetのクロスバリデーション
• クロスバリデーションで愛の鞭の痛さを調整できます
12
#CVで最適な"お仕置き"を決定して計算
wine_cv <-
cv.glmnet(x, y, family="binomial", type.measure="class")
quality_cv <-
predict(wine_cv, newx=x, type="class", s="lambda.min")
table(wine$quality, quality_cv)
※正解率が改善

Recommended for you

機械学習におけるオンライン確率的最適化の理論
機械学習におけるオンライン確率的最適化の理論機械学習におけるオンライン確率的最適化の理論
機械学習におけるオンライン確率的最適化の理論

情報処理学会連続セミナー2013

MCMCでマルチレベルモデル
MCMCでマルチレベルモデルMCMCでマルチレベルモデル
MCMCでマルチレベルモデル

広島大学で行われた,ベイズ推定による多変量解析入門WSで発表した資料です。階層線形モデルをベイズ推定する話についてまとめています。 発表者のWebサイト:norimune.net

multilevel modelhlmmcmc
ベイズ統計学の概論的紹介
ベイズ統計学の概論的紹介ベイズ統計学の概論的紹介
ベイズ統計学の概論的紹介

ベイズ統計学の基礎概念からW理論まで概論的に紹介するスライドです.数理・計算科学チュートリアル実践のチュートリアル資料です.引用しているipynbは * http://nhayashi.main.jp/codes/BayesStatAbstIntro.zip * https://github.com/chijan-nh/BayesStatAbstIntro を参照ください. 以下,エラッタ. * 52 of 80:KL(q||p)≠KL(q||p)ではなくKL(q||p)≠KL(p||q). * 67 of 80:2ν=E[V_n]ではなくE[V_n] → 2ν (n→∞). * 70 of 80:AICの第2項は d/2n ではなく d/n. * 76 of 80:βH(w)ではなくβ log P(X^n|w) + log φ(w).   - レプリカ交換MCと異なり、逆温度を尤度にのみ乗することはWBIC導出では本質的な仮定となる.

bayesstatisticsmachine learning
多クラスロジスティック回帰
• glmnetは多クラスロジステック回帰できる
– 分類すべきクラス数が2ではなく複数
– 一対他分類器 ではない!!!
• 他にもこれができるパッケージある
– VGAMのvglm関数(2015年更新確認)
– mlogitのmlogit関数(2013年更新停止)
– nnetのmultinom関数(2015年更新確認)
• でも、愛の鞭(正則化)があるし、あと開発者ら
が「統計的学習の基礎」の著者らなんで、
glmnetでいきたい…(ちなみにnnetはRのコア
メンバーBrian Ripley氏が開発されています)
13
多クラスロジスティック回帰
• family=“multinomial”とするだけ
• ワインデータはワイン全種類のも
のを使用(複数クラスなんで)
14
x <- df %>%
select(residual.sugar, sulphates, alcohol) %>%
as.matrix
y <- df %>% select(quality) %>% unlist
wine_cv <-
cv.glmnet(x, y, family="multinomial", type.measure="class")
quality_cv <-
predict(wine_cv, newx=x, type="class", s="lambda.min")
多クラスロジスティック回帰
15
table(df$quality, quality_cv)
• 結果を表示
みんな大好きirisで
16
x <- as.matrix(iris[,-5])
y <- iris[,5]
iris_cv <-
cv.glmnet(x, y, family="multinomial", type.measure="class")
species_cv <-
predict(iris_cv, newx=x, type="class", s="lambda.min")
table(y, species_cv)

Recommended for you

負の二項分布について
負の二項分布について負の二項分布について
負の二項分布について

広島ベイズ塾で発表した,負の二項分布についての資料です。

statisticsrnegative binomial distribution
これからの仮説検証・モデル評価
これからの仮説検証・モデル評価これからの仮説検証・モデル評価
これからの仮説検証・モデル評価

ベイズ塾主催の第3回WSで話した内容です。 間違いあると思います。より詳細を学びたい方は書籍等をご参考にしてください

#bayessripdastatis
Rパッケージ recipes の紹介 「うまい飯を作る」
Rパッケージ recipes の紹介 「うまい飯を作る」Rパッケージ recipes の紹介 「うまい飯を作る」
Rパッケージ recipes の紹介 「うまい飯を作る」

第74回 Tokyo.R LT recipesパッケージの紹介

みんな大好きirisで
正解 予測値
17
ここがイケてないよglmnet
• 引数(x, y)が行列限定
• 引数(x)が”数値”限定で、因子不可
• ガンガン使うようだったら、使い
やすいように修正したパッケージ
作っちゃった方が楽かも?
18
参考
• glmnetパッケージのvignette
– http://web.stanford.edu/~hastie/glmnet/glmnet_alpha.html
• Friedman, J., Hastie, T. and Tibshirani, R. (2008) Regularization
Paths for Generalized Linear Models via Coordinate Descent,
Journal of Statistical Software, Vol. 33(1), 1-22 Feb 2010
– http://www.jstatsoft.org/v33/i01/
• LASSO and Ridge regression
– http://d.hatena.ne.jp/isseing333/20110309/1299675311
• リッジ/Ridge回帰、Lasso回帰、Elastic Net (R - glmnet)
– http://highschoolstudent.hatenablog.com/entry/2015/02/08/142354
• RでL1 / L2正則化を実践する
– http://tjo.hatenablog.com/entry/2015/03/03/190000
19
Enjoy!!20

Recommended for you

Cmdstanr入門とreduce_sum()解説
Cmdstanr入門とreduce_sum()解説Cmdstanr入門とreduce_sum()解説
Cmdstanr入門とreduce_sum()解説

Cmdstanrとreduce_sum()の使い方を解説します

rstanbayes
非線形データの次元圧縮 150905 WACODE 2nd
非線形データの次元圧縮 150905 WACODE 2nd非線形データの次元圧縮 150905 WACODE 2nd
非線形データの次元圧縮 150905 WACODE 2nd

WACODE 2ndにて発表しました。

科学と機械学習のあいだ:変量の設計・変換・選択・交互作用・線形性
科学と機械学習のあいだ:変量の設計・変換・選択・交互作用・線形性科学と機械学習のあいだ:変量の設計・変換・選択・交互作用・線形性
科学と機械学習のあいだ:変量の設計・変換・選択・交互作用・線形性

機械学習はそもそも汎用的な枠組みであり基本的には対象分野に依らず利活用できる。従って、分野を限定して物質科学に機械学習を活用するなどと言う場合、その本質的難所の大部分は、有効な変量の設計・変換・選択・交互作用・線形性などに関する、いわゆるfeature engineeringの問題に帰する。特に、科学研究では端的な説明因子や共通パターンの探究こそが目的であることが多く、その場しのぎではない方法論が期待されている。本発表では、医薬品、機能制御剤、有機EL材料、食品、化粧品、と波及範囲が広い有機低分子について、その物性の予測と生物活性の予測の違いを例に、関わってきた問題・方法・課題について紹介する。 http://ibisml.org/ibis2016/session3/

More Related Content

What's hot

勾配ブースティングの基礎と最新の動向 (MIRU2020 Tutorial)
勾配ブースティングの基礎と最新の動向 (MIRU2020 Tutorial)勾配ブースティングの基礎と最新の動向 (MIRU2020 Tutorial)
勾配ブースティングの基礎と最新の動向 (MIRU2020 Tutorial)
RyuichiKanoh
 
階層モデルの分散パラメータの事前分布について
階層モデルの分散パラメータの事前分布について階層モデルの分散パラメータの事前分布について
階層モデルの分散パラメータの事前分布について
hoxo_m
 
StanとRでベイズ統計モデリングに関する読書会(Osaka.stan) 第四章
StanとRでベイズ統計モデリングに関する読書会(Osaka.stan) 第四章StanとRでベイズ統計モデリングに関する読書会(Osaka.stan) 第四章
StanとRでベイズ統計モデリングに関する読書会(Osaka.stan) 第四章
nocchi_airport
 
ベイズ最適化によるハイパラーパラメータ探索
ベイズ最適化によるハイパラーパラメータ探索ベイズ最適化によるハイパラーパラメータ探索
ベイズ最適化によるハイパラーパラメータ探索
西岡 賢一郎
 
Prophet入門【R編】Facebookの時系列予測ツール
Prophet入門【R編】Facebookの時系列予測ツールProphet入門【R編】Facebookの時系列予測ツール
Prophet入門【R編】Facebookの時系列予測ツール
hoxo_m
 
StanとRでベイズ統計モデリング読書会 導入編(1章~3章)
StanとRでベイズ統計モデリング読書会 導入編(1章~3章)StanとRでベイズ統計モデリング読書会 導入編(1章~3章)
StanとRでベイズ統計モデリング読書会 導入編(1章~3章)
Hiroshi Shimizu
 
Stan超初心者入門
Stan超初心者入門Stan超初心者入門
Stan超初心者入門
Hiroshi Shimizu
 
機械学習におけるオンライン確率的最適化の理論
機械学習におけるオンライン確率的最適化の理論機械学習におけるオンライン確率的最適化の理論
機械学習におけるオンライン確率的最適化の理論
Taiji Suzuki
 
MCMCでマルチレベルモデル
MCMCでマルチレベルモデルMCMCでマルチレベルモデル
MCMCでマルチレベルモデル
Hiroshi Shimizu
 
ベイズ統計学の概論的紹介
ベイズ統計学の概論的紹介ベイズ統計学の概論的紹介
ベイズ統計学の概論的紹介
Naoki Hayashi
 
負の二項分布について
負の二項分布について負の二項分布について
負の二項分布について
Hiroshi Shimizu
 
これからの仮説検証・モデル評価
これからの仮説検証・モデル評価これからの仮説検証・モデル評価
これからの仮説検証・モデル評価
daiki hojo
 
Rパッケージ recipes の紹介 「うまい飯を作る」
Rパッケージ recipes の紹介 「うまい飯を作る」Rパッケージ recipes の紹介 「うまい飯を作る」
Rパッケージ recipes の紹介 「うまい飯を作る」
Yutaka Kuroki
 
Cmdstanr入門とreduce_sum()解説
Cmdstanr入門とreduce_sum()解説Cmdstanr入門とreduce_sum()解説
Cmdstanr入門とreduce_sum()解説
Hiroshi Shimizu
 
非線形データの次元圧縮 150905 WACODE 2nd
非線形データの次元圧縮 150905 WACODE 2nd非線形データの次元圧縮 150905 WACODE 2nd
非線形データの次元圧縮 150905 WACODE 2nd
Mika Yoshimura
 
科学と機械学習のあいだ:変量の設計・変換・選択・交互作用・線形性
科学と機械学習のあいだ:変量の設計・変換・選択・交互作用・線形性科学と機械学習のあいだ:変量の設計・変換・選択・交互作用・線形性
科学と機械学習のあいだ:変量の設計・変換・選択・交互作用・線形性
Ichigaku Takigawa
 
階層ベイズとWAIC
階層ベイズとWAIC階層ベイズとWAIC
階層ベイズとWAIC
Hiroshi Shimizu
 
不均衡データのクラス分類
不均衡データのクラス分類不均衡データのクラス分類
不均衡データのクラス分類
Shintaro Fukushima
 

What's hot (20)

勾配ブースティングの基礎と最新の動向 (MIRU2020 Tutorial)
勾配ブースティングの基礎と最新の動向 (MIRU2020 Tutorial)勾配ブースティングの基礎と最新の動向 (MIRU2020 Tutorial)
勾配ブースティングの基礎と最新の動向 (MIRU2020 Tutorial)
 
階層モデルの分散パラメータの事前分布について
階層モデルの分散パラメータの事前分布について階層モデルの分散パラメータの事前分布について
階層モデルの分散パラメータの事前分布について
 
Rの高速化
Rの高速化Rの高速化
Rの高速化
 
StanとRでベイズ統計モデリングに関する読書会(Osaka.stan) 第四章
StanとRでベイズ統計モデリングに関する読書会(Osaka.stan) 第四章StanとRでベイズ統計モデリングに関する読書会(Osaka.stan) 第四章
StanとRでベイズ統計モデリングに関する読書会(Osaka.stan) 第四章
 
ベイズ最適化によるハイパラーパラメータ探索
ベイズ最適化によるハイパラーパラメータ探索ベイズ最適化によるハイパラーパラメータ探索
ベイズ最適化によるハイパラーパラメータ探索
 
Rで学ぶロバスト推定
Rで学ぶロバスト推定Rで学ぶロバスト推定
Rで学ぶロバスト推定
 
Prophet入門【R編】Facebookの時系列予測ツール
Prophet入門【R編】Facebookの時系列予測ツールProphet入門【R編】Facebookの時系列予測ツール
Prophet入門【R編】Facebookの時系列予測ツール
 
StanとRでベイズ統計モデリング読書会 導入編(1章~3章)
StanとRでベイズ統計モデリング読書会 導入編(1章~3章)StanとRでベイズ統計モデリング読書会 導入編(1章~3章)
StanとRでベイズ統計モデリング読書会 導入編(1章~3章)
 
Stan超初心者入門
Stan超初心者入門Stan超初心者入門
Stan超初心者入門
 
機械学習におけるオンライン確率的最適化の理論
機械学習におけるオンライン確率的最適化の理論機械学習におけるオンライン確率的最適化の理論
機械学習におけるオンライン確率的最適化の理論
 
MCMCでマルチレベルモデル
MCMCでマルチレベルモデルMCMCでマルチレベルモデル
MCMCでマルチレベルモデル
 
ベイズ統計学の概論的紹介
ベイズ統計学の概論的紹介ベイズ統計学の概論的紹介
ベイズ統計学の概論的紹介
 
負の二項分布について
負の二項分布について負の二項分布について
負の二項分布について
 
これからの仮説検証・モデル評価
これからの仮説検証・モデル評価これからの仮説検証・モデル評価
これからの仮説検証・モデル評価
 
Rパッケージ recipes の紹介 「うまい飯を作る」
Rパッケージ recipes の紹介 「うまい飯を作る」Rパッケージ recipes の紹介 「うまい飯を作る」
Rパッケージ recipes の紹介 「うまい飯を作る」
 
Cmdstanr入門とreduce_sum()解説
Cmdstanr入門とreduce_sum()解説Cmdstanr入門とreduce_sum()解説
Cmdstanr入門とreduce_sum()解説
 
非線形データの次元圧縮 150905 WACODE 2nd
非線形データの次元圧縮 150905 WACODE 2nd非線形データの次元圧縮 150905 WACODE 2nd
非線形データの次元圧縮 150905 WACODE 2nd
 
科学と機械学習のあいだ:変量の設計・変換・選択・交互作用・線形性
科学と機械学習のあいだ:変量の設計・変換・選択・交互作用・線形性科学と機械学習のあいだ:変量の設計・変換・選択・交互作用・線形性
科学と機械学習のあいだ:変量の設計・変換・選択・交互作用・線形性
 
階層ベイズとWAIC
階層ベイズとWAIC階層ベイズとWAIC
階層ベイズとWAIC
 
不均衡データのクラス分類
不均衡データのクラス分類不均衡データのクラス分類
不均衡データのクラス分類
 

Viewers also liked

機械学習によるデータ分析まわりのお話
機械学習によるデータ分析まわりのお話機械学習によるデータ分析まわりのお話
機械学習によるデータ分析まわりのお話
Ryota Kamoshida
 
Data assim r
Data assim rData assim r
Data assim r
Xiangze
 
機械の代わりに人間が学習入門
機械の代わりに人間が学習入門機械の代わりに人間が学習入門
機械の代わりに人間が学習入門
Shuyo Nakatani
 
MCMCによる回帰分析@ベイズセミナー
MCMCによる回帰分析@ベイズセミナーMCMCによる回帰分析@ベイズセミナー
MCMCによる回帰分析@ベイズセミナー
Takashi Yamane
 
Ml ch7
Ml ch7Ml ch7
カルマンフィルタについて
カルマンフィルタについてカルマンフィルタについて
カルマンフィルタについて
tiny_ak
 
状態空間モデルの実行方法と実行環境の比較
状態空間モデルの実行方法と実行環境の比較状態空間モデルの実行方法と実行環境の比較
状態空間モデルの実行方法と実行環境の比較
Hiroki Itô
 
スパースモデリング、スパースコーディングとその数理(第11回WBA若手の会)
スパースモデリング、スパースコーディングとその数理(第11回WBA若手の会)スパースモデリング、スパースコーディングとその数理(第11回WBA若手の会)
スパースモデリング、スパースコーディングとその数理(第11回WBA若手の会)
narumikanno0918
 

Viewers also liked (8)

機械学習によるデータ分析まわりのお話
機械学習によるデータ分析まわりのお話機械学習によるデータ分析まわりのお話
機械学習によるデータ分析まわりのお話
 
Data assim r
Data assim rData assim r
Data assim r
 
機械の代わりに人間が学習入門
機械の代わりに人間が学習入門機械の代わりに人間が学習入門
機械の代わりに人間が学習入門
 
MCMCによる回帰分析@ベイズセミナー
MCMCによる回帰分析@ベイズセミナーMCMCによる回帰分析@ベイズセミナー
MCMCによる回帰分析@ベイズセミナー
 
Ml ch7
Ml ch7Ml ch7
Ml ch7
 
カルマンフィルタについて
カルマンフィルタについてカルマンフィルタについて
カルマンフィルタについて
 
状態空間モデルの実行方法と実行環境の比較
状態空間モデルの実行方法と実行環境の比較状態空間モデルの実行方法と実行環境の比較
状態空間モデルの実行方法と実行環境の比較
 
スパースモデリング、スパースコーディングとその数理(第11回WBA若手の会)
スパースモデリング、スパースコーディングとその数理(第11回WBA若手の会)スパースモデリング、スパースコーディングとその数理(第11回WBA若手の会)
スパースモデリング、スパースコーディングとその数理(第11回WBA若手の会)
 

More from Nagi Teramo

第86回R勉強会@東京 LT資料
第86回R勉強会@東京 LT資料第86回R勉強会@東京 LT資料
第86回R勉強会@東京 LT資料
Nagi Teramo
 
Rでを作る
Rでを作るRでを作る
Rでを作る
Nagi Teramo
 
Reproducebility 100倍 Dockerマン
Reproducebility 100倍 DockerマンReproducebility 100倍 Dockerマン
Reproducebility 100倍 Dockerマン
Nagi Teramo
 
healthplanetパッケージで 体組成データを手に入れて 健康な体も手に入れる
healthplanetパッケージで体組成データを手に入れて健康な体も手に入れるhealthplanetパッケージで体組成データを手に入れて健康な体も手に入れる
healthplanetパッケージで 体組成データを手に入れて 健康な体も手に入れる
Nagi Teramo
 
闇と向き合う
闇と向き合う闇と向き合う
闇と向き合う
Nagi Teramo
 
機械の体を手に入れるのよ、 鉄郎!!!
機械の体を手に入れるのよ、鉄郎!!!機械の体を手に入れるのよ、鉄郎!!!
機械の体を手に入れるのよ、 鉄郎!!!
Nagi Teramo
 
続わかりやすいパターン認識11章(11.1 - 11.4)
続わかりやすいパターン認識11章(11.1 - 11.4)続わかりやすいパターン認識11章(11.1 - 11.4)
続わかりやすいパターン認識11章(11.1 - 11.4)
Nagi Teramo
 
Ultra Lightning Talk × 3
Ultra Lightning Talk × 3Ultra Lightning Talk × 3
Ultra Lightning Talk × 3
Nagi Teramo
 
F#談話室(17)
F#談話室(17)F#談話室(17)
F#談話室(17)
Nagi Teramo
 
RFinanceJはじめました
RFinanceJはじめましたRFinanceJはじめました
RFinanceJはじめました
Nagi Teramo
 
東京R非公式おじさんが教える本当に気持ちいいパッケージ作成法
東京R非公式おじさんが教える本当に気持ちいいパッケージ作成法東京R非公式おじさんが教える本当に気持ちいいパッケージ作成法
東京R非公式おじさんが教える本当に気持ちいいパッケージ作成法
Nagi Teramo
 
お前の逐モン、GETだぜ!
お前の逐モン、GETだぜ!お前の逐モン、GETだぜ!
お前の逐モン、GETだぜ!
Nagi Teramo
 
Trading volume mapping R in recent environment
Trading volume mapping R in recent environment Trading volume mapping R in recent environment
Trading volume mapping R in recent environment
Nagi Teramo
 
~knitr+pandocではじめる~『R MarkdownでReproducible Research』
~knitr+pandocではじめる~『R MarkdownでReproducible Research』~knitr+pandocではじめる~『R MarkdownでReproducible Research』
~knitr+pandocではじめる~『R MarkdownでReproducible Research』
Nagi Teramo
 
とある金融屋の統計技師が時系列解析してみた
とある金融屋の統計技師が時系列解析してみたとある金融屋の統計技師が時系列解析してみた
とある金融屋の統計技師が時系列解析してみた
Nagi Teramo
 
可視化周辺の進化がヤヴァイ~rChartsを中心として~
可視化周辺の進化がヤヴァイ~rChartsを中心として~可視化周辺の進化がヤヴァイ~rChartsを中心として~
可視化周辺の進化がヤヴァイ~rChartsを中心として~
Nagi Teramo
 
「plyrパッケージで君も前処理スタ☆」改め「plyrパッケージ徹底入門」
「plyrパッケージで君も前処理スタ☆」改め「plyrパッケージ徹底入門」「plyrパッケージで君も前処理スタ☆」改め「plyrパッケージ徹底入門」
「plyrパッケージで君も前処理スタ☆」改め「plyrパッケージ徹底入門」
Nagi Teramo
 
Tokyo.R 白熱教室「これからのRcppの話をしよう」
Tokyo.R 白熱教室「これからのRcppの話をしよう」Tokyo.R 白熱教室「これからのRcppの話をしよう」
Tokyo.R 白熱教室「これからのRcppの話をしよう」
Nagi Teramo
 
レプリカ交換モンテカルロ法で乱数の生成
レプリカ交換モンテカルロ法で乱数の生成レプリカ交換モンテカルロ法で乱数の生成
レプリカ交換モンテカルロ法で乱数の生成
Nagi Teramo
 
Rで学ぶ逆変換(逆関数)法
Rで学ぶ逆変換(逆関数)法Rで学ぶ逆変換(逆関数)法
Rで学ぶ逆変換(逆関数)法
Nagi Teramo
 

More from Nagi Teramo (20)

第86回R勉強会@東京 LT資料
第86回R勉強会@東京 LT資料第86回R勉強会@東京 LT資料
第86回R勉強会@東京 LT資料
 
Rでを作る
Rでを作るRでを作る
Rでを作る
 
Reproducebility 100倍 Dockerマン
Reproducebility 100倍 DockerマンReproducebility 100倍 Dockerマン
Reproducebility 100倍 Dockerマン
 
healthplanetパッケージで 体組成データを手に入れて 健康な体も手に入れる
healthplanetパッケージで体組成データを手に入れて健康な体も手に入れるhealthplanetパッケージで体組成データを手に入れて健康な体も手に入れる
healthplanetパッケージで 体組成データを手に入れて 健康な体も手に入れる
 
闇と向き合う
闇と向き合う闇と向き合う
闇と向き合う
 
機械の体を手に入れるのよ、 鉄郎!!!
機械の体を手に入れるのよ、鉄郎!!!機械の体を手に入れるのよ、鉄郎!!!
機械の体を手に入れるのよ、 鉄郎!!!
 
続わかりやすいパターン認識11章(11.1 - 11.4)
続わかりやすいパターン認識11章(11.1 - 11.4)続わかりやすいパターン認識11章(11.1 - 11.4)
続わかりやすいパターン認識11章(11.1 - 11.4)
 
Ultra Lightning Talk × 3
Ultra Lightning Talk × 3Ultra Lightning Talk × 3
Ultra Lightning Talk × 3
 
F#談話室(17)
F#談話室(17)F#談話室(17)
F#談話室(17)
 
RFinanceJはじめました
RFinanceJはじめましたRFinanceJはじめました
RFinanceJはじめました
 
東京R非公式おじさんが教える本当に気持ちいいパッケージ作成法
東京R非公式おじさんが教える本当に気持ちいいパッケージ作成法東京R非公式おじさんが教える本当に気持ちいいパッケージ作成法
東京R非公式おじさんが教える本当に気持ちいいパッケージ作成法
 
お前の逐モン、GETだぜ!
お前の逐モン、GETだぜ!お前の逐モン、GETだぜ!
お前の逐モン、GETだぜ!
 
Trading volume mapping R in recent environment
Trading volume mapping R in recent environment Trading volume mapping R in recent environment
Trading volume mapping R in recent environment
 
~knitr+pandocではじめる~『R MarkdownでReproducible Research』
~knitr+pandocではじめる~『R MarkdownでReproducible Research』~knitr+pandocではじめる~『R MarkdownでReproducible Research』
~knitr+pandocではじめる~『R MarkdownでReproducible Research』
 
とある金融屋の統計技師が時系列解析してみた
とある金融屋の統計技師が時系列解析してみたとある金融屋の統計技師が時系列解析してみた
とある金融屋の統計技師が時系列解析してみた
 
可視化周辺の進化がヤヴァイ~rChartsを中心として~
可視化周辺の進化がヤヴァイ~rChartsを中心として~可視化周辺の進化がヤヴァイ~rChartsを中心として~
可視化周辺の進化がヤヴァイ~rChartsを中心として~
 
「plyrパッケージで君も前処理スタ☆」改め「plyrパッケージ徹底入門」
「plyrパッケージで君も前処理スタ☆」改め「plyrパッケージ徹底入門」「plyrパッケージで君も前処理スタ☆」改め「plyrパッケージ徹底入門」
「plyrパッケージで君も前処理スタ☆」改め「plyrパッケージ徹底入門」
 
Tokyo.R 白熱教室「これからのRcppの話をしよう」
Tokyo.R 白熱教室「これからのRcppの話をしよう」Tokyo.R 白熱教室「これからのRcppの話をしよう」
Tokyo.R 白熱教室「これからのRcppの話をしよう」
 
レプリカ交換モンテカルロ法で乱数の生成
レプリカ交換モンテカルロ法で乱数の生成レプリカ交換モンテカルロ法で乱数の生成
レプリカ交換モンテカルロ法で乱数の生成
 
Rで学ぶ逆変換(逆関数)法
Rで学ぶ逆変換(逆関数)法Rで学ぶ逆変換(逆関数)法
Rで学ぶ逆変換(逆関数)法
 

Recently uploaded

能動的サイバー防御の時代へ - GPTsから垣間見えた私達と未来のAIについて
能動的サイバー防御の時代へ - GPTsから垣間見えた私達と未来のAIについて能動的サイバー防御の時代へ - GPTsから垣間見えた私達と未来のAIについて
能動的サイバー防御の時代へ - GPTsから垣間見えた私達と未来のAIについて
Tetsuya Nihonmatsu
 
「スマートエスイー」におけるスマートシステム&サービスおよびDX推進人材の産学連携育成ならびに参照モデルに基づく育成プログラム分析
「スマートエスイー」におけるスマートシステム&サービスおよびDX推進人材の産学連携育成ならびに参照モデルに基づく育成プログラム分析「スマートエスイー」におけるスマートシステム&サービスおよびDX推進人材の産学連携育成ならびに参照モデルに基づく育成プログラム分析
「スマートエスイー」におけるスマートシステム&サービスおよびDX推進人材の産学連携育成ならびに参照モデルに基づく育成プログラム分析
Hironori Washizaki
 
MySQLの文字コードと照合順序について 2024/07/05の勉強会で発表されたものです。
MySQLの文字コードと照合順序について 2024/07/05の勉強会で発表されたものです。MySQLの文字コードと照合順序について 2024/07/05の勉強会で発表されたものです。
MySQLの文字コードと照合順序について 2024/07/05の勉強会で発表されたものです。
iPride Co., Ltd.
 
2024/07/04 Blazor+ローコードで実現する.NET資産のモダナイズ
2024/07/04 Blazor+ローコードで実現する.NET資産のモダナイズ2024/07/04 Blazor+ローコードで実現する.NET資産のモダナイズ
2024/07/04 Blazor+ローコードで実現する.NET資産のモダナイズ
Tatsuya Ishikawa
 
【GPT4-o越えのリアルタイム会話AI】kyutai labsのMoshiデモ動画を解説
【GPT4-o越えのリアルタイム会話AI】kyutai labsのMoshiデモ動画を解説【GPT4-o越えのリアルタイム会話AI】kyutai labsのMoshiデモ動画を解説
【GPT4-o越えのリアルタイム会話AI】kyutai labsのMoshiデモ動画を解説
TsuyoshiSaito7
 
MOSHI: 革新的な音声AI QAIが開発した次世代のコミュニケーションツール
MOSHI: 革新的な音声AI QAIが開発した次世代のコミュニケーションツールMOSHI: 革新的な音声AI QAIが開発した次世代のコミュニケーションツール
MOSHI: 革新的な音声AI QAIが開発した次世代のコミュニケーションツール
TsuyoshiSaito7
 
VRM*VOICEVOX*GoogleCloudを使って自分だけのAIパートナーを作る話
VRM*VOICEVOX*GoogleCloudを使って自分だけのAIパートナーを作る話VRM*VOICEVOX*GoogleCloudを使って自分だけのAIパートナーを作る話
VRM*VOICEVOX*GoogleCloudを使って自分だけのAIパートナーを作る話
company21
 
論文紹介:Coarse-to-Fine Amodal Segmentation with Shape Prior
論文紹介:Coarse-to-Fine Amodal Segmentation with Shape Prior論文紹介:Coarse-to-Fine Amodal Segmentation with Shape Prior
論文紹介:Coarse-to-Fine Amodal Segmentation with Shape Prior
Toru Tamaki
 
内製化 × グローバル化を通じた 世界水準の IT 組織づくり - ファーストリテイリング・デジタル変革の挑戦
内製化 × グローバル化を通じた 世界水準の IT 組織づくり - ファーストリテイリング・デジタル変革の挑戦内製化 × グローバル化を通じた 世界水準の IT 組織づくり - ファーストリテイリング・デジタル変革の挑戦
内製化 × グローバル化を通じた 世界水準の IT 組織づくり - ファーストリテイリング・デジタル変革の挑戦
Fast Retailing Co., Ltd.
 

Recently uploaded (9)

能動的サイバー防御の時代へ - GPTsから垣間見えた私達と未来のAIについて
能動的サイバー防御の時代へ - GPTsから垣間見えた私達と未来のAIについて能動的サイバー防御の時代へ - GPTsから垣間見えた私達と未来のAIについて
能動的サイバー防御の時代へ - GPTsから垣間見えた私達と未来のAIについて
 
「スマートエスイー」におけるスマートシステム&サービスおよびDX推進人材の産学連携育成ならびに参照モデルに基づく育成プログラム分析
「スマートエスイー」におけるスマートシステム&サービスおよびDX推進人材の産学連携育成ならびに参照モデルに基づく育成プログラム分析「スマートエスイー」におけるスマートシステム&サービスおよびDX推進人材の産学連携育成ならびに参照モデルに基づく育成プログラム分析
「スマートエスイー」におけるスマートシステム&サービスおよびDX推進人材の産学連携育成ならびに参照モデルに基づく育成プログラム分析
 
MySQLの文字コードと照合順序について 2024/07/05の勉強会で発表されたものです。
MySQLの文字コードと照合順序について 2024/07/05の勉強会で発表されたものです。MySQLの文字コードと照合順序について 2024/07/05の勉強会で発表されたものです。
MySQLの文字コードと照合順序について 2024/07/05の勉強会で発表されたものです。
 
2024/07/04 Blazor+ローコードで実現する.NET資産のモダナイズ
2024/07/04 Blazor+ローコードで実現する.NET資産のモダナイズ2024/07/04 Blazor+ローコードで実現する.NET資産のモダナイズ
2024/07/04 Blazor+ローコードで実現する.NET資産のモダナイズ
 
【GPT4-o越えのリアルタイム会話AI】kyutai labsのMoshiデモ動画を解説
【GPT4-o越えのリアルタイム会話AI】kyutai labsのMoshiデモ動画を解説【GPT4-o越えのリアルタイム会話AI】kyutai labsのMoshiデモ動画を解説
【GPT4-o越えのリアルタイム会話AI】kyutai labsのMoshiデモ動画を解説
 
MOSHI: 革新的な音声AI QAIが開発した次世代のコミュニケーションツール
MOSHI: 革新的な音声AI QAIが開発した次世代のコミュニケーションツールMOSHI: 革新的な音声AI QAIが開発した次世代のコミュニケーションツール
MOSHI: 革新的な音声AI QAIが開発した次世代のコミュニケーションツール
 
VRM*VOICEVOX*GoogleCloudを使って自分だけのAIパートナーを作る話
VRM*VOICEVOX*GoogleCloudを使って自分だけのAIパートナーを作る話VRM*VOICEVOX*GoogleCloudを使って自分だけのAIパートナーを作る話
VRM*VOICEVOX*GoogleCloudを使って自分だけのAIパートナーを作る話
 
論文紹介:Coarse-to-Fine Amodal Segmentation with Shape Prior
論文紹介:Coarse-to-Fine Amodal Segmentation with Shape Prior論文紹介:Coarse-to-Fine Amodal Segmentation with Shape Prior
論文紹介:Coarse-to-Fine Amodal Segmentation with Shape Prior
 
内製化 × グローバル化を通じた 世界水準の IT 組織づくり - ファーストリテイリング・デジタル変革の挑戦
内製化 × グローバル化を通じた 世界水準の IT 組織づくり - ファーストリテイリング・デジタル変革の挑戦内製化 × グローバル化を通じた 世界水準の IT 組織づくり - ファーストリテイリング・デジタル変革の挑戦
内製化 × グローバル化を通じた 世界水準の IT 組織づくり - ファーストリテイリング・デジタル変革の挑戦
 

5分でわかるかもしれないglmnet