This document presents a reflectance perception model based face recognition approach that is robust to illumination variations. It proposes a preprocessing algorithm based on the reflectance perception model to generate illumination insensitive images. It then applies principal component analysis (PCA) for feature extraction to reduce the image dimension and remove unwanted vectors. Multiple classifiers are used to extract features from different Fourier domains and frequencies, and scores from these classifiers are combined using a weighted sum fusion method based on equal error rate weights. Experimental results on standard databases show the proposed approach delivers large performance improvements over other face recognition algorithms in handling illumination variations.