Simon Fraser University
Model Polymers for Fuel Cell Membranes.
E.M.W. Tsang, A. Yang, Z. Shi,
T. Weissbach, R. Narimana,# B. Frisken,#
S. Holdcroft*
Dept. of Chemistry (Physics#)
Simon Fraser University
Burnaby, British Columbia
Canada
Dec, 2013,
ICAER 2013

Funding:
2
Proton Exchange Membrane Fuel Cell (PEMFC)

eProton Exchange
Membrane (PEM)
HO
2

e-

Anode Reaction

Cathode Reaction

2H
4H ++ 4e 2
(Hydrogen)

H+

H
2
Catalyst

O + 4H ++ 4e2

O
2
Electrode

2H O
2
Fuel Cells – Stacks
Bi-polar plate

Automotive: 80,000 W
~350-400 MEAs
750 Bipolar plates
flow field

MEA
electrode
backing
gasket
Structure of Nafion (PFSI)
CF2

CF2

x

CF

CF2 y
OCF2CF z O(CF2)2SO3H
CF3

1 micron (1/1000 mm)
Perfluorinated vs Hydrocarbon PEMs
Advantages
••
••
••
••
••

High proton conductivity
High proton conductivity
Efficient even at low operating temp
Efficient even at low operating temp
Good mechanical properties
Good mechanical properties
High durability
High durability
Good flexibility at low temp
Good flexibility at low temp

Disadvantages
••
••
••
••

Very expensive
Very expensive
High H22,O22,, N22 & methanol crossover
High H ,O N & methanol crossover
Humidification necessary
Humidification necessary
Failure at high temperature (( >100
Failure at high temperature >100
0C)
0C)
Catalyst poisoning
•• Catalyst poisoning
•• High electro-osmotic drag
High electro-osmotic drag

There is a need to develop alternative advanced membranes based on
aromatic hydrocarbons

6
Potential Polymer Architectures for PEM Materials

F2
C

CF2CF2

CFCF2

x

OCF2CF

Nafion

CF3

x

y
OCF2CF2SO3H

H2
C

CH2

C

CF2

CH2

ETFE-g-PSSA

y
z CH2

CH2

z

SO3H

SO3H

Examples of
PEMs
O
HO3S

CF2 CF

O
C

O

CF2 CF
n

m
n

CH2CH

CH2 CH

R

SO3H

S-PEEK

CH2 CH2

CH3 CH2

CH2CH

BAM

CH2 CH

CH2CH3

S-SEBS
SO3H

SO3H

7
Microphase Separation in Block Copolymers

F.S. Bates and G. H. Fredrickson, Physics Today, Feb. 1999.

Block
Copolymers

Graft
Polymers
Synthesis of Novel Fluoropolymer-blockIonic Polymers
R-X

x CF2=CH2 + y CF2=CF-CF3

Chain Transfer
Radical Polymerization

CH2CF2 x CF2CF y
CF3
Macroinitiator

R'-X

n
CuX / bpy

CH2CF2 x CF2CF y
CF3

CH2CH n X

ATRP

ClSO3H or CH3COOSO3H

Sulfonation

CH2CF2 x CF2CF y
CF3

CH2CH n X
SO3H

•

•
•

Chain Transfer Radical Emulsion
Polymerization
Atom Transfer Radical
Polymerization
Sulfonation
20%HFP
80%VDF

HFP

VDF
Synthesis of Fluorous-Ionic Graft
Copolymer
P(VDF-co-CTFE)-g-SPS
x CF

CH

2

2

+

y CF

2

E m ulsion P olymerization

CF

*

CH2CF2

Na S O + K S O
2 2 5
2 2 8

Cl

2.6mol%CTFE
97.4mol%VDF

CuCl / bpy

x

CF2CF

y

CF2CF

Cl

P(VDF-co-CTFE)-g-PS

*

S ulfona tion

z

CH2CH

Cl
n

*

y

P(VDF-co-CTFE)
Macroinitiator
n

CH2CF2

CF2CF
Cl

AT R P

*

x

CH3COOSO3H

*

CH2CF2

x

CF2CF

y

CF2CF

Cl

*
z

CH2CH

Cl
n

P(VDF-co-CTFE)-g-SPS
SO3H

10
Membrane Morphology
Diblock copolymer:

H

CH2CF2

x'

Graft copolymer:

CF2CF

CH2CH
y'

n'

CF3

CH2CF2

x

CF2CF
Cl

y

CF2CF

z

CH2CH

SO3H

n

SO3H

100 nm

Perforated Lamellar Morphology:
- “Ionic” channels width = 8 – 15 nm
11

100 nm

Disordered cluster-network Morphology:
-Ionic cluster size = 2 – 3 nm
Note: Nafion cluster size = 5 – 10 nm
Diblock vs Graft Membrane
Diblock copolymer:

Graft copolymer:

100 nm

100 nm

-

120
90
60
30
0

0.08
0.06
0.04
0.02
0.00

0.0

0.5

1.0

1.5

2.0

2.5

IEC (mmol/g)

Grafts (small ionic clusters):

0.0

0.5

1.0

1.5

2.0

IEC (mmol/g)

- Less water swelling  Lower proton mobility
- Maintain good mechanical property and high
proton concentrations

2.5

1.2

2.5

1.0

2.0

0.8

1.5

0.6

1.0

0.4

0.5

0.2

0.0

x 103 (cm2 s-1 V-1)

dissolves

150

3.0

eff

Proton Conductivity (S/cm)

0.10

0.0
0.0

0.5

1.0

1.5

2.0

2.5

IEC (mmol/g)

Diblocks (long-range channels):

- Greater water uptake  Higher proton
conductivity and mobility
- Excessive water swelling  mechanical
instability and limited attainable IEC.

[H+] (M)

H2O]/[SO3 ])

180
6-17% PS, Fully Sulfonated

Proton Conductivity :

35% PS, p. Sulfonated

(IONIC PURITY):
6-17% PS, Fully Sulfonated:

45% PS, p. Sulfonated
B

50% PS, p. Sulfonated

100 nm

35% PS, Partially Sulfonated:

E

100 nm

45% PS, Partially Sulfonated:

H

Proton Conductivity (S/cm)

0.12
6-17% PS, fully sulfonated
35% PS, partially sulfonated
45% PS, partially sulfonated
50% PS, partially sulfonated
Nafion 117

0.10
0.08
0.06
0.04
0.02
0.00

100 nm

50% PS, Partially Sulfonated:

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

IEC (mmol/g)
J

100 nm

- Fully sulfonated : continuous increase in
proton conductivity with IEC
- Partially sulfonated: initial increase followed
13
by drop in proton conductivity at high IEC.
Fluorinated polymer

Partially Sulfonated polystyrene
& water

SANS: Contrast Variation Effect

100 nm

Rubatat, Holdcroft, Diat, Shi. Frisken
Conclusions

IEC = 0.70 mmol/g

•
•
•
•

G

K

C

100 nm

IEC = 0.68 mmol/g

100 nm

IEC = 0.89 mmol/g

100 nm

500 nm

Model fluorous-ionic diblock copolymers with different block ratios have been
synthesized to investigate structure-property relationships in PEMs.
Water sorption, proton conductivity, proton mobility, anisotropy, etc, depend
strongly on the membrane morphology….and on the degree of sulfonation within
an “ionic” channel.
Ionic purity of the “ionic channel” is critical.
The graft structure allows for very high IEC without dissolution – promising for
low RH conductivity.
T.J. Peckham, S. Holdcroft. Adv.
Mater., 22 (2010) 4667–4690

Yossef Elabd and Michael Hickner
“Block Copolymers for Fuel Cells”
Macromolecules, 2011, 44 (1), pp 1–11

325 steevn

  • 1.
  • 2.
    Model Polymers forFuel Cell Membranes. E.M.W. Tsang, A. Yang, Z. Shi, T. Weissbach, R. Narimana,# B. Frisken,# S. Holdcroft* Dept. of Chemistry (Physics#) Simon Fraser University Burnaby, British Columbia Canada Dec, 2013, ICAER 2013 Funding: 2
  • 3.
    Proton Exchange MembraneFuel Cell (PEMFC) eProton Exchange Membrane (PEM) HO 2 e- Anode Reaction Cathode Reaction 2H 4H ++ 4e 2 (Hydrogen) H+ H 2 Catalyst O + 4H ++ 4e2 O 2 Electrode 2H O 2
  • 4.
    Fuel Cells –Stacks Bi-polar plate Automotive: 80,000 W ~350-400 MEAs 750 Bipolar plates flow field MEA electrode backing gasket
  • 5.
    Structure of Nafion(PFSI) CF2 CF2 x CF CF2 y OCF2CF z O(CF2)2SO3H CF3 1 micron (1/1000 mm)
  • 6.
    Perfluorinated vs HydrocarbonPEMs Advantages •• •• •• •• •• High proton conductivity High proton conductivity Efficient even at low operating temp Efficient even at low operating temp Good mechanical properties Good mechanical properties High durability High durability Good flexibility at low temp Good flexibility at low temp Disadvantages •• •• •• •• Very expensive Very expensive High H22,O22,, N22 & methanol crossover High H ,O N & methanol crossover Humidification necessary Humidification necessary Failure at high temperature (( >100 Failure at high temperature >100 0C) 0C) Catalyst poisoning •• Catalyst poisoning •• High electro-osmotic drag High electro-osmotic drag There is a need to develop alternative advanced membranes based on aromatic hydrocarbons 6
  • 7.
    Potential Polymer Architecturesfor PEM Materials F2 C CF2CF2 CFCF2 x OCF2CF Nafion CF3 x y OCF2CF2SO3H H2 C CH2 C CF2 CH2 ETFE-g-PSSA y z CH2 CH2 z SO3H SO3H Examples of PEMs O HO3S CF2 CF O C O CF2 CF n m n CH2CH CH2 CH R SO3H S-PEEK CH2 CH2 CH3 CH2 CH2CH BAM CH2 CH CH2CH3 S-SEBS SO3H SO3H 7
  • 8.
    Microphase Separation inBlock Copolymers F.S. Bates and G. H. Fredrickson, Physics Today, Feb. 1999. Block Copolymers Graft Polymers
  • 9.
    Synthesis of NovelFluoropolymer-blockIonic Polymers R-X x CF2=CH2 + y CF2=CF-CF3 Chain Transfer Radical Polymerization CH2CF2 x CF2CF y CF3 Macroinitiator R'-X n CuX / bpy CH2CF2 x CF2CF y CF3 CH2CH n X ATRP ClSO3H or CH3COOSO3H Sulfonation CH2CF2 x CF2CF y CF3 CH2CH n X SO3H • • • Chain Transfer Radical Emulsion Polymerization Atom Transfer Radical Polymerization Sulfonation 20%HFP 80%VDF HFP VDF
  • 10.
    Synthesis of Fluorous-IonicGraft Copolymer P(VDF-co-CTFE)-g-SPS x CF CH 2 2 + y CF 2 E m ulsion P olymerization CF * CH2CF2 Na S O + K S O 2 2 5 2 2 8 Cl 2.6mol%CTFE 97.4mol%VDF CuCl / bpy x CF2CF y CF2CF Cl P(VDF-co-CTFE)-g-PS * S ulfona tion z CH2CH Cl n * y P(VDF-co-CTFE) Macroinitiator n CH2CF2 CF2CF Cl AT R P * x CH3COOSO3H * CH2CF2 x CF2CF y CF2CF Cl * z CH2CH Cl n P(VDF-co-CTFE)-g-SPS SO3H 10
  • 11.
    Membrane Morphology Diblock copolymer: H CH2CF2 x' Graftcopolymer: CF2CF CH2CH y' n' CF3 CH2CF2 x CF2CF Cl y CF2CF z CH2CH SO3H n SO3H 100 nm Perforated Lamellar Morphology: - “Ionic” channels width = 8 – 15 nm 11 100 nm Disordered cluster-network Morphology: -Ionic cluster size = 2 – 3 nm Note: Nafion cluster size = 5 – 10 nm
  • 12.
    Diblock vs GraftMembrane Diblock copolymer: Graft copolymer: 100 nm 100 nm - 120 90 60 30 0 0.08 0.06 0.04 0.02 0.00 0.0 0.5 1.0 1.5 2.0 2.5 IEC (mmol/g) Grafts (small ionic clusters): 0.0 0.5 1.0 1.5 2.0 IEC (mmol/g) - Less water swelling  Lower proton mobility - Maintain good mechanical property and high proton concentrations 2.5 1.2 2.5 1.0 2.0 0.8 1.5 0.6 1.0 0.4 0.5 0.2 0.0 x 103 (cm2 s-1 V-1) dissolves 150 3.0 eff Proton Conductivity (S/cm) 0.10 0.0 0.0 0.5 1.0 1.5 2.0 2.5 IEC (mmol/g) Diblocks (long-range channels): - Greater water uptake  Higher proton conductivity and mobility - Excessive water swelling  mechanical instability and limited attainable IEC. [H+] (M) H2O]/[SO3 ]) 180
  • 13.
    6-17% PS, FullySulfonated Proton Conductivity : 35% PS, p. Sulfonated (IONIC PURITY): 6-17% PS, Fully Sulfonated: 45% PS, p. Sulfonated B 50% PS, p. Sulfonated 100 nm 35% PS, Partially Sulfonated: E 100 nm 45% PS, Partially Sulfonated: H Proton Conductivity (S/cm) 0.12 6-17% PS, fully sulfonated 35% PS, partially sulfonated 45% PS, partially sulfonated 50% PS, partially sulfonated Nafion 117 0.10 0.08 0.06 0.04 0.02 0.00 100 nm 50% PS, Partially Sulfonated: 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 IEC (mmol/g) J 100 nm - Fully sulfonated : continuous increase in proton conductivity with IEC - Partially sulfonated: initial increase followed 13 by drop in proton conductivity at high IEC.
  • 14.
    Fluorinated polymer Partially Sulfonatedpolystyrene & water SANS: Contrast Variation Effect 100 nm Rubatat, Holdcroft, Diat, Shi. Frisken
  • 15.
    Conclusions IEC = 0.70mmol/g • • • • G K C 100 nm IEC = 0.68 mmol/g 100 nm IEC = 0.89 mmol/g 100 nm 500 nm Model fluorous-ionic diblock copolymers with different block ratios have been synthesized to investigate structure-property relationships in PEMs. Water sorption, proton conductivity, proton mobility, anisotropy, etc, depend strongly on the membrane morphology….and on the degree of sulfonation within an “ionic” channel. Ionic purity of the “ionic channel” is critical. The graft structure allows for very high IEC without dissolution – promising for low RH conductivity.
  • 16.
    T.J. Peckham, S.Holdcroft. Adv. Mater., 22 (2010) 4667–4690 Yossef Elabd and Michael Hickner “Block Copolymers for Fuel Cells” Macromolecules, 2011, 44 (1), pp 1–11