SlideShare a Scribd company logo
3GPP TS 36.211 V2.0.0 (2007-09) 
Technical Specification 
3rd Generation Partnership Project; 
Technical Specification Group Radio Access Network; 
Evolved Universal Terrestrial Radio Access (E-UTRA); 
Physical Channels and Modulation 
(Release 8) 
The present document has been developed within the 3rd Generation Partnership Project (3GPP TM) and may be further elaborated for the purposes of 3GPP. 
The present document has not been subject to any approval process by the 3GPP Organizational Partners and shall not be implemented. 
This Specification is provided for future development work within 3GPP only. The Organizational Partners accept no liability for any use of this Specification. 
Specifications and reports for implementation of the 3GPP TM system should be obtained via the 3GPP Organizational Partners' Publications Offices.
Release 8 2 3GPP TS 36.211 V2.0.0 (2007-09) 
Keywords 
UMTS, radio, layer 1 
3GPP 
Postal address 
3GPP support office address 
650 Route des Lucioles - Sophia Antipolis 
Valbonne - FRANCE 
Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16 
Internet 
http://www.3gpp.org 
Copyright Notification 
No part may be reproduced except as authorized by written permission. 
The copyright and the foregoing restriction extend to reproduction in all media. 
© 2006, 3GPP Organizational Partners (ARIB, ATIS, CCSA, ETSI, TTA, TTC). 
All rights reserved. 
3GPP
Release 8 3 3GPP TS 36.211 V2.0.0 (2007-09) 
Contents 
Foreword ............................................................................................................................................................6 
1 Scope .......................................................................................................................................................6 
2 References ................................................................................................................................................6 
3 Definitions, symbols and abbreviations ...................................................................................................7 
3.1 Symbols................................................................................................................................................................. 7 
3.2 Abbreviations ........................................................................................................................................................ 8 
4 Frame structure.........................................................................................................................................8 
4.1 Frame structure type 1 .......................................................................................................................................... 8 
4.2 Frame structure type 2 .......................................................................................................................................... 9 
5 Uplink.......................................................................................................................................................9 
5.1 Overview ............................................................................................................................................................... 9 
5.1.1 Physical channels ............................................................................................................................................ 9 
5.1.2 Physical signals ............................................................................................................................................... 9 
5.2 Slot structure and physical resources.................................................................................................................. 10 
5.2.1 Resource grid................................................................................................................................................. 10 
5.2.2 Resource elements......................................................................................................................................... 11 
5.2.3 Resource blocks............................................................................................................................................. 11 
5.3 Physical uplink shared channel........................................................................................................................... 11 
5.3.1 Scrambling..................................................................................................................................................... 11 
5.3.2 Modulation .................................................................................................................................................... 12 
5.3.3 Transform precoding ..................................................................................................................................... 12 
5.3.4 Mapping to physical resources...................................................................................................................... 12 
5.4 Physical uplink control channel.......................................................................................................................... 12 
5.4.1 Scrambling..................................................................................................................................................... 13 
5.4.2 Modulation .................................................................................................................................................... 13 
5.4.2.1 Sequence modulation for PUCCH format 0 and 1 ................................................................................. 13 
5.4.2.2 Sequence modulation for PUCCH format 2 ........................................................................................... 14 
5.4.3 Mapping to physical resources...................................................................................................................... 14 
5.5 Reference signals ................................................................................................................................................ 14 
5.5.1 Generation of the base reference signal sequence........................................................................................ 14 
5.5.1.1 Reference signal sequences of length 36 or larger ................................................................................. 15 
5.5.1.2 Reference signal sequences of length less than 36 ................................................................................. 15 
5.5.2 Demodulation reference signal ..................................................................................................................... 15 
5.5.2.1 Demodulation reference signal for PUSCH............................................................................................ 15 
5.5.2.1.1 Reference signal sequence................................................................................................................. 15 
5.5.2.1.2 Mapping to physical resources .......................................................................................................... 16 
5.5.2.2 Demodulation reference signal for PUCCH ........................................................................................... 16 
5.5.2.2.1 Reference signal sequence................................................................................................................. 16 
5.5.2.2.2 Mapping to physical resources .......................................................................................................... 17 
5.5.3 Sounding reference signal ............................................................................................................................. 17 
5.5.3.1 Sequence generation................................................................................................................................ 17 
5.5.3.2 Mapping to physical resources................................................................................................................ 17 
5.6 SC-FDMA baseband signal generation .............................................................................................................. 18 
5.7 Physical random access channel......................................................................................................................... 18 
5.7.1 Time and frequency structure ....................................................................................................................... 18 
5.7.2 Preamble sequence generation ...................................................................................................................... 19 
5.7.3 Baseband signal generation........................................................................................................................... 19 
5.8 Modulation and upconversion ............................................................................................................................ 20 
6 Downlink................................................................................................................................................20 
6.1 Overview ............................................................................................................................................................. 20 
6.1.1 Physical channels .......................................................................................................................................... 20 
6.1.2 Physical signals ............................................................................................................................................. 21 
6.2 Slot structure and physical resource elements.................................................................................................... 21 
3GPP
Release 8 4 3GPP TS 36.211 V2.0.0 (2007-09) 
6.2.1 Resource grid................................................................................................................................................. 21 
6.2.2 Resource elements......................................................................................................................................... 21 
6.2.3 Resource blocks............................................................................................................................................. 22 
6.2.4 Guard Period for TDD Operation ................................................................................................................. 25 
6.3 General structure for downlink physical channels ............................................................................................. 25 
6.3.1 Scrambling..................................................................................................................................................... 25 
6.3.2 Modulation .................................................................................................................................................... 26 
6.3.3 Layer mapping............................................................................................................................................... 26 
6.3.3.1 Layer mapping for transmission on a single antenna port...................................................................... 26 
6.3.3.2 Layer mapping for spatial multiplexing.................................................................................................. 26 
6.3.3.3 Layer mapping for transmit diversity...................................................................................................... 27 
6.3.4 Precoding....................................................................................................................................................... 27 
6.3.4.1 Precoding for transmission on a single antenna port .............................................................................. 27 
6.3.4.2 Precoding for spatial multiplexing .......................................................................................................... 27 
6.3.4.2.1 Precoding for zero and small-delay CDD......................................................................................... 27 
6.3.4.2.2 Precoding for large delay CDD ......................................................................................................... 28 
6.3.4.2.3 Codebook for precoding .................................................................................................................... 29 
6.3.4.3 Precoding for transmit diversity.............................................................................................................. 30 
6.3.5 Mapping to resource elements ...................................................................................................................... 31 
6.4 Physical downlink shared channel...................................................................................................................... 31 
6.5 Physical multicast channel.................................................................................................................................. 31 
6.6 Physical broadcast channel ................................................................................................................................. 32 
6.6.1 Scrambling..................................................................................................................................................... 32 
6.6.2 Modulation .................................................................................................................................................... 32 
6.6.3 Layer mapping and precoding....................................................................................................................... 32 
6.6.4 Mapping to resource elements ...................................................................................................................... 32 
6.7 Physical control format indicator channel.......................................................................................................... 32 
6.7.1 Scrambling..................................................................................................................................................... 33 
6.7.2 Modulation .................................................................................................................................................... 33 
6.7.3 Layer mapping and precoding....................................................................................................................... 33 
6.7.4 Mapping to resource elements ...................................................................................................................... 33 
6.8 Physical downlink control channel..................................................................................................................... 33 
6.8.1 PDCCH formats ............................................................................................................................................ 33 
6.8.2 Scrambling..................................................................................................................................................... 33 
6.8.3 Modulation .................................................................................................................................................... 34 
6.8.4 Layer mapping and precoding....................................................................................................................... 34 
6.8.5 Mapping to resource elements ...................................................................................................................... 34 
6.9 Physical hybrid ARQ indicator channel ............................................................................................................. 34 
6.9.1 Scrambling..................................................................................................................................................... 34 
6.9.2 Modulation .................................................................................................................................................... 35 
6.9.3 Layer mapping and precoding....................................................................................................................... 35 
6.9.4 Mapping to resource elements ...................................................................................................................... 35 
6.10 Reference signals ................................................................................................................................................ 35 
6.10.1 Cell-specific reference signals ...................................................................................................................... 36 
6.10.1.1 Sequence generation................................................................................................................................ 36 
6.10.1.1.1 Orthogonal sequence generation ....................................................................................................... 36 
6.10.1.1.2 Pseudo-random sequence generation ................................................................................................ 37 
6.10.1.2 Mapping to resource elements................................................................................................................. 37 
6.10.2 MBSFN reference signals ............................................................................................................................. 41 
6.10.2.1 Sequence generation................................................................................................................................ 41 
6.10.2.2 Mapping to resource elements................................................................................................................. 41 
6.10.3 UE-specific reference signals........................................................................................................................ 43 
6.10.3.1 Sequence generation................................................................................................................................ 44 
6.10.3.2 Mapping to resource elements................................................................................................................. 44 
6.11 Synchronization signals ...................................................................................................................................... 44 
6.11.1 Primary synchronization signal..................................................................................................................... 44 
6.11.1.1 Sequence generation................................................................................................................................ 44 
6.11.1.2 Mapping to resource elements................................................................................................................. 44 
6.11.2 Secondary synchronization signal................................................................................................................. 45 
6.11.2.1 Sequence generation................................................................................................................................ 45 
6.11.2.2 Mapping to resource elements................................................................................................................. 45 
6.12 OFDM baseband signal generation .................................................................................................................... 45 
3GPP
Release 8 5 3GPP TS 36.211 V2.0.0 (2007-09) 
6.13 Modulation and upconversion ............................................................................................................................ 46 
7 Modulation mapper ................................................................................................................................46 
7.1 BPSK................................................................................................................................................................... 46 
7.2 QPSK................................................................................................................................................................... 46 
7.3 16QAM................................................................................................................................................................ 47 
7.4 64QAM................................................................................................................................................................ 47 
8 Timing....................................................................................................................................................49 
8.1 Uplink-downlink frame timing ........................................................................................................................... 49 
Annex A (informative): Change history .......................................................................................................49 
3GPP
Release 8 6 3GPP TS 36.211 V2.0.0 (2007-09) 
Foreword 
This Technical Specification has been produced by the 3rd Generation Partnership Project (3GPP). 
The contents of the present document are subject to continuing work within the TSG and may change following formal 
TSG approval. Should the TSG modify the contents of the present document, it will be re-released by the TSG with an 
identifying change of release date and an increase in version number as follows: 
3GPP 
Version x.y.z 
where: 
x the first digit: 
1 presented to TSG for information; 
2 presented to TSG for approval; 
3 or greater indicates TSG approved document under change control. 
y the second digit is incremented for all changes of substance, i.e. technical enhancements, corrections, 
updates, etc. 
z the third digit is incremented when editorial only changes have been incorporated in the document. 
1 Scope 
The present document describes the physical channels for evolved UTRA. 
2 References 
The following documents contain provisions which, through reference in this text, constitute provisions of the present 
document. 
• References are either specific (identified by date of publication, edition number, version number, etc.) or 
non-specific. 
• For a specific reference, subsequent revisions do not apply. 
• For a non-specific reference, the latest version applies. In the case of a reference to a 3GPP document (including 
a GSM document), a non-specific reference implicitly refers to the latest version of that document in the same 
Release as the present document. 
[1] 3GPP TR 21.905: "Vocabulary for 3GPP Specifications". 
[2] 3GPP TS 36.201: "LTE Physical Layer – General Description ". 
[3] 3GPP TS 36.212: "Multiplexing and channel coding". 
[4] 3GPP TS 36.213: "Physical layer procedures". 
[5] 3GPP TS 36.214: "Physical layer – Measurements". 
[6] 3GPP TS xx.xxx: <RAN4 specification listing supported transmission bandwidths>
Release 8 7 3GPP TS 36.211 V2.0.0 (2007-09) 
3 Definitions, symbols and abbreviations 
3.1 Symbols 
For the purposes of the present document, the following symbols apply: 
(k, l) Resource element with frequency-domain index k and time-domain index l 
( ) 
p 
ak l Value of resource element (k, l) [for antenna port p ] 
D Matrix for supporting cyclic delay diversity 
f0 Carrier frequency 
3GPP 
, 
PUSCH 
Msc Scheduled bandwidth for uplink transmission, expressed as a number of subcarriers 
M(q) bit Number of coded bits to transmit on a physical channel [for code word q ] 
M(q) symb Number of modulation symbols to transmit on a physical channel [for code word q ] 
layer 
Msymb Number of modulation symbols to transmit per layer for a physical channel 
ap 
Msymb Number of modulation symbols to transmit per antenna port for a physical channel 
N A constant equal to 2048 for Δf = 15 kHz and 4096 for Δf = 7.5 kHz 
NCP,l Downlink cyclic prefix length for OFDM symbol l in a slot 
NGP Number of OFDM symbols reserved for guard period for TDD with frame structure type 1 
DL 
NRB Downlink bandwidth configuration, expressed in units of RB 
Nsc 
UL 
NRB Uplink bandwidth configuration, expressed in units of RB 
Nsc 
DL 
Nsymb Number of OFDM symbols in a downlink slot 
UL 
Nsymb Number of SC-FDMA symbols in an uplink slot 
RB 
Nsc Resource block size in the frequency domain, expressed as a number of subcarriers 
NOS Number of orthogonal two-dimensional downlink reference signal sequences 
NPRS Number of pseudo-random two-dimensional downlink reference signal sequences 
PUCCH 
NRS Number of reference symbols per slot for PUCCH 
NTA Timing offset between uplink and downlink radio frames at the UE, expressed in units of Ts 
nPDCCH Number of PDCCHs present in a subframe 
nPRB Physical resource block number 
P Number of antenna ports 
p Antenna port number 
q Code word number 
OS 
rm,n Two-dimensional orthogonal sequence for reference signal generation 
PRS ( ) 
rm,n i Two-dimensional pseudo-random sequence for reference signal generation in slot i 
s p (t) 
l 
( ) Time-continuous baseband signal for antenna port p and OFDM symbol l in a slot 
Tf Radio frame duration 
Ts Basic time unit 
Tslot Slot duration 
W Precoding matrix for downlink spatial multiplexing 
β PRACH Amplitude scaling for PRACH 
β PUCCH Amplitude scaling for PUCCH 
β PUSCH Amplitude scaling for PUSCH 
βSRS Amplitude scaling for sounding reference symbols 
Δf Subcarrier spacing 
ΔfRA Subcarrier spacing for the random access preamble
Release 8 8 3GPP TS 36.211 V2.0.0 (2007-09) 
υ Number of transmission layers 
3.2 Abbreviations 
For the purposes of the present document, the following abbreviations apply: 
CCE Control Channel Element 
CDD Cyclic Delay Diversity 
PBCH Physical broadcast channel 
PCFICH Physical control format indicator channel 
PDCCH Physical downlink control channel 
PDSCH Physical downlink shared channel 
PHICH Physical hybrid-ARQ indicator channel 
PMCH Physical multicast channel 
PRACH Physical random access channel 
PUCCH Physical uplink control channel 
PUSCH Physical uplink shared channel 
4 Frame structure 
Throughout this specification, unless otherwise noted, the size of various fields in the time domain is expressed as a 
number of time units Ts = 1 (15000× 2048) seconds. 
Downlink and uplink transmissions are organized into radio frames with Tf = 307200×Ts = 10ms duration. Two radio 
frame structures are supported: 
- Type 1, applicable to both FDD and TDD, 
- Type 2, applicable to TDD only. 
4.1 Frame structure type 1 
Frame structure type 1 is applicable to both full duplex and half duplex FDD and to TDD. Each radio frame is 
Tf = 307200×Ts = 10ms long and consists of 20 slots of length Tslot = 15360×Ts = 0.5ms , numbered from 0 to 19. A 
subframe is defined as two consecutive slots where subframe i consists of slots 2i and 2i +1. 
For FDD, 10 subframes are available for downlink transmission and 10 subframes are available for uplink transmissions 
in each 10 ms interval. Uplink and downlink transmissions are separated in the frequency domain. 
For TDD, a subframe is either allocated to downlink or uplink transmission. Subframe 0 and subframe 5 are always 
allocated for downlink transmission. 
Figure 4.1-1: Frame structure type 1. 
3GPP
Release 8 9 3GPP TS 36.211 V2.0.0 (2007-09) 
4.2 Frame structure type 2 
Frame structure type 2 is only applicable to TDD. Each radio frame consists of two half-frames of length 
Tf = 153600×Ts = 5ms each. The structure of each half-frame in a radio frame is identical. Each half-frame consists of 
seven slots, numbered from 0 to 6, and three special fields, DwPTS, GP, and UpPTS. A subframe is defined as one slot 
where subframe i consists of slot i . 
Subframe 0 and DwPTS are always reserved for downlink transmission. UpPTS and subframe 1 are always reserved 
for uplink transmission. 
Figure 4.2-1: Frame structure type 2. 
5 Uplink 
5.1 Overview 
The smallest resource unit for uplink transmissions is denoted a resource element and is defined in section 5.2.2. 
5.1.1 Physical channels 
An uplink physical channel corresponds to a set of resource elements carrying information originating from higher 
layers and is the interface defined between 36.212 and 36.211. The following uplink physical channels are defined: 
- Physical Uplink Shared Channel, PUSCH 
- Physical Uplink Control Channel, PUCCH 
- Physical Random Access Channel, PRACH 
5.1.2 Physical signals 
An uplink physical signal is used by the physical layer but does not carry information originating from higher layers. 
The following uplink physical signals are defined: 
3GPP 
- reference signal
Release 8 10 3GPP TS 36.211 V2.0.0 (2007-09) 
5.2 Slot structure and physical resources 
5.2.1 Resource grid 
The transmitted signal in each slot is described by a resource grid of RB 
3GPP 
NRB UL 
N UL 
sc 
subcarriers and Nsymb SC-FDMA 
symbols. The resource grid is illustrated in Figure 5.2.1-1. The quantity UL 
NRB depends on the uplink transmission 
bandwidth configured in the cell and shall fulfil 
6 UL 110 
≤ NRB ≤ 
The set of allowed values for UL 
NRB is given by [6]. 
The number of SC-FDMA symbols in a slot depends on the cyclic prefix length configured by higher layers and is 
given in Table 5.2.3-1. 
UL 
Nsymb 
Tslot 
l = 0 UL 1 
l = Nsymb − 
RB 
sc 
UL 
NRB × N 
RB 
Nsc 
RB 
sc 
UL 
Nsymb × N 
(k,l) 
Figure 5.2.1-1: Uplink resource grid.
3GPP T Release 8 11 S 36.211 V2.0.0 (2007-09) 
5.2.2 Resource elements 
Each element in the resource grid is called a resource element and is uniquely defined by the index pair (k,l) in a slot 
where 0,..., RB 1 
UL 
Nsymb × N resource elements, corresponding to one slot in the time domain and 180 kHz in the 
⎢ 
= RB 
n k 
3GPP 
k = NRB UL 
N sc 
− and 0,..., UL 
1 l = Nsymb − are the indices in the frequency and time domain, respectively. 
Resource element (k,l) corresponds to the complex value ak ,l . Quantities ak,l corresponding to resource elements not 
used for transmission of a physical channel or a physical signal in a slot shall be set to zero. 
5.2.3 Resource blocks 
A resource block is defined as UL 
Nsymb consecutive SC-FDMA symbols in the time domain and RB 
Nsc consecutive 
subcarriers in the frequency domain, where UL 
Nsymb and RB 
Nsc are given by Table 5.2.3-1. A resource block in the uplink 
thus consists of RB 
sc 
frequency domain. 
Table 5.2.3-1: Resource block parameters. 
Configuration Nsc 
RB 
Nsymb UL 
Frame structure type 1 Frame structure type 2 
Normal cyclic prefix 12 7 9 
Extended cyclic prefix 12 6 8 
The relation between the resource block number nPRB and resource elements (k, l) in a slot is given by 
⎥ 
⎥ ⎥⎦ 
⎢ ⎢⎣ 
sc 
PRB N 
5.3 Physical uplink shared channel 
The baseband signal representing the physical uplink shared channel is defined in terms of the following steps: 
- scrambling 
- modulation of scrambled bits to generate complex-valued symbols 
- transform precoding to generate complex-valued modulation symbols 
- mapping of complex-valued modulation symbols to resource elements 
- generation of complex-valued time-domain SC-FDMA signal for each antenna port 
Figure 5.3-1: Overview of uplink physical channel processing. 
5.3.1 Scrambling 
If scrambling is configured, the block of bits b(0),...,b(Mbit −1) , where Mbit is the number of bits transmitted on the 
physical uplink shared channel in one subframe, shall be scrambled with a UE-specific scrambling sequence prior to 
modulation, resulting in a block of scrambled bits c(0),...,c(Mbit −1) .
Release 8 12 3GPP TS 36.211 V2.0.0 (2007-09) 
5.3.2 Modulation 
The block of scrambled bits c(0),...,c(Mbit −1) shall be modulated as described in Section 7, resulting in a block of 
complex-valued symbols d(0),..., d(Msymb −1) . Table 5.3.2-1 specifies the modulation mappings applicable for the 
physical uplink shared channel. 
Table 5.3.2-1: Uplink modulation schemes 
Physical channel Modulation schemes 
PUSCH QPSK, 16QAM, 64QAM 
5.3.3 Transform precoding 
The block of complex-valued symbols d(0),..., d(Msymb −1) is divided into PUSCH 
1 
− 
M 
⋅ + = Σ ⋅ + 
z ( l M k ) d ( l M i ) 
e 
PUSCH 
sc 
= 
i 
k M 
0,..., 1 
= − 
M = N ⋅ 2α 2 ⋅3α3 ⋅5α5 ≤ N ⋅ N 
3GPP 
Msymb Msc sets, each corresponding 
to one SC-FDMA symbol. Transform precoding shall be applied according to 
PUSCH 
0,..., 1 
symb sc 
0 
j 2 
π 
ik PUSCH 
sc 
PUSCH 
sc 
PUSCH 
sc PUSCH 
sc 
= − 
− 
l M M 
M 
resulting in a block of complex-valued modulation symbols z(0),..., z(Msymb −1) . The variable PUSCH 
Msc represents the 
number of scheduled subcarriers used for PUSCH transmission in an SC-FDMA symbol and shall fulfil 
UL 
RB 
RB 
sc 
RB 
sc 
PUSCH 
sc 
where α 2 ,α3 ,α5 is a set of non-negative integers. 
5.3.4 Mapping to physical resources 
The block of complex-valued symbols z(0),..., z(Msymb −1) shall be multiplied with the amplitude scaling factor 
β PUSCH and mapped in sequence starting with z(0) to resource blocks assigned for transmission of PUSCH. The 
mapping to resource elements (k,l) not used for transmission of reference signals shall be in increasing order of first 
the index l , then the slot number and finally the index k . The index k is given by 
( ),..., ( ) PUSCH 1 
k = k0 + fhop ⋅ k0 + fhop ⋅ +Msc − 
where fhop (⋅) denotes the frequency-hopping pattern and k0 is given by the scheduling decision. 
5.4 Physical uplink control channel 
The physical uplink control channel, PUCCH, carries uplink control information. The PUCCH is never transmitted 
simultaneously with the PUSCH. 
The physical uplink control channel supports multiple formats as shown in Table 5.4-1.
Release 8 13 3GPP TS 36.211 V2.0.0 (2007-09) 
Table 5.4-1: Supported PUCCH formats. 
PUCCH Number of bits per subframe, Mbit 
format 
Modulation 
scheme Normal cyclic prefix Extended cyclic prefix 
0 BPSK 1 1 
1 QPSK 2 2 
2 QPSK 20 20 
5.4.1 Scrambling 
If scrambling is configured, the block of bits b(0),...,b(Mbit −1) , where Mbit is the number of bits transmitted on the 
physical uplink control channel in one subframe, shall be scrambled with a UE-specific scrambling sequence prior to 
modulation, resulting in a block of scrambled bits c(0),...,c(Mbit −1) . 
5.4.2 Modulation 
The block of scrambled bits c(0),...,c(Mbit −1) shall be modulated as described in Section 7, resulting in a block of 
complex-valued symbols d(0),...,d(Msymb −1) . The modulation scheme for the different PUCCH formats is given by 
Table 5.4-1. For BPSK, Msymb = Mbit , while for QPSK Msymb = Mbit 2 . 
5.4.2.1 Sequence modulation for PUCCH format 0 and 1 
For PUCCH format 0 and 1, the complex-valued symbol d(0) shall be multiplied with a cyclically shifted length 
PUCCH 12 
Nseq = sequence generated according to section 5.5.1 with PUCCH 
seq 
PUCCH 
SF 
m N 
0,..., 1 
= − 
PUCCH 
seq 
n N 
= − 
0,1 for frame structure type1 
3GPP 
RS 
Msc = N , resulting in a block of complex-valued 
symbols (0),..., ( PUCCH 1) 
y y Nseq − . Note that different cyclic shifts of the sequence can be used in different 
PUCCH SC-FDMA symbols within a slot. 
The block of complex-valued symbols (0),..., ( PUCCH 1) 
y y Nseq − shall be block-wise spread with the orthogonal sequence 
w(i) according to 
z(m'⋅N ⋅ N + m⋅ N PUCCH + n)= w(m) ⋅ y(n) 
seq 
PUCCH 
seq 
PUCCH 
SF 
where 
⎩ ⎨ ⎧ 
= 
0 for frame structure type 2 
' 
0,..., 1 
m 
The sequence w(i) and PUCCH 
NSF are given by Table 5.4.2.1-1.
Release 8 14 3GPP TS 36.211 V2.0.0 (2007-09) 
Table 5.4.2.1-1: Orthogonal sequences [ (0) ( PUCCH 1)] 
w L w NSF − for PUCCH format 0 and 1 
Sequence index Frame structure type 1 Frame structure type 2 
PUCCH 4 
NSF = 
0 [+1 +1 +1 +1] 
1 [+1 −1 +1 −1] 
2 [+1 +1 −1 −1] 
3 [+1 −1 −1 +1] 
5.4.2.2 Sequence modulation for PUCCH format 2 
For PUCCH format 2, each complex-valued symbol d(i) shall be multiplied with a cyclically shifted length 
PUCCH 12 
Nseq = sequence generated according to section 5.5.1 with PUCCH 
seq 
3GPP 
RS 
Msc = N , resulting in a block of complex-valued 
PUCCH 
z z Nseq M − . 
symbols (0),..., ( symb 1) 
5.4.3 Mapping to physical resources 
The block of complex-valued symbols z(i) shall be multiplied with the amplitude scaling factor β PUCCH and mapped 
in sequence starting with z(0) to resource elements assigned for transmission of PUCCH. The mapping to resource 
elements (k,l) not used for transmission of reference signals shall start with the first slot in the subframe. The set of 
values for index k shall be different in the first and second slot of the subframe, resulting in frequency hopping at the 
slot boundary. Mapping of modulation symbols for the physical uplink control channel is illustrated in Figure 5.4.3-1. 
frequency 
1 ms subframe 
resource i 
resource j 
resource i 
resource j 
Figure 5.4.3-1: Physical uplink control channel 
5.5 Reference signals 
Two types of uplink reference signals are supported: 
- demodulation reference signal, associated with transmission of PUSCH or PUCCH 
- sounding reference signal, not associated with transmission of PUSCH or PUCCH 
The same set of base sequences is used for demodulation and sounding reference signals. 
5.5.1 Generation of the base reference signal sequence 
The definition of the base sequence (0),..., ( RS 1) 
r r Msc − of length RS 
Msc depends on the sequence length.
Release 8 15 3GPP TS 36.211 V2.0.0 (2007-09) 
5.5.1.1 Reference signal sequences of length 36 or larger 
For RS 36 
= jαn +θ ≤ < 
+ 
j um m 
x m e N m N 
r PUSCH m⋅M + n = r n 
0,1 for frame structure type1 
⎩ ⎨ ⎧ 
0 for frame structure type 2 
3GPP 
Msc ≥ , the sequence (0),..., ( 1) RS 
r r Msc − is given by 
RS 
sc 
RS 
r(n) e xu ((n )mod NZC ), 0 n M 
where θ is an offset and the uth root Zadoff-Chu sequence is defined by 
− 
( ) , 0 RS 1 
ZC 
( 1) 
RS 
= ZC ≤ ≤ − 
u 
π 
and the length RS 
NZC of the Zadoff-Chu sequence is given by the largest prime number such that RS 
sc 
RS 
NZC < M . The factor 
e jαn corresponds to a cyclic shift in the time domain. 
5.5.1.2 Reference signal sequences of length less than 36 
For RS 36 
Msc < , the sequence (0),..., ( 1) RS 
r r Msc − is given by Table 5.5.1.2-1. 
Table 5.5.1.2-1: Reference signal sequences of length RS 36 
Msc < . 
(0), (1),..., ( RS 1) 
r r r Msc − Sequence 
index 
RS 12 
Msc = 24 RS 
Msc = 
5.5.2 Demodulation reference signal 
5.5.2.1 Demodulation reference signal for PUSCH 
5.5.2.1.1 Reference signal sequence 
The demodulation reference signal sequence r PUSCH (⋅) for PUSCH is defined by 
( RS ) ( ,α ) 
sc 
where 
RS 
n M 
0,..., 1 
= 
= sc − 
m 
and 
PUSCH 
sc 
RS 
Msc = M 
Section 5.5.1 defines the sequence (0),..., ( RS 1) 
r r Msc − . Note that different cyclic shifts α can be used in different slots 
of a subframe. The cyclic shift to use in the first slot of the subframe is given by the uplink scheduling grant in case of 
multiple shifts within the cell.
Release 8 16 3GPP TS 36.211 V2.0.0 (2007-09) 
5.5.2.1.2 Mapping to physical resources 
The sequence r PUSCH (⋅) shall be multiplied with the amplitude scaling factor β PUSCH and mapped in sequence starting 
with r PUSCH (0) to the same set of resource blocks used for the corresponding PUSCH transmission defined in Section 
5.3.4. The mapping to resource elements (k, l) in the subframe shall be in increasing order of first k , then the slot 
number. For frame structure type 1 l = 3 and for frame structure type 2 l = 4 . 
For frame structure type 2, an additional demodulation reference signal per subframe can be configured. 
5.5.2.2 Demodulation reference signal for PUCCH 
5.5.2.2.1 Reference signal sequence 
The demodulation reference signal sequence r PUCCH (⋅) for PUCCH is defined by 
( ' RS ) ( ) ( ,α ) 
r PUCCH m⋅N ⋅M + m⋅M + n = w m ⋅ r n 
PUCCH 
RS 
m N 
0,..., 1 
= − 
RS 
sc 
n M 
= − 
0,1 for frame structure type1 
3GPP 
sc 
RS 
sc 
PUCCH 
RS 
where 
⎩ ⎨ ⎧ 
= 
0 for frame structure type 2 
' 
0,..., 1 
m 
The sequence r(n) is given by Section 5.5.1 with. RS 12 
Msc = . The number of reference symbols per slot PUCCH 
NRS and 
the sequence w(n) are given by Table 5.5.2.2.1-1 and 5.5.2.2.1-2, respectively. Note that different cyclic shifts α can 
be used for different reference symbols within a slot. For PUCCH format 0 and 1, different orthogonal sequences can be 
used for different slots. 
Table 5.5.2.2.1-1: Number of PUCCH demodulation reference symbols per slot PUCCH 
NRS . 
Frame structure type 1 Frame structure type 2 
PUCCH format Normal cyclic 
prefix 
Extended cyclic 
prefix 
Normal cyclic 
prefix 
Extended cyclic 
prefix 
0 
1 3 2 
2 2 1
Release 8 17 3GPP TS 36.211 V2.0.0 (2007-09) 
Table 5.5.2.2.1-2: Orthogonal sequences [ (0) ( PUCCH 1)] 
w L w NRS − for PUCCH format 0 and 1. 
Frame structure type 1 Frame structure type 2 
rSRS rSRS M − shall be multiplied with the amplitude scaling factor β SRS and mapped in 
( ) 0,1,..., RS 1 
SRS 
a r k k M k k l 
3GPP 
Sequence index Normal cyclic 
prefix 
Extended cyclic 
prefix 
Normal cyclic 
prefix 
Extended cyclic 
prefix 
0 [1 1 1] [1 1] 
1 [1 e j2π 3 e j4π 3 ] [1 −1] 
2 [1 e j4π 3 e j2π 3 ] N/A 
Table 5.5.2.2.1-3: Orthogonal sequences [ (0) ( PUCCH 1)] 
w L w NRS − for PUCCH format 2. 
Frame structure type 1 Frame structure type 2 
Normal cyclic prefix Extended cyclic prefix Normal cyclic prefix Extended cyclic prefix 
[1 1] [1] 
5.5.2.2.2 Mapping to physical resources 
The sequence r PUCCH (⋅) shall be multiplied with the amplitude scaling factor β PUCCH and mapped in sequence starting 
with r PUCCH (0) to resource elements (k, l) . The mapping shall be in increasing order of first k , then l and finally the 
slot number. The same set of values for k as for the corresponding PUCCH transmission shall be used. The values of 
the symbol index l in a slot are given by Table 5.5.2.2.2-1. 
Table 5.5.2.2.2-1: Demodulation reference signal location for different PUCCH formats 
Set of values for l 
Frame structure type 1 Frame structure type 2 
PUCCH 
Format 
Normal cyclic prefix Extended cyclic prefix Normal cyclic prefix Extended cyclic prefix 
0 
1 2, 3, 4 2, 3 
2 1, 5 3 
5.5.3 Sounding reference signal 
5.5.3.1 Sequence generation 
The sounding reference signal sequence rSRS (⋅) is defined by Section 5.5.1. The sequence index to use is derived from 
the PUCCH base sequence index. 
5.5.3.2 Mapping to physical resources 
The sequence (0),..., ( RS 1) 
sc 
sequence starting with rSRS (0) to resource elements (k, l) according to 
⎪⎩ 
⎪⎨ ⎧ 
= − 
sc 
SRS 
+ = 0 otherwise 
2 0 , 
β 
where k0 is the frequency-domain starting position of the sounding reference signal and RS 
sc M is the length of the 
sounding reference signal sequence.
Release 8 18 3GPP TS 36.211 V2.0.0 (2007-09) 
5.6 SC-FDMA baseband signal generation 
This section applies to all uplink physical signals and physical channels except the physical random access channel. 
The SC-FDMA symbols in a slot shall be transmitted in increasing order of l . The time-continuous signal sl (t) in SC-FDMA 
s t = a − ⋅ 
e π 
+ Δ − l 3GPP 
symbol l in an uplink slot is defined by 
⎡ ⎤ 
Σ 
− 
( ) ( ) ( ) 
⎣ ⎦ 
=− 
/ 2 1 
/ 2 
2 1 2 
, 
RB 
sc 
UL 
RB 
RB 
sc 
UL 
RB 
CP, s 
( ) 
N N 
k N N 
j k f t N T 
l k l 
for 0 ≤ t < ( NCP,l + N ) ×Ts where ( ) ⎣ UL 
RB 
2⎦ sc 
k = k + NRBN − , N = 2048 and Δf = 15 kHz . 
Tables 5.6-1lists the values of NCP,l that shall be used for the two frame structures. Note that different SC-FDMA 
symbols within a slot may have different cyclic prefix lengths. 
Table 5.6-1. SC-FDMA parameters. 
Cyclic prefix length NCP,l Configuration 
Frame structure type 1 Frame structure type 2 
Normal cyclic prefix 
160 for l = 0 
144 for l = 1,2,...,6 256 for 0,1,...,8 l = 
Extended cyclic prefix 512 for l = 0,1,...,5 544 for l = 0,1,...,7 
5.7 Physical random access channel 
5.7.1 Time and frequency structure 
The physical layer random access burst, illustrated in Figure 5.7.1-1, consists of a cyclic prefix of length TCP , and a 
preamble of length TPRE . The parameter values are listed in Table 5.7.1-1 and depend on the frame structure and the 
random access configuration. Higher layers control the preamble format. 
TCP TPRE 
Figure 5.7.1-1: Random access preamble format. 
Table 5.7.1-1: Random access burst parameters. 
Frame 
structure 
Burst format TCP TPRE 
0 3152×Ts 24576×Ts 
1 21012×Ts 24576×Ts 
2 6224×Ts 2× 24576×Ts 
Type 1 
3 21012×Ts 2× 24576×Ts 
0 0×Ts 4096×Ts 
1 0×Ts 16384×Ts 
Type 2 
2
Release 8 19 3GPP TS 36.211 V2.0.0 (2007-09) 
For frame structure type 1, the timing of the random access burst depends on the PRACH configuration. Table 5.7.1-2 
lists the subframes in which random access burst transmission is possible. 
Table 5.7.1-2: Random access burst timing for frame structure type 1. 
PRACH configuration Subframes 
For frame structure type 2, the start of the random access burst depends on the burst format configured. For burst format 
0, the burst shall start 5120Ts before the end of the UpPTS at the UE. For burst format 1, the start of the random access 
burst shall be aligned with the start of an uplink subframe. 
In the frequency domain, the random access burst occupies a bandwidth corresponding to 6 resource blocks for both 
frame structures. 
5.7.2 Preamble sequence generation 
The random access preambles are generated from Zadoff-Chu sequences with zero correlation zone, generated from one 
or several root Zadoff-Chu sequences. The network configures the set of preamble sequences the UE is allowed to use. 
The uth root Zadoff-Chu sequence is defined by 
j un n 
( + 
1) 
( ) = ZC , 0 ≤ ≤ ZC − 
1 
j π 
nk 
s t xu v n e e π ϕ 
3GPP 
− 
x n e N n N 
u 
π 
where the length NZC of the Zadoff-Chu sequence is given by Table 5.7.2-1. From the uth root Zadoff-Chu sequence, 
random access preambles with zero correlation zone are defined by cyclic shifts of multiples of NCS according to 
xu,v (n) = xu ((n + vNCS )mod NZC) 
where NCS is given by Table 5.7.2-1. 
Table 5.7.2-1: Random access preamble sequence parameters. 
Frame structure Burst format NZC NCS Number of preambles Preamble sequences per cell 
Type 1 0 – 3 839 64 
Type 2 0 139 552 1 557 16 
5.7.3 Baseband signal generation 
The time-continuous random access signal s(t) is defined by 
1 
− 
ZC 
( ) Σ Σ ( ( )) ( ) 
= 
+ + + Δ − 
− 
= 
− 
= ⋅ ⋅ 
0 
2 
1 
0 
2 
PRACH , 
2 RA CP 
1 
0 
ZC 
( ) ZC 
N 
k 
j k K k f t T 
N 
n 
N 
β 
where 0 ≤ t < TPRE +TCP , β PRACH is an amplitude scaling factor and RB 
UL 
RB RB 
sc 
2 
k0 = kRANsc − N N . The location in the 
frequency domain is controlled by the parameter kRA , expressed as a resource block number configured by higher 
layers and fulfilling 0 UL 6 
≤ kRA ≤ NRB − . The factor K = Δf ΔfRA accounts for the difference in subcarrier spacing 
between the random access preamble and uplink data transmission. The variable ΔfRA , the subcarrier spacing for the 
random access preamble, and the variable ϕ , a fixed offset determining the frequency-domain location of the random 
access preamble within the resource blocks, are both given by Table 5.7.3-1.
Release 8 20 3GPP TS 36.211 V2.0.0 (2007-09) 
Table 5.7.3-1: Random access baseband parameters. 
Frame structure Burst format ΔfRA ϕ 
Type 1 0 – 3 1250 Hz 12 
Type 2 0 7500 Hz 2 1 1875 Hz 9 
5.8 Modulation and upconversion 
Modulation and upconversion to the carrier frequency of the complex-valued SC-FDMA baseband signal for each 
antenna port is shown in Figure 5.8-1. The filtering required prior to transmission is defined by the requirements in [6]. 
3GPP 
Re{sl (t)} 
Im{sl (t)} 
cos (2πf0t) 
− sin (2πf0t) 
sl (t) 
Figure 5.8-1: Uplink modulation. 
6 Downlink 
6.1 Overview 
The smallest time-frequency unit for downlink transmission is denoted a resource element and is defined in 
Section 6.2.2. 
6.1.1 Physical channels 
A downlink physical channel corresponds to a set of resource elements carrying information originating from higher 
layers and is the interface defined between 36.212 and 36.211. The following downlink physical channels are defined: 
- Physical Downlink Shared Channel, PDSCH 
- Physical Broadcast Channel, PBCH 
- Physical Multicast Channel, PMCH 
- Physical Control Format Indicator Channel, PCFICH 
- Physical Downlink Control Channel, PDCCH 
- Physical Hybrid ARQ Indicator Channel, PHICH
Release 8 21 3GPP TS 36.211 V2.0.0 (2007-09) 
6.1.2 Physical signals 
A downlink signal corresponds to a set of resource elements used by the physical layer but does not carry information 
originating from higher layers. The following downlink physical signals are defined: 
- reference signal 
- synchronization signal 
6.2 Slot structure and physical resource elements 
6.2.1 Resource grid 
The transmitted signal in each slot is described by a resource grid of RB 
3GPP 
NRB DL 
N DL 
sc 
subcarriers and Nsymb OFDM symbols. 
The resource grid structure is illustrated in Figure 6.2.2-1. The quantity DL 
NRB depends on the downlink transmission 
bandwidth configured in the cell and shall fulfil 
6 DL 110 
≤ NRB ≤ 
The set of allowed values for DL 
NRB is given by [6]. The number of OFDM symbols in a slot depends on the cyclic 
prefix length and subcarrier spacing configured and is given in Table 6.2.3-1. 
In case of multi-antenna transmission, there is one resource grid defined per antenna port. An antenna port is defined by 
its associated reference signal. The set of antenna ports supported depends on the reference signal configuration in the 
cell: 
- Cell-specific reference signals, associated with non-MBSFN transmission, support a configuration of one, two, 
or four antenna ports, i.e. the antenna port number p shall fulfil p = 0 , p∈{0,1}, and p∈{0,1,2,3}, 
respectively. 
- MBSFN reference signals, associated with MBSFN transmission, are transmitted on antenna port p = 4 . 
- UE-specific reference signals, supported in frame structure type 2 only, are transmitted on antenna port p = 5 . 
6.2.2 Resource elements 
Each element in the resource grid for antenna port p is called a resource element and is uniquely identified by the 
index pair (k, l) in a slot where 0,..., RB 1 
sc 
DL 
k = NRB N − and 0,..., 1 DL 
l = Nsymb − are the indices in the frequency and time 
domains, respectively. Resource element (k, l) on antenna port p corresponds to the complex value ( ) 
ak p 
, 
l . When there 
is no risk for confusion, or no particular antenna port is specified, the index p may be dropped.
Release 8 22 3GPP TS 36.211 V2.0.0 (2007-09) 
Nsymb and RB 
DL 
Nsymb × N resource elements, corresponding to one slot in the time domain and 180 kHz in the frequency 
⎢ 
= RB 
n k 
3GPP 
DL 
Nsymb 
Tslot 
l = 0 DL 1 
l = Nsymb − 
RB 
sc 
DL 
NRB × N 
RB 
Nsc 
RB 
sc 
DL 
Nsymb × N 
(k,l) 
Figure 6.2.2-1: Downlink resource grid. 
6.2.3 Resource blocks 
Physical and virtual resource blocks are defined. 
A physical resource block is defined as DL 
Nsymb consecutive OFDM symbols in the time domain and RB 
Nsc consecutive 
subcarriers in the frequency domain, where DL 
Nsc are given by Table 6.2.3-1. A physical resource block thus 
consists of RB 
sc 
domain. 
The relation between physical resource blocks and resource elements depends on DL 
NRB and the subframe number. The 
relation between the physical resource block number nPRB and resource elements (k, l) in a slot is given by 
⎥ 
⎥ ⎥⎦ 
⎢ ⎢⎣ 
sc 
PRB N
Release 8 23 3GPP TS 36.211 V2.0.0 (2007-09) 
for 0 7 
for 6 
for 7 
3GPP 
with the exception of subframe 0 in case of DL 
NRB being an odd number in which case 
RB 
sc 
DL 
RB 
RB 
sc 
DL 
RB 
⎢ 
= 
n k 
⎢ − 
= 
⎥ 
n k N 
⎢ 
= 
n k 
RB 
sc 
PRB 
RB 
sc 
DL 
RB RB 
sc 
DL 
RB 
RB 
sc 
RB 
sc 
PRB 
RB 
sc 
DL 
RB 
RB 
sc 
PRB 
2 
1 
2 
6 
2 
2 
1 
2 
N N k N N 
N 
N N k N N 
N 
k N N 
N 
⋅ ≤ ≤ ⋅ 
+ 
⎥ 
⎥ ⎥⎦ 
⎢ ⎢⎣ 
⋅ − 
+ 
⋅ ≤ ≤ 
− 
⎥ 
⎥ ⎥⎦ 
⎢ ⎢⎣ 
⋅ − 
− 
≤ ≤ 
⎥ ⎥⎦ 
⎢ ⎢⎣ 
The resulting resource block structure is illustrated in Figure 6.2.3-1. Note that there is no physical resource block with 
number (( DL 1) 2) 3 
nPRB = NRB − + in subframe 0 in case of DL 
NRB being an odd number. 
Table 6.2.3-1: Physical resource block parameters. 
DL 
Nsymb Configuration RB 
Nsc 
Frame structure type 1 Frame structure type 2 
Normal cyclic prefix Δf = 15 kHz 7 9 
Δf = 15 kHz 
12 
6 8 
Extended cyclic prefix 
Δf = 7.5 kHz 24 3 4
Release 8 24 3GPP TS 36.211 V2.0.0 (2007-09) 
3GPP 
DC 
DL 
NRB an even number of resource blocks 
Resource block DL 1 
NRB − 
Resource block 0 
All subframes 
DL 
NRB an odd number of resource blocks 
Resource block DL 1 
DL 1 
RB + 
N − 
RB 
Nsc unused subcarriers 
DC DC 
All subframes except subframe 0 
Subframe 0 
2 
NRB − 
Resource block 4 
2 
DL 
NRB an odd number of resource blocks DL 
NRB an even number of resource blocks 
Resource block DL 1 
NRB − 
Resource block 0 
DL 1 
RB + 
N − 
Resource block 2 
2 
DL 1 
RB − 
N − 
Resource block 3 
2 
RB 
Nsc unused subcarriers 
2 
DL 1 
RB − 
N − 
Resource block 4 
2 
Resource block 0 
Figure 6.2.3-1: Illustration of the relation between resource blocks and resource elements. 
A virtual resource block is of the same size as a physical resource block. Two types of virtual resource blocks are 
defined: 
- virtual resource blocks of distributed type 
- virtual resource blocks of localized type 
Virtual resource blocks are mapped to physical resource blocks with the mapping depending on the diversity order 
configured. 
For second-order diversity, one virtual resource block is mapped to one physical resource block. The virtual-to-physical 
resource block mapping is different in the two slots of a subframe.
Release 8 25 3GPP TS 36.211 V2.0.0 (2007-09) 
6.2.4 Guard Period for TDD Operation 
For TDD operation with frame structure type 1, the last NGP downlink OFDM symbol(s) in a subframe immediately 
preceding a downlink-to-uplink switch point can be reserved for guard time and consequently not transmitted. The 
supported guard periods are listed in Table 6.2.4-1. 
Table 6.2.4-1: Guard periods for TDD operation with frame structure type 1. 
Configuration Supported guard periods in OFDM symbols Subframe 0 Subframe 5 All other subframes 
Normal cyclic prefix Δf = 15 kHz 0, 1, 2, 3, 4, 5 0, 1, 2, 3, 4, 5 0, 1, 2, 3, 4, 5, 12 
Extended cyclic prefix Δf = 15 kHz 0, 1, 2, 3 0, 1, 2, 3, 4 0, 1, 2, 3, 4, 10 
For frame structure type 2, the GP field in Figure 4.2-1 serves as a guard period. Longer guard periods can be obtained 
by not using UpPTS and subframe 1 for transmission. 
6.3 General structure for downlink physical channels 
This section describes a general structure, applicable to more than one physical channel. 
The baseband signal representing a downlink physical channel is defined in terms of the following steps: 
- scrambling of coded bits in each of the code words to be transmitted on a physical channel 
- modulation of scrambled bits to generate complex-valued modulation symbols 
- mapping of the complex-valued modulation symbols onto one or several transmission layers 
- precoding of the complex-valued modulation symbols on each layer for transmission on the antenna ports 
- mapping of complex-valued modulation symbols for each antenna port to resource elements 
- generation of complex-valued time-domain OFDM signal for each antenna port 
Figure 6.3-1: Overview of physical channel processing. 
6.3.1 Scrambling 
For each code word q , the block of bits (0),..., ( ( ) 1) 
b(q) b(q) M q − , where ( ) 
bit 
c(q) c(q) M − . Up to two code words can be transmitted in one subframe, i.e., q∈{0,1}. 
3GPP 
M q is the number of bits in code word q 
bit 
transmitted on the physical channel in one subframe, shall be scrambled prior to modulation, resulting in a block of 
scrambled bits (0),..., ( (q) 1) 
bit
Release 8 26 3GPP TS 36.211 V2.0.0 (2007-09) 
6.3.2 Modulation 
For each code word q , the block of scrambled bits c(q) (0),..., c(q) ( M (q) − 1) 
shall be modulated as described in 
d (q) d (q) M − for code word q shall be mapped onto the 
x i d i 2 (1) 
x i d i 
x i d i 
x i d i 
x i d i 
x i d i 
3GPP 
bit 
Section 7 using one of the modulation schemes in Table 6.3.2-1, resulting in a block of complex-valued modulation 
symbols d (q) (0),..., d (q) ( M (q) − 1) 
. 
symb 
Table 6.3.2-1: Modulation schemes 
Physical channel Modulation schemes 
PDSCH QPSK, 16QAM, 64QAM 
PMCH QPSK, 16QAM, 64QAM 
6.3.3 Layer mapping 
The complex-valued modulation symbols for each of the code words to be transmitted are mapped onto one or several 
layers. Complex-valued modulation symbols (0),..., ( (q) 1) 
symb 
layers [ ]T x(i) = x(0) (i) ... x(υ −1) (i) , 0,1,..., layer 1 
i = Msymb − where υ is the number of layers and layer 
Msymb is the number of 
modulation symbols per layer. 
6.3.3.1 Layer mapping for transmission on a single antenna port 
For transmission on a single antenna port, a single layer is used, υ = 1 , and the mapping is defined by 
x(0) (i) = d (0) (i) 
with (0) 
Msymb layer 
= M symb 
. 
6.3.3.2 Layer mapping for spatial multiplexing 
For spatial multiplexing, the layer mapping shall be done according to Table 6.3.3.2-1. The number of layers υ is less 
than or equal to the number of antenna ports P used for transmission of the physical channel. 
Table 6.3.3.2-1: Codeword-to-layer mapping for spatial multiplexing 
Number of layers Number of code 
words 
Codeword-to-layer mapping 
0,1,..., layer 1 
i = Msymb − 
1 1 x(0) (i) = d (0) (i) (0) 
symb 
layer 
Msymb = M 
x(0) (i) = d (0) (i) 
2 2 
x(1) (i) = d (1) (i) 
(1) 
symb 
Msymb layer 
= M (0) 
symb 
= M 
x(0) (i) = d (0) (i) 
3 2 
(1) (1) 
( ) = 
(2 ) 
(2) (1) 
( ) = (2 + 
1) 
symb 
Msymb layer 
= M (0) 
symb 
= M 
(0) (0) 
( ) = 
(2 ) 
(1) (0) 
( ) = (2 + 
1) 
4 2 
(2) (1) 
( ) = 
(2 ) 
(3) (1) 
( ) = (2 + 
1) 
layer 
Msymb = M = M 
2 (1) 2 
symb 
(0) 
symb
Release 8 27 3GPP TS 36.211 V2.0.0 (2007-09) 
6.3.3.3 Layer mapping for transmit diversity 
For transmit diversity, the layer mapping shall be done according to Table 6.3.3.3-1. There is only one codeword and 
the number of layers υ is equal to the number of antenna ports P used for transmission of the physical channel. 
Table 6.3.3.3-1: Codeword-to-layer mapping for transmit diversity 
x i d i 
x i d i 
x i d i 
x i d i 
x i d i 
x i d i 
( ) ( ) 
M M 
3GPP 
Number of layers Number of code 
words 
Codeword-to-layer mapping 
0,1,..., layer 1 
i = Msymb − 
(0) (0) 
= 
( ) (2 ) 
2 1 (1) ( ) = (0) 
(2 + 
1) 
(0) 2 
symb 
layer 
Msymb = M 
4 1 
(0) (0) 
= 
( ) (4 ) 
(1) (0) 
= + 
( ) (4 1) 
(2) (0) 
= + 
( ) (4 2) 
(3) (0) 
= + 
( ) (4 3) 
(0) 4 
symb 
layer 
Msymb = M 
6.3.4 Precoding 
The precoder takes as input a block of vectors [ ]T x(i) = x(0) (i) ... x(υ −1) (i) , 0,1,..., layer 1 
i = Msymb − from the layer 
mapping and generates a block of vectors y(i) = [... y( p) (i) ...]T , 0,1,..., ap 1 
i = Msymb − to be mapped onto resources on 
each of the antenna ports, where y ( p) (i) represents the signal for antenna port p . 
6.3.4.1 Precoding for transmission on a single antenna port 
For transmission on a single antenna port, precoding is defined by 
y( p) (i) = x(0) (i) 
where p∈{0,4,5} is the number of the single antenna port used for transmission of the physical channel and 
i = 0,1,..., Msymb ap − 1 
, layer 
symb 
ap 
Msymb = M . 
6.3.4.2 Precoding for spatial multiplexing 
Precoding for spatial multiplexing is only used in combination with layer mapping for spatial multiplexing as described 
in Section 6.3.3.2. Spatial multiplexing supports two or four antenna ports and the set of antenna ports used is 
p∈{0,1}or p∈{0,1,2,3}, respectively. 
6.3.4.2.1 Precoding for zero and small-delay CDD 
For zero-delay and small-delay cyclic delay diversity (CDD), precoding for spatial multiplexing is defined by 
⎤ 
⎥ ⎥ ⎥ 
⎦ 
⎡ 
⎢ ⎢ ⎢ 
⎣ 
= 
⎤ 
⎥ ⎥ ⎥ 
⎦ 
⎡ 
⎢ ⎢ ⎢ 
⎣ 
x i 
( ) 
y i 
( ) 
(0) 
(0) 
− − ( ) 
( ) 
( 1) 
( 1) 
x i 
D k W i 
y i 
i 
P υ 
where the precoding matrix W(i) is of size P×υ , the quantity D(ki ) is a diagonal matrix for support of cyclic delay 
diversity, ki represents the frequency-domain index of the resource element to which modulation symbol i is mapped 
to and 0,1,..., ap 1 
i = Msymb − , layer 
symb 
ap 
Msymb = M .
Release 8 28 3GPP TS 36.211 V2.0.0 (2007-09) 
The matrix D(ki ) shall be selected from Table 6.3.4.2.1-1, where a UE-specific value of δ is semi-statically 
configured in the UE and the eNodeB by higher layer signalling. The quantity η in Table 6.3.4.2.1-1 is the smallest 
number from the set {128,256,512,1024,2048} such that RB 
1 0 
⎡ 
0 e− j2π ⋅ki ⋅δ 
1 0 0 0 
0 0 0 
0 0 0 
( ) ( ) 
M M 
P υ 
3GPP 
sc 
DL 
η ≥ NRB N . 
Table 6.3.4.2.1-1: Zero and small delay cyclic delay diversity. 
Set of δ 
antenna 
Number of layers 
υ D(ki ) No 
ports used 
CDD 
Small 
delay 
1 {0,1} 
2 
⎤ 
⎥⎦ 
⎢⎣ 
0 2 η 
1 
2 
3 
{0,1,2,3} 
4 
⎤ 
⎥ ⎥ ⎥ ⎥ 
⎦ 
⎡ 
⎢ ⎢ ⎢ ⎢ 
⎣ 
− ⋅ ⋅ 
− ⋅ ⋅ 
− ⋅ ⋅ 
π δ 
π δ 
π δ 
2 3 
2 2 
2 
0 0 0 
i 
i 
i 
j k 
j k 
j k 
e 
e 
e 
0 1η 
For spatial multiplexing, the values of W(i) shall be selected among the precoder elements in the codebook configured 
in the eNodeB and the UE. The eNodeB can further confine the precoder selection in the UE to a subset of the elements 
in the codebook using codebook subset restrictions. The configured codebook shall be selected from Table 6.3.4.2.3-1 
or 6.3.4.2.3-2. 
6.3.4.2.2 Precoding for large delay CDD 
For large-delay CDD, precoding for spatial multiplexing is defined by 
⎤ 
⎥ ⎥ ⎥ ⎦ 
⎡ 
⎢ ⎢ ⎢ 
⎣ 
= 
⎤ 
⎥ ⎥ ⎥ 
⎦ 
⎡ 
⎢ ⎢ ⎢ 
⎣ 
x i 
( ) 
y i 
( ) 
(0) 
(0) 
− ( ) 
− ( ) 
( 1) 
( 1) 
x i 
W i D i U 
y i 
where the precoding matrix W(i) is of size P×υ and 0,1,..., ap 1 
i = Msymb − , layer 
symb 
ap 
Msymb = M . The diagonal size-υ ×υ 
matrix D(i) supporting cyclic delay diversity and the size-υ ×υ matrix U are both given by Table 6.3.4.2.2-1 for 
different numbers of layers υ . 
The values of the precoding matrix W(i) shall be selected among the precoder elements in the codebook configured in 
the eNodeB and the UE. The eNodeB can further confine the precoder selection in the UE to a subset of the elements in 
the codebook using codebook subset restriction. The configured codebook shall be selected from Table 6.3.4.2.3-1 or 
6.3.4.2.3-2.
Release 8 29 3GPP TS 36.211 V2.0.0 (2007-09) 
Table 6.3.4.2.2-1: Large-delay cyclic delay diversity 
1 1 
⎡ 
1 − 2 2 
⎤ 
1 1 1 
j j 
e e 
2 3 4 3 
− π − 
π 
j 4 3 j 
8 3 
1 1 1 1 
j j j 
2 4 4 4 6 4 
− − − 
π π π 
e e e 
j j j 
4 4 8 4 12 4 
− − − 
π π π 
e e e 
j j j 
6 4 12 4 18 4 
⎤ 
1 
⎡ 
0 
⎤ 
⎡ 
1 
⎡ 
1 
2 
1 
⎤ 
⎡ 
−1 
⎤ 
⎡ 
1 
2 
j 
⎤ 
⎡ 
− j 
3GPP 
Number of 
layers υ 
U D(i) 
1 [1] [1] 
2 ⎥⎦ 
⎤ 
⎢⎣ 
⎤ 
1 0 
⎡ 
0 − 2 2 
π j e ⎥⎦ 
⎢⎣ 
e j πi 
3 
⎥ ⎥ ⎥ 
⎦ 
⎡ 
⎢ ⎢ ⎢ 
1 
⎣ 
e e 
− − 
1 
π π 
⎤ 
⎥ ⎥ ⎥ 
⎦ 
1 0 0 
⎡ 
⎢ ⎢ ⎢ 
⎣ 
0 0 
− 
− 
4 3 
2 3 
0 0 
j i 
j i 
e 
e 
π 
π 
4 
⎤ 
⎥ ⎥ ⎥ ⎥ 
⎦ 
⎡ 
⎢ ⎢ ⎢ ⎢ 
1 
1 
⎣ 
− − − 
1 
π π π 
e e e 
⎤ 
⎥ ⎥ ⎥ ⎥ 
⎦ 
1 0 0 0 
⎡ 
⎢ ⎢ ⎢ ⎢ 
⎣ 
0 0 0 
0 0 0 
− 
− 
− 
6 4 
4 4 
2 4 
0 0 0 
j i 
j i 
j i 
e 
e 
e 
π 
π 
π 
6.3.4.2.3 Codebook for precoding 
For transmission on two antenna ports, p∈{0,1}, the precoding matrix W(i) for zero, small, and large-delay CDD shall 
be selected from Table 6.3.4.2.3-1 or a subset thereof. 
Table 6.3.4.2.3-1: Codebook for transmission on antenna ports {0,1}. 
Codebook 
index 
Number of layers υ 
1 2 
0 ⎥⎦ 
⎢⎣ 
⎤ 
⎥⎦ 
⎡ 
1 0 
2 
0 1 
⎢⎣ 
1 
1 ⎥⎦ 
⎢⎣ 
0 
⎤ 
⎥⎦ 
1 1 
2 
⎢⎣ ⎡ 
1 −1 
1 
2 ⎥⎦ 
⎢⎣ 
1 
⎤ 
⎥⎦ 
1 1 
2 
⎡ 
j − j 
⎢⎣ 
1 
3 ⎥⎦ ⎤ 
⎢⎣ 
1 
1 
2 
- 
4 ⎥⎦ 
⎢⎣ 
1 
- 
1 
5 ⎥⎦ 
⎢⎣ 
1 
2 
- 
For transmission on four antenna ports, p∈{0,1,2,3}, the precoding matrix W for zero, small, and large-delay CDD 
shall be selected from Table 6.3.4.2.3-2 or a subset thereof. The quantity {s} 
Wn denotes the matrix defined by the 
H 
n 
H 
columns given by the set {s} from the expression n 
Wn = I − 2unun u u where I is the 4× 4 identity matrix and the 
vector un is given by Table 6.3.4.2.3-2.
Release 8 30 3GPP TS 36.211 V2.0.0 (2007-09) 
Table 6.3.4.2.3-2: Codebook for transmission on antenna ports {0,1,2,3}. 
Codebook 
index un Number of layers υ 
1 0 0 
0 1 0 
0 1 0 
3GPP 
1 2 3 4 
0 u0 = [1 −1 −1 −1]T {1} 
W0 3 {124} 
W0 2 {1234} 
W0 2 {14} 
W0 
1 u1 = [1 − j 1 j]T {1} 
W1 3 {123} 
W1 2 {1234} 
W1 2 {12} 
W1 
2 u [1 1 1 1]T 2 = − {1} 
W2 3 {123} 
W2 2 {3214} 
W2 2 {12} 
W2 
3 u3 = [1 j 1 − j]T 
{1} 
W3 2 {12} 
W3 W3 {123} 
3 W3 
{3214} 
2 4 [ ]T u4 = 1 (−1− j) 2 − j (1− j) 2 {1} 
W4 3 {124} 
W4 2 {1234} 
W4 2 {14} 
W4 
5 [ ]T u5 = 1 (1− j) 2 j (−1− j) 2 {1} 
W5 3 {124} 
W5 2 {1234} 
W5 2 {14} 
W5 
6 [ ]T u6 = 1 (1+ j) 2 − j (−1+ j) 2 {1} 
W6 3 {134} 
W6 2 {1324} 
W6 2 {13} 
W6 
7 [ ]T u7 = 1 (−1+ j) 2 j (1+ j) 2 {1} 
W7 3 {134} 
W7 2 {1324} 
W7 2 {13} 
W7 
8 u8 = [1 −1 1 1]T {1} 
W8 3 {124} 
W8 2 {1234} 
W8 2 {12} 
W8 
9 u9 = [1 − j −1 − j]T 
{1} 
W9 2 {14} 
W9 W9 {134} 
3 W9 
{1234} 
2 10 u10 = [1 1 1 −1]T {1} 
W10 3 {123} 
W10 2 {1324} 
W10 2 {13} 
W10 
11 u11 = [1 j −1 j]T {1} 
W11 3 {134} 
W11 2 {1324} 
W11 2 {13} 
W11 
12 u12 = [1 −1 −1 1]T {1} 
W12 3 {123} 
W12 2 {1234} 
W12 2 {12} 
W12 
13 u13 = [1 −1 1 −1]T {1} 
W13 3 {123} 
W13 2 {1324} 
W13 2 {13} 
W13 
14 u14 = [1 1 −1 −1]T {1} 
W14 3 {123} 
W14 2 {3214} 
W14 2 {13} 
W14 
15 u15 = [1 1 1 1]T {1} 
W15 3 {123} 
W15 2 {1234} 
W15 2 {12} 
15 W 
6.3.4.3 Precoding for transmit diversity 
Precoding for transmit diversity is only used in combination with layer mapping for transmit diversity as described in 
Section 6.3.3.3. The precoding operation for transmit diversity is defined for two and four antenna ports. 
For transmission on two antenna ports, p∈{0,1}, the output [ ]T y(i) = y(0) (i) y(1) (i) of the precoding operation is 
defined by 
( ) 
( ) 
( ) 
( )⎥ ⎥ ⎥ ⎥ ⎥ 
⎤ 
⎦ 
⎡ 
⎢ ⎢ ⎢ ⎢ ⎢ 
⎣ 
⎤ 
⎥ ⎥ ⎥ ⎥ 
⎦ 
⎡ 
⎢ ⎢ ⎢ ⎢ 
⎣ 
− 
− 
= 
⎤ 
⎥ ⎥ ⎥ ⎥ ⎥ 
⎦ 
⎡ 
⎢ ⎢ ⎢ ⎢ ⎢ 
⎣ 
y i 
(2 ) 
y i 
(2 ) 
(0) 
(1) 
y i 
(2 + 
1) 
+ 
(0) 
x i 
Re ( ) 
(1) 
x i 
Re ( ) 
(0) 
x i 
Im ( ) 
Im ( ) 
j 
1 0 0 
(2 1) 
(1) 
(0) 
(1) 
x i 
j 
j 
j 
y i 
for 0,1,..., layer 1 
i = Msymb − with layer 
symb 
ap 
Msymb = 2M . 
For transmission on four antenna ports, p∈{0,1,2,3}, the output [ ]T y(i) = y(0) (i) y(1) (i) y(2) (i) y(3) (i) of the 
precoding operation is defined by
Release 8 31 3GPP TS 36.211 V2.0.0 (2007-09) 
1 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 
j 
0 1 0 0 0 0 0 
0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 
0 0 0 0 0 0 0 0 
1 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 
0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 
j 
0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 
y( p) y( p) M − shall be mapped in sequence starting with y( p) (0) to virtual resource blocks assigned for 
transmission. The mapping to resource elements (k,l) on antenna port p not reserved for other purposes shall be in 
increasing order of first the index k and then the index l , starting with the first slot in a subframe. 
6.4 Physical downlink shared channel 
The physical downlink shared channel shall be processed and mapped to resource elements as described in Section 6.3 
with the following exceptions: 
3GPP 
( ) 
( ) 
( ) 
( ) 
( ) 
( ) 
( ) 
( )⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ 
⎤ 
⎦ 
⎡ 
⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ 
⎣ 
⎤ 
⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ 
⎦ 
⎡ 
⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ 
⎣ 
− 
− 
− 
− 
= 
⎤ 
⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ 
⎦ 
⎡ 
⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ 
⎣ 
y i 
(4 ) 
y i 
(4 ) 
y i 
(4 ) 
y i 
(4 ) 
(0) 
(1) 
(2) 
(3) 
y i 
(4 + 
1) 
y i 
(4 + 
1) 
y i 
(4 + 
1) 
y i 
(4 + 
1) 
y i 
(4 + 
2) 
(0) 
(1) 
(2) 
(3) 
y i 
(4 + 
2) 
y i 
(4 + 
2) 
y i 
(4 + 
2) 
y i 
(4 + 
3) 
y i 
(4 + 
3) 
y i 
(4 + 
3) 
+ 
(0) 
x i 
Re ( ) 
(1) 
x i 
Re ( ) 
(2) 
x i 
Re ( ) 
(3) 
x i 
Re ( ) 
(0) 
x i 
Im ( ) 
(1) 
x i 
Im ( ) 
(2) 
x i 
Im ( ) 
Im ( ) 
0 0 1 0 0 0 0 
(4 3) 
(3) 
(0) 
(1) 
(2) 
(3) 
(0) 
(1) 
(2) 
(3) 
x i 
j 
j 
j 
j 
j 
j 
y i 
for 0,1,..., layer 1 
i = Msymb − with layer 
symb 
ap 
Msymb = 4M . 
6.3.5 Mapping to resource elements 
For each of the antenna ports used for transmission of the physical channel, the block of complex-valued symbols 
(0),..., ( ap 1) 
symb 
- The set of antenna ports used for transmission of the PDSCH is one of {0}, {0,1}, or {0,1,2,3} if UE-specific 
reference signals are not transmitted 
- The antenna ports used for transmission of the PDSCH is {5} if UE-specific reference signals are transmitted 
6.5 Physical multicast channel 
The physical multicast channel shall be processed and mapped to resource elements as described in Section 6.3 with the 
following exceptions: 
- No transmit diversity scheme is specified 
- For transmission on a single antenna port, layer mapping and precoding shall be done assuming a single antenna 
port and the transmission shall use antenna port 4.
Release 8 32 3GPP TS 36.211 V2.0.0 (2007-09) 
6.6 Physical broadcast channel 
6.6.1 Scrambling 
The block of bits b(0),...,b(Mbit −1) , where Mbit is the number of bits transmitted on the physical broadcast channel, 
shall be scrambled prior to modulation, resulting in a block of scrambled bits c(0),...,c(Mbit −1). 
6.6.2 Modulation 
The block of scrambled bits c(0),...,c(Mbit −1) shall be modulated as described in Section 7, resulting in a block of 
complex-valued modulation symbols d(0),..., d(Msymb −1) . Table 6.6.2-1 specifies the modulation mappings applicable 
for the physical broadcast channel. 
Table 6.6.2-1: PBCH modulation schemes 
Physical channel Modulation schemes 
PBCH QPSK 
6.6.3 Layer mapping and precoding 
The block of modulation symbols d(0),...,d(Msymb −1) shall be mapped to layers according to one of Sections 6.3.3.1 
or 6.3.3.3 with symb 
(0) 
Msymb = M and precoded according to one of Sections 6.3.4.1 or 6.3.4.3, resulting in a block of 
vectors y(i) = [y(0) (i) ... y(P−1) (i)]T , i = 0,...,Msymb −1, where y ( p) (i) represents the signal for antenna port p and 
where p = 0,..., P −1and the number of antenna ports P∈{1,2,4}. 
6.6.4 Mapping to resource elements 
The block of complex-valued symbols y( p) (0),..., y( p) ( M symb − 1) 
for each antenna port is transmitted during 4 
consecutive radio frames and shall be mapped in sequence starting with y(0) to physical resource blocks number 
( DL 1) 2 3 
NRB − − to ( 1) 2 2 DL 
NRB − + in case DL 
RB N is an odd number and DL 2 3 
3GPP 
NRB − to 2 2 DL 
NRB + in case DL 
NRB is an 
even number. The mapping to resource elements (k,l) not reserved for transmission of reference signals shall be in 
increasing order of first the index k , then the index l in subframe 0, then the slot number and finally the radio frame 
number. For frame structure type 2, only subframe 0 in the first half-frame of a radio frame is used for PBCH 
transmission. The set of values of the index l to be used in subframe 0 in each of the four radio frames during which 
the physical broadcast channel is transmitted is given by Table 6.6.4-1. 
Table 6.6.4-1: Index value l for the PBCH 
Configuration Values of index l 
Frame structure type 1 Frame structure type 2 
Normal cyclic prefix Δf = 15 kHz 3, 4 in slot 0 of subframe 0 
0, 1 in slot 1 of subframe 0 3, 4, 5, 6 In subframe 0 in the first half-frame 
of a radio frame 
Extended cyclic prefix Δf = 15 kHz 3 in slot 0 of subframe 0 
0, 1, 2 in slot 1 of subframe 0 3, 4, 5, 6 In subframe 0 in the first half-frame 
of a radio frame 
6.7 Physical control format indicator channel 
The physical control format indicator channel carries information about the number of OFDM symbols (1, 2 or 3) used 
for transmission of PDCCHs in a subframe.
Release 8 33 3GPP TS 36.211 V2.0.0 (2007-09) 
6.7.1 Scrambling 
The block of bits b(0),...,b(31) transmitted in one subframe shall be scrambled prior to modulation, resulting in a block 
of scrambled bits c(0),...,c(31) . The scrambling sequence is uniquely defined by the physical-layer cell identity. 
6.7.2 Modulation 
The block of scrambled bits c(0),...,c(31) shall be modulated as described in Section 7, resulting in a block of complex-valued 
modulation symbols d(0),...,d(15) . Table 6.7.2-1 specifies the modulation mappings applicable for the physical 
b(i) b(i) M − on each of the control channels to be transmitted in a subframe, where (i) 
3GPP 
control format indicator channel. 
Table 6.7.2-1: PCFICH modulation schemes 
Physical channel Modulation schemes 
PCFICH QPSK 
6.7.3 Layer mapping and precoding 
The block of modulation symbols d(0),...,d(15) shall be mapped to layers according to one of Sections 6.3.3.1 or 
6.3.3.3 with symb 
(0) 
Msymb = M and precoded according to one of Sections 6.3.4.1 or 6.3.4.3, resulting in a block of 
vectors y(i) = [y(0) (i) ... y(P−1) (i)]T , i = 0,...,15 , where y ( p) (i) represents the signal for antenna port p and where 
p = 0,..., P −1and the number of antenna ports P∈{1,2,4}. 
6.7.4 Mapping to resource elements 
For transmission on two or four antenna ports, the block of vectors y(i) = [y(0) (i) ... y(P−1) (i)]T , i = 0,...,15 shall be 
mapped in a cell-specific way to four groups of four contiguous physical resource elements excluding reference 
symbols in the first OFDM symbol in a downlink subframe. 
6.8 Physical downlink control channel 
6.8.1 PDCCH formats 
The physical downlink control channel carries scheduling assignments and other control information. A physical control 
channel is transmitted on an aggregation of one or several control channel elements (CCEs), where a control channel 
element corresponds to a set of resource elements. Multiple PDCCHs can be transmitted in a subframe. 
The PDCCH supports multiple formats as listed in Table 6.8.1-1. 
Table 6.8.1-1: Supported PDCCH formats 
PDCCH format Number of CCEs Number of PDCCH bits 
0 1 
1 2 
2 4 
3 8 
6.8.2 Scrambling 
The block of bits (0),..., ( (i) 1) 
bit 
Mbit is 
the number of bits in one subframe to be transmitted on physical downlink control channel number i , shall be 
multiplexed, resulting in a block of
Release 8 34 3GPP TS 36.211 V2.0.0 (2007-09) 
b(0) b(0) M − b b M − b nPDCCH − b nPDCCH − M nPDCCH − , where nPDCCH is the 
bits (0),..., ( 1), (0),..., ( 1),..., (0),..., ( ( -1) 1) 
b(0) b(0) M − b b M − b nPDCCH − b nPDCCH − M nPDCCH − shall be 
z( p) z( p) M − shall be cyclically shifted by 4NCSS symbols, 
w( p) w( p) M − where ( ) ( ) CSS symb 
w( p) w( p) M − shall be mapped in sequence starting with w( p) (0) 
3GPP 
bit 
(1) ( 1) ( 1) 
bit 
(0) (1) (1) 
bit 
number of PDCCHs transmitted in the subframe. 
The block of bits (0),..., ( 1), (0),..., ( 1),..., (0),..., ( ( -1) 1) 
bit 
(1) ( 1) ( 1) 
bit 
(0) (1) (1) 
bit 
nPDCCH 
i 
scrambled prior to modulation, resulting in a block of scrambled bits c(0),...,c(Mtot −1) where Σ − 
= = 1 
M M i . 
0 
( ) 
tot bit 
6.8.3 Modulation 
The block of scrambled bits c(0),...,c(Mtot −1) shall be modulated as described in Section 7, resulting in a block of 
complex-valued modulation symbols d(0),..., d(Msymb −1) . Table 6.8.3-1 specifies the modulation mappings applicable 
for the physical downlink control channel. 
Table 6.8.3-1: PDCCH modulation schemes 
Physical channel Modulation schemes 
PDCCH QPSK 
6.8.4 Layer mapping and precoding 
The block of modulation symbols d(0),...,d(Msymb −1) shall be mapped to layers according to one of Sections 6.3.3.1 
or 6.3.3.3 with symb 
(0) 
Msymb = M and precoded according to one of Sections 6.3.4.1 or 6.3.4.3, resulting in a block of 
vectors y(i) = [y(0) (i) ... y(P−1) (i)]T , i = 0,...,Msymb −1 to be mapped onto resources on the antenna ports used for 
transmission, where y ( p) (i) represents the signal for antenna port p . 
6.8.5 Mapping to resource elements 
The block of complex-valued symbols (0),..., ( symb 1) 
y( p) y( p) M − for each antenna port used for transmission shall be 
z( p) z( p) M − . 
permuted in groups of four symbols, resulting in a block of complex-valued symbols (0),..., ( symb 1) 
The block of complex-valued symbols (0),..., ( symb 1) 
resulting in the sequence (0),..., ( symb 1) 
w( p) i = z( p) (i + 4N )modM . 
The block of complex-valued symbols (0),..., ( symb 1) 
to resource elements corresponding to the physical control channels. The mapping to resource elements (k,l) on 
antenna port p not used for reference signals, PHICH or PCFICH shall be in increasing order of first the index k and 
then the index l , where l = 0,..., L −1 and L ≤ 3 corresponds to the value transmitted on the PCFICH. In case of the 
PDCCHs being transmitted using antenna port 0 only, the mapping operation shall assume reference signals 
corresponding to antenna port 0 and antenna port 1 being present, otherwise the mapping operation shall assume 
reference signals being present corresponding to the actual antenna ports used for transmission of the PDCCH. 
6.9 Physical hybrid ARQ indicator channel 
The PHICH carries the hybrid-ARQ ACK/NAK. 
6.9.1 Scrambling 
The block of bits b(0),...,b(Mbit −1) transmitted in one subframe shall be scrambled prior to modulation, resulting in a 
block of scrambled bits c(0),...,c(Mbit −1) .
Release 8 35 3GPP TS 36.211 V2.0.0 (2007-09) 
6.9.2 Modulation 
For transmission on one or two antenna ports, the block of scrambled bits c(0),...,c(Mbit −1) shall be bit-wise 
multiplied with an orthogonal sequence according to 
( PHICH ) ( ) ( ) 
z i ⋅ NSF + m = w m ⋅ c i 
PHICH 
SF 
m N 
0,..., 1 
= − 
i = M 
− 
3GPP 
where 
0,..., 1 
bit 
The sequence [ (0) ( PHICH 1)] 
w L w NSF − is given by Table 6.9.2-1. 
Table 6.9.2-1: Orthogonal sequences [ (0) ( PHICH 1)] 
w L w NSF − for PHICH 
Sequence index Orthogonal sequence 
PHICH 4 
NSF = 
0 
1 
2 
3 
The block of bits z(i) shall be modulated as described in Section 7, resulting in a block of complex-valued modulation 
symbols d(0),...,d(Msymb −1) . Table 6.9.2-2 specifies the modulation mappings applicable for the physical hybrid 
ARQ indicator channel. 
Table 6.9.2-2: PHICH modulation schemes 
Physical channel Modulation schemes 
PHICH 
6.9.3 Layer mapping and precoding 
For transmission on one or two antenna ports, the block of modulation symbols d(0),..., d(Msymb −1) shall be mapped 
to layers according to one of Sections 6.3.3.1 or 6.3.3.3 with symb 
(0) 
Msymb = M and precoded according to one of 
Sections 6.3.4.1 or 6.3.4.3, resulting in a block of vectors y(i) = [y(0) (i) ... y(P−1) (i)]T , i = 0,...,Msymb −1, where 
y ( p) (i) represents the signal for antenna port p and where p = 0,..., P −1and the number of antenna ports P∈{1,2,4}. 
6.9.4 Mapping to resource elements 
The block of complex-valued symbols y( p) (0),..., y( p) ( M symb − 1) 
for each of the antenna ports used for transmission 
shall be mapped to three groups of four contiguous physical resource elements not used for reference signals and 
PCFICH. In case multiple PHICHes are mapped to the same resource elements, these PHICHes shall be summed prior 
to the mapping. Higher layers can configure the PHICH to span the first or the first three OFDM symbols in a subframe. 
The value configured puts a lower limit on the size of the control region signalled by the PCFICH. If the PHICH is 
configured to span three OFDM symbols, there is one group of four resource elements in each of the three OFDM 
symbols. 
6.10 Reference signals 
Three types of downlink reference signals are defined:
Release 8 36 3GPP TS 36.211 V2.0.0 (2007-09) 
- Cell-specific reference signals, associated with non-MBSFN transmission 
- MBSFN reference signals, associated with MBSFN transmission 
- UE-specific reference signals (supported in frame structure type 2 only) 
There is one reference signal transmitted per downlink antenna port. 
6.10.1 Cell-specific reference signals 
Editor’s note: The reference signal description in this section is applicable to Δf = 15 kHz only. 
Cell-specific reference signals shall be transmitted in all downlink subframes in a cell supporting non-MBSFN 
transmission. In case the subframe is used for transmission with MBSFN, only the first two OFDM symbols in a 
subframe can be used for transmission of cell-specific reference symbols. 
Cell-specific reference signals are transmitted on one or several of antenna ports 0 to 3. 
6.10.1.1 Sequence generation 
The generation of the two-dimensional reference signal sequence rm,n (ns ) , where ns is the slot number within the radio 
frame, depends on the cyclic prefix used. 
For normal cyclic prefix, rm,n (ns ) is generated as the symbol-by-symbol product ( ) ( s ) 
S = S S S T i = 
T 
i 144424443 
4 3 
1 1 
π 
π 
π 
π 
j 
j 
j 
j 
e 
e 
e 
e 
0 1 1 
3GPP 
PRS 
, 
OS 
rm,n ns = rm,n ⋅ rm n n of a two-dimensional 
orthogonal sequence OS 
PRS 
rm,n n . There are NOS = 3 
rm,n and a two-dimensional pseudo-random sequence ( s ) 
different two-dimensional orthogonal sequences and NPRS = 170 different two-dimensional pseudo-random sequences. 
There is a one-to-one mapping between the three identities within the physical-layer cell identity group and the three 
two-dimensional orthogonal sequences such that orthogonal sequence n∈{0,1,2} corresponds to identity n within the 
physical-layer cell identity group in Section 6.11.1.1. 
For extended cyclic length, rm,n (ns ) is generated from a two-dimensional pseudo-random sequence rm,PRS 
n ( n s ) 
. There is 
a one-to-one mapping between the physical-layer cell identity and the NPRS = 510 different two-dimensional pseudo-random 
sequences. 
6.10.1.1.1 Orthogonal sequence generation 
The two-dimensional orthogonal sequence for normal cyclic prefix shall be generated according to 
OS 
m n 
r , = sm,n , n = 0,1 and m = 0,1,...,219 
The quantity sm,n is the entry at the m:th row and the n:th column of the matrix Si , defined as 
[ ... ] , 0,1,2 
74 entries 
i 
T 
i 
T 
i 
where 
⎤ 
⎥ ⎥ ⎥ 
⎦ 
⎡ 
= 
⎢ ⎢ ⎢ 
⎣ 
⎤ 
⎥ ⎥ ⎥ 
⎦ 
⎡ 
= 
⎢ ⎢ ⎢ 
⎣ 
⎤ 
⎥ ⎥ ⎥ 
1 1 
⎦ 
⎡ 
= 
⎢ ⎢ ⎢ 
⎣ 
4 3 
2 3 
2 3 4 3 
2 
2 3 
4 3 2 3 
1 
1 , 
1 
, 
1 1 
π π 
π π 
j j 
j j 
e e 
S 
e e 
S S 
for orthogonal sequence 0, 1, and 2, respectively. The orthogonal sequence to use is configured by higher layers.
Release 8 37 3GPP TS 36.211 V2.0.0 (2007-09) 
6.10.1.1.2 Pseudo-random sequence generation 
The two-dimensional binary pseudo-random sequence is denoted ( s ) 
( ) 
a , rm n n 
m v v 
6 mod 6 for frame structure type1 
shift 
6 mod 6 for frame structure type 2 
n p 
0 if = 0 and ∈ 
0,1 
n p 
1 if = 0 and ∈ 
2,3 
+ + 
N n p 
3 if 1and 0,1 
− = ∈ 
DL 
RB 
m N 
0,1,...,2 1 
m ' m 110 
N 
DL 
RB 
p 
0,1 if 0,1 
p 
0 if 2,3 and frame structure type1is used 
n p 
3 if = 
0 
n p 
3 + 3 if = 
1 
= 
n p 
3 3( mod 2) if 3 
3( mod 2) if 2 
s 
n p 
n p 
3 if = 
0 
n p 
3 + 3 if = 
1 
= 
3 n if p 
2 
3 3 n if p 
3 
3GPP 
PRS 
rm,n n where ns is the slot number within a radio 
frame. 
6.10.1.2 Mapping to resource elements 
The two-dimensional reference signal sequence rm,n (ns ) shall be mapped to complex-valued modulation symbols ( ) 
ak p 
, 
l 
used as reference symbols for antenna port p in slot ns according to 
', ( s ) 
p 
k l = 
where 
( ) 
( ) 
⎪ ⎪ 
⎧ 
{ } 
{ } 
{ } 
⎩ 
{ } ⎪ ⎪ 
⎨ 
− = ∈ 
= 
⎩ ⎨ ⎧ 
+ + 
= 
2 if 1and 2,3 
DL 
symb 
DL 
symb 
shift 
N n p 
l 
m v v 
k 
and 
= ⋅ − 
= + − 
⎪⎩ 
⎧ 
{ } 
{ } 
{ } ⎪⎨ 
∈ 
∈ 
∈ 
= 
p 
0,1 if 2,3 and frame structure type 2 is used 
n 
The variables v and vshift define the position in the frequency domain for the different reference signals where v is 
given by 
⎧ 
⎪ ⎪ ⎩ 
⎪ ⎪ 
⎨ 
= 
+ = 
s 
v 
for frame structure type 1 and by 
⎧ 
⎪ ⎪ 
⎨ 
⎪ ⎪ 
⎩ 
= 
+ = 
v 
for frame structure type 2. 
The cell-specific frequency shift vshift ∈{0,1,...,5} is derived from the physical-layer cell identity. 
Resource elements (k, l) used for reference signal transmission on any of the antenna ports in a slot shall not be used 
for any transmission on any other antenna port in the same slot and set to zero. 
When the number of antenna ports configured for cell-specific reference signals equals four, the eNodeB can control in 
which subframes the reference signals for p = 2,3 are transmitted.
Release 8 38 3GPP TS 36.211 V2.0.0 (2007-09) 
Figures 6.10.1.2-1, 6.10.1.2-2, and 6.10.1.2-3 and 6.10.1.2-4 illustrate the resource elements used for reference signal 
transmission according to the above definition. The notation Rp is used to denote a resource element used for reference 
signal transmission on antenna port p . 
l = 0 l = 6 l = 0 l = 6 
3GPP 
R0 
R0 
R0 
R0 
R0 
R0 
R0 
R0 
l = 0 l = 6 l = 0 l = 6 
R0 
R0 
R0 
R0 
R0 
R0 
R0 
R0 
l = 0 l = 6 l = 0 l = 6 
R1 
R1 
R1 
R1 
R1 
R1 
R1 
R1 
l = 0 l = 6 l = 0 l = 6 
R3 
R3 
R3 
R3 
l = 0 l = 6 l = 0 l = 6 
even-numbered slots odd-numbered slots 
R0 
R0 
R0 
R0 
R0 
R0 
R0 
R0 
l = 0 l = 6 l = 0 l = 6 
even-numbered slots odd-numbered slots 
R1 
R1 
R1 
R1 
R1 
R1 
R1 
R1 
even-numbered slots odd-numbered slots 
Resource element (k,l) 
Not used for transmission on this antenna port 
Reference symbols on this antenna port 
R2 
R2 
R2 
R2 
l = 0 l = 6 l = 0 l = 6 
even-numbered slots odd-numbered slots 
Four antenna ports Two antenna ports One antenna port 
Antenna port 0 Antenna port 1 Antenna port 2 Antenna port 3 
Figure 6.10.1.2-1. Mapping of downlink reference signals (frame structure type 1, normal cyclic 
prefix).
Release 8 39 3GPP TS 36.211 V2.0.0 (2007-09) 
l = 0 l = 5 l = 0 l = 5 
even-numbered slots odd-numbered slots 
3GPP 
R0 
R0 
l = 0 l = 5 l = 0 l = 5 
R0 
R0 
R0 
R0 
R0 
R0 
R0 
R0 
R0 
R0 
R0 
R0 
R0 
R0 
l = 0 l = 5 l = 0 l = 5 
R1 
R1 
R1 
R1 
R1 
R1 
R1 
R1 
l = 0 l = 5 l = 0 l = 5 
R0 
R0 
R0 
R0 
R0 
R0 
R0 
R0 
l = 0 l = 5 l = 0 l = 5 
even-numbered slots odd-numbered slots 
Four antenna ports Two antenna ports One antenna port 
Resource element (k,l) 
Not used for transmission on this antenna port 
R1 
R1 
R1 
R1 
R1 
R1 
R1 
R1 
R3 
R3 
R3 
R3 
l = 0 l = 5 l = 0 l = 5 
even-numbered slots odd-numbered slots 
Reference symbols on this antenna port 
R2 
R2 
R2 
R2 
l = 0 l = 5 l = 0 l = 5 
even-numbered slots odd-numbered slots 
Antenna port 0 Antenna port 1 Antenna port 2 Antenna port 3 
Figure 6.10.1.2-2. Mapping of downlink reference signals (frame structure type 1, extended cyclic 
prefix).
Release 8 40 3GPP TS 36.211 V2.0.0 (2007-09) 
Resource element (k,l) 
Not used for transmission on this antenna port 
Reference symbols on this antenna port 
3GPP 
R0 
R0 
R0 
R0 
l = 0 l = 8 
R0 
R0 
R0 
R0 
l = 0 l = 8 
R1 
R1 
R1 
R1 
l = 0 l = 8 
subframe 
R0 
R0 
R0 
R0 
l = 0 l = 8 
R1 
R1 
R1 
R1 
l = 0 l = 8 
subframe 
R2 
R2 
R2 
R2 
l = 0 l = 8 
subframe 
R3 
R3 
R3 
R3 
l = 0 l = 8 
subframe 
Four antenna ports Two antenna ports One antenna port 
Antenna port 0 Antenna port 1 Antenna port 2 Antenna port 3 
Figure 6.10.1.2-3. Mapping of downlink reference signals (frame structure type 2, normal cyclic 
prefix).
Release 8 41 3GPP TS 36.211 V2.0.0 (2007-09) 
Resource element (k,l) 
Not used for transmission on this antenna port 
Reference symbols on this antenna port 
3GPP 
R0 
R0 
R0 
R0 
l = 0 l = 7 
R0 
R0 
R0 
R0 
l = 0 l = 7 
R1 
R1 
R1 
R1 
l = 0 l = 7 
subframe 
R0 
R0 
R0 
R0 
l = 0 l = 7 
R1 
R1 
R1 
R1 
l = 0 l = 7 
subframe 
R2 
R2 
R2 
R2 
l = 0 l = 7 
subframe 
R3 
R3 
R3 
R3 
l = 0 l = 7 
subframe 
Four antenna ports Two antenna ports One antenna port 
Antenna port 0 Antenna port 1 Antenna port 2 Antenna port 3 
Figure 6.10.1.2-4: Mapping of downlink reference signals (frame structure type 2, extended cyclic 
prefix). 
6.10.2 MBSFN reference signals 
MBSFN reference signals shall only be transmitted in subframes allocated for MBSFN transmissions. MBSFN 
reference signals are transmitted on antenna port 4. 
6.10.2.1 Sequence generation 
6.10.2.2 Mapping to resource elements 
Figures 6.10.2.2-1 and 6.10.2.2-2 illustrate the resource elements used for MBSFN reference signal transmission in case 
of Δf = 15 kHz for frame structure type 1 and 2 respectively. In case of Δf = 7.5 kHz for a MBSFN-dedicated cell, the 
MBSFN reference signal shall be mapped to resource elements according to Figures 6.10.2.2-3 and 6.10.2.2-4 for frame 
structure type 1 and 2, respectively. The notation Rp is used to denote a resource element used for reference signal 
transmission on antenna port p .
Release 8 42 3GPP TS 36.211 V2.0.0 (2007-09) 
R4 
R4 
R4 
R4 
R4 
R4 
3GPP 
R4 
R4 
R4 
R4 
R4 
R4 
R4 
R4 
R4 
R4 
R4 
R4 
l = 0 l = 5 l = 0 l = 5 
even-numbered slots odd-numbered slots 
Antenna port 4 
Figure 6.10.2.2-1: Mapping of MBSFN reference signals (frame structure type 1, extended cyclic 
prefix, Δf = 15 kHz ) 
R4 
R4 
R4 
R4 
R4 
R4 
R4 
R4 
R4 
R4 
R4 
R4 
l = 0 l = 7 
subframe 
Antenna port 4 
Figure 6.10.2.2-2: Mapping of MBSFN reference signals (frame structure type 2, extended cyclic 
prefix, Δf = 15 kHz )
Release 8 43 3GPP TS 36.211 V2.0.0 (2007-09) 
R4 
R4 
R4 
R4 
R4 
l = 0 l = 2 l = 0 l = 2 
R4 
R4 
R4 
3GPP 
R4 
R4 
R4 
R4 
even-numbered 
slots 
odd-numbered 
slots 
Antenna port 4 
Figure 6.10.2.2-3: Mapping of MBSFN reference signals (frame structure type 1, extended cyclic 
prefix, Δf = 7.5 kHz ) 
R4 
R4 
R4 
l = 0 l = 3 
subframe 
Antenna port 4 
Figure 6.10.2.2-4: Mapping of MBSFN reference signals (frame structure type 2, extended cyclic 
prefix, Δf = 7.5 kHz ) 
6.10.3 UE-specific reference signals 
UE-specific reference signals are supported for single-antenna-port transmission of PDSCH in frame structure type 2 
only and are transmitted on antenna port 5. The UE is informed by higher layers whether the UE-specific reference 
signal is present and is a valid phase reference for PDSCH demodulation or not.
Release 8 44 3GPP TS 36.211 V2.0.0 (2007-09) 
6.10.3.1 Sequence generation 
6.10.3.2 Mapping to resource elements 
6.11 Synchronization signals 
There are 510 unique physical-layer cell identities. The physical-layer cell identities are grouped into 170 unique 
physical-layer cell-identity groups, each group containing three unique identities. The grouping is such that each 
physical-layer cell identity is part of one and only one physical-layer cell-identity group. A physical-layer cell identity 
is thus uniquely defined by a number in the range of 0 to 169, representing the physical-layer cell-identity group, and a 
number in the range of 0 to 2, representing the physical-layer identity within the physical-layer cell-identity group. 
6.11.1 Primary synchronization signal 
6.11.1.1 Sequence generation 
The sequence used for the primary synchronization signal in a cell shall be selected from a set of three different 
sequences. There is a one-to-one mapping between the three physical-layer cell identities within the physical-layer cell-identity 
group and the three sequences used for the primary synchronization signal. 
The sequence d(n) used for the primary synchronization signal is generated from a frequency-domain Zadoff-Chu 
sequence according to 
j un n 
( 1) 
d n e n j u n n 
( ) 0,1,...,30 
63 
= = + + 
( 1)( 2) 
e n 
⎥ 
⎢ 
ak l = d n k N N , = n − 31 + l N DL 
n 
⎥ 
DL 
RB = − = − − − 
⎢ 
k n N N = − 31 + l N DL 
n 
3GPP 
⎧ 
⎪⎩ 
⎪⎨ 
= 
− 
+ 
− 
31,32,...,61 
63 
u π 
π 
where the Zadoff-Chu root sequence index u is given by Table 6.11.1.1-1. 
Table 6.11.1.1-1: Root indices for the primary synchronization signal. 
Physical-layer cell identity within the physical-layer cell-identity group Root index u 
0 25 
1 29 
2 34 
6.11.1.2 Mapping to resource elements 
The mapping of the sequence to resource elements depends on the frame structure. The antenna port used for 
transmission of the primary synchronization signal is not specified. 
For frame structure type 1, the primary synchronization signal is only transmitted in slots 0 and 10 and the sequence 
d(n) shall be mapped to the resource elements according to 
( ) , 1, 0,...,61 
2 
symb 
RB 
sc 
DL 
RB 
, = − = 
⎥ ⎥⎦ 
⎢ ⎢⎣ 
Resource elements (k, l) in slots 0 and 10 where 
, 1, 5, 4,..., 1,62,63,...,66 
2 
symb 
RB 
sc 
⎥ ⎥⎦ 
⎢ ⎢⎣ 
are reserved and not used for transmission of the primary synchronization signal. 
For frame structure type 2, the primary synchronization signal is transmitted in the DwPTS field.
Release 8 45 3GPP TS 36.211 V2.0.0 (2007-09) 
6.11.2 Secondary synchronization signal 
6.11.2.1 Sequence generation 
The sequence used for the second synchronization signal is an interleaved concatenation of two length-31 binary 
sequences obtained as cyclic shifts of a single length-31 M-sequence generated by x5 + x 2 +1. The concatenated 
sequence is scrambled with a scrambling sequence given by the primary synchronization signal. 
6.11.2.2 Mapping to resource elements 
The mapping of the sequence to resource elements depends on the frame structure. In a subframe, the same antenna port 
as for the primary synchronization signal shall be used for the secondary synchronization signal. 
For frame structure type 1, the secondary synchronization signal is only transmitted in slots 0 and 10 and the sequence 
d(n) shall be mapped to the resource elements according to 
⎥ 
⎢ 
ak l = d n k = n − + N N l N n 
( ) , 31 , DL 
2, 0,...,61 
2 
⎥ 
DL 
RB = − = − − − 
⎢ 
k n N N = − 31 + l N DL 
n 
= ⋅ Δ − + ⋅ − + 
s t a e l a e l π π 
k (−) = k + N N and ⎣ RB 2⎦ 1 
3GPP 
symb 
RB 
sc 
DL 
RB 
, = − = 
⎥ ⎥⎦ 
⎢ ⎢⎣ 
Resource elements (k, l) in slots 0 and 10 where 
, 2, 5, 4,..., 1,62,63,...,66 
2 
symb 
RB 
sc 
⎥ ⎥⎦ 
⎢ ⎢⎣ 
are reserved and not used for transmission of the secondary synchronization signal. 
For frame structure type 2, the secondary synchronization signal is transmitted in the last OFDM symbol of subframe 0. 
6.12 OFDM baseband signal generation 
The OFDM symbols in a slot shall be transmitted in increasing order of l . The time-continuous signal s ( p ) (t) 
on 
l 
antenna port p in OFDM symbol l in a downlink slot is defined by 
( ) ( ) 
⎣ ⎦ 
⎡ ⎤ ( ) 
Σ Σ 
= 
Δ − 
− 
=− 
/ 2 
1 
( ) 2 
, 
1 
/ 2 
( ) 2 
, 
( ) 
RB 
sc 
DL 
RB 
CP, s 
( ) 
RB 
sc 
DL 
RB 
CP, s 
( ) 
N N 
k 
p j k f t N T 
k l 
k N N 
p j k f t N T 
k l 
p 
l 
for 0 ≤ t < ( NCP,l + N ) ×Ts where ⎣ DL 
RB 
2⎦ RB 
sc 
k (+) = k + N N − . The variable N equals 
sc 
DL 
RB 
2048 for Δf =15 kHz subcarrier spacing and 4096 for Δf = 7.5 kHz subcarrier spacing. 
Table 6.12-1 lists the value of NCP,l that shall be used for the two frame structures. Note that different OFDM symbols 
within a slot in some cases have different cyclic prefix lengths.
Release 8 46 3GPP TS 36.211 V2.0.0 (2007-09) 
Table 6.12-1: OFDM parameters. 
Cyclic prefix length NCP,l Configuration 
Frame structure type 1 Frame structure type 2 
Normal cyclic prefix Δf = 15 kHz 160 for l = 0 
144 for l = 1,2,...,6 256 for l 0,1,...,8 = 
Δf = 15 kHz 512 for l = 0,1,...,5 544 for l = 0,1,...,7 
3GPP 
Extended cyclic prefix 
Δf = 7.5 kHz 1024 for l = 0,1,2 1088 for l = 0,1,...,3 
6.13 Modulation and upconversion 
Modulation and upconversion to the carrier frequency of the complex-valued OFDM baseband signal for each antenna 
port is shown in Figure 6.13-1. The filtering required prior to transmission is defined by the requirements in [6]. 
Re{s( p) (t)} 
l 
Im{s( p) (t)} 
l 
cos (2πf0t) 
− sin (2πf0t) 
s( p) (t) 
l 
Figure 6.13-1: Downlink modulation. 
7 Modulation mapper 
The modulation mapper takes binary digits, 0 or 1, as input and produces complex-valued modulation symbols, x=I+jQ, 
as output. 
7.1 BPSK 
In case of BPSK modulation, a single bit0, b(i) , is mapped to a complex-valued modulation symbol x=I+jQ according 
to Table 7.1-1. 
Table 7.1-1: BPSK modulation mapping 
b(i) I Q 
0 1 2 1 2 
1 −1 2 −1 2 
7.2 QPSK 
In case of QPSK modulation, pairs of bits, b(i),b(i +1) , are mapped to complex-valued modulation symbols x=I+jQ 
according to Table 7.2-1.
Release 8 47 3GPP TS 36.211 V2.0.0 (2007-09) 
Table 7.2-1: QPSK modulation mapping 
b(i),b(i +1) I Q 
00 1 2 1 2 
01 1 2 −1 2 
10 −1 2 1 2 
11 −1 2 −1 2 
7.3 16QAM 
In case of 16QAM modulation, quadruplets of bits, b(i),b(i +1),b(i + 2),b(i + 3) , are mapped to complex-valued 
modulation symbols x=I+jQ according to Table 7.3-1. 
Table 7.3-1: 16QAM modulation mapping 
b(i),b(i +1),b(i + 2),b(i + 3) I Q 
0000 1 10 1 10 
0001 1 10 3 10 
0010 3 10 1 10 
0011 3 10 3 10 
0100 1 10 −1 10 
0101 1 10 − 3 10 
0110 3 10 −1 10 
0111 3 10 − 3 10 
1000 −1 10 1 10 
1001 −1 10 3 10 
1010 − 3 10 1 10 
1011 − 3 10 3 10 
1100 −1 10 −1 10 
1101 −1 10 − 3 10 
1110 − 3 10 −1 10 
1111 − 3 10 − 3 10 
7.4 64QAM 
In case of 64QAM modulation, hextuplets of bits, b(i),b(i +1),b(i + 2),b(i + 3),b(i + 4),b(i + 5) , are mapped to complex-valued 
modulation symbols x=I+jQ according to Table 7.4-1. 
3GPP
Release 8 48 3GPP TS 36.211 V2.0.0 (2007-09) 
Table 7.4-1: 64QAM modulation mapping 
b(i), b(i + 1), b(i + 2), b(i + 3), b(i + 4), b(i + 5) I Q b(i), b(i + 1), b(i + 2), b(i + 3), b(i + 4), b(i + 5) I Q 
000000 3 42 3 42 100000 − 3 42 3 42 
000001 3 42 1 42 100001 − 3 42 1 42 
000010 1 42 3 42 100010 −1 42 3 42 
000011 1 42 1 42 100011 −1 42 1 42 
000100 3 42 5 42 100100 − 3 42 5 42 
000101 3 42 7 42 100101 − 3 42 7 42 
000110 1 42 5 42 100110 −1 42 5 42 
000111 1 42 7 42 100111 −1 42 7 42 
001000 5 42 3 42 101000 − 5 42 3 42 
001001 5 42 1 42 101001 − 5 42 1 42 
001010 7 42 3 42 101010 − 7 42 3 42 
001011 7 42 1 42 101011 − 7 42 1 42 
001100 5 42 5 42 101100 − 5 42 5 42 
001101 5 42 7 42 101101 − 5 42 7 42 
001110 7 42 5 42 101110 − 7 42 5 42 
001111 7 42 7 42 101111 − 7 42 7 42 
010000 3 42 − 3 42 110000 − 3 42 − 3 42 
010001 3 42 −1 42 110001 − 3 42 −1 42 
010010 1 42 − 3 42 110010 −1 42 − 3 42 
010011 1 42 −1 42 110011 −1 42 −1 42 
010100 3 42 − 5 42 110100 − 3 42 − 5 42 
010101 3 42 − 7 42 110101 − 3 42 − 7 42 
010110 1 42 − 5 42 110110 −1 42 − 5 42 
010111 1 42 − 7 42 110111 −1 42 − 7 42 
011000 5 42 − 3 42 111000 − 5 42 − 3 42 
011001 5 42 −1 42 111001 − 5 42 −1 42 
011010 7 42 − 3 42 111010 − 7 42 − 3 42 
011011 7 42 −1 42 111011 − 7 42 −1 42 
011100 5 42 − 5 42 111100 − 5 42 − 5 42 
011101 5 42 − 7 42 111101 − 5 42 − 7 42 
011110 7 42 − 5 42 111110 − 7 42 − 5 42 
011111 7 42 − 7 42 111111 − 7 42 − 7 42 
3GPP
3 gpp ts 36.211

More Related Content

What's hot

5 pulse compression waveform
5 pulse compression waveform5 pulse compression waveform
5 pulse compression waveform
Solo Hermelin
 
3_Antenna Array [Modlue 4] (1).pdf
3_Antenna Array [Modlue 4] (1).pdf3_Antenna Array [Modlue 4] (1).pdf
3_Antenna Array [Modlue 4] (1).pdf
sumanthsai22
 
Radar
RadarRadar
LTE Features, Link Budget & Basic Principle
LTE Features, Link Budget & Basic PrincipleLTE Features, Link Budget & Basic Principle
LTE Features, Link Budget & Basic Principle
Md Mustafizur Rahman
 
Radar system
Radar systemRadar system
Radar system
Sai Teja
 
Components of a Pulse Radar System
Components of a Pulse Radar SystemComponents of a Pulse Radar System
Components of a Pulse Radar System
Ülger Ahmet
 
Radar Cross Section
Radar Cross SectionRadar Cross Section
Radar Cross Section
Nann Wai
 
radar
radarradar
Radar 2009 a 13 clutter rejection doppler filtering
Radar 2009 a 13 clutter rejection   doppler filteringRadar 2009 a 13 clutter rejection   doppler filtering
Radar 2009 a 13 clutter rejection doppler filtering
Forward2025
 
Propagation Effects for Radar&Comm Systems
Propagation Effects for Radar&Comm SystemsPropagation Effects for Radar&Comm Systems
Propagation Effects for Radar&Comm Systems
Jim Jenkins
 
Lte drive test parameter introduction
Lte drive test parameter introductionLte drive test parameter introduction
Lte drive test parameter introduction
Ray KHASTUR
 
Rf optimization
Rf optimizationRf optimization
Rf optimization
Tempus Telcosys
 
GSM capacity planning
GSM capacity planningGSM capacity planning
GSM capacity planning
Deepak Joshi
 
Satellite telemetry tracking command and monitoring subsystem & Electronic an...
Satellite telemetry tracking command and monitoring subsystem & Electronic an...Satellite telemetry tracking command and monitoring subsystem & Electronic an...
Satellite telemetry tracking command and monitoring subsystem & Electronic an...
ROSHAN LAL KUMAWAT
 
4 g lte_drive_test_parameters
4 g lte_drive_test_parameters4 g lte_drive_test_parameters
4 g lte_drive_test_parameters
Aryan Chaturanan
 

What's hot (20)

5 pulse compression waveform
5 pulse compression waveform5 pulse compression waveform
5 pulse compression waveform
 
Satellite link design
Satellite link designSatellite link design
Satellite link design
 
3_Antenna Array [Modlue 4] (1).pdf
3_Antenna Array [Modlue 4] (1).pdf3_Antenna Array [Modlue 4] (1).pdf
3_Antenna Array [Modlue 4] (1).pdf
 
Radar
RadarRadar
Radar
 
LTE Features, Link Budget & Basic Principle
LTE Features, Link Budget & Basic PrincipleLTE Features, Link Budget & Basic Principle
LTE Features, Link Budget & Basic Principle
 
LTE Planning
LTE PlanningLTE Planning
LTE Planning
 
Radar system
Radar systemRadar system
Radar system
 
Components of a Pulse Radar System
Components of a Pulse Radar SystemComponents of a Pulse Radar System
Components of a Pulse Radar System
 
Radar Cross Section
Radar Cross SectionRadar Cross Section
Radar Cross Section
 
radar
radarradar
radar
 
Lesson ssr
Lesson ssrLesson ssr
Lesson ssr
 
Radar 2009 a 13 clutter rejection doppler filtering
Radar 2009 a 13 clutter rejection   doppler filteringRadar 2009 a 13 clutter rejection   doppler filtering
Radar 2009 a 13 clutter rejection doppler filtering
 
Propagation Effects for Radar&Comm Systems
Propagation Effects for Radar&Comm SystemsPropagation Effects for Radar&Comm Systems
Propagation Effects for Radar&Comm Systems
 
Lte drive test parameter introduction
Lte drive test parameter introductionLte drive test parameter introduction
Lte drive test parameter introduction
 
RADAR
RADARRADAR
RADAR
 
Rf optimization
Rf optimizationRf optimization
Rf optimization
 
GSM capacity planning
GSM capacity planningGSM capacity planning
GSM capacity planning
 
Satellite telemetry tracking command and monitoring subsystem & Electronic an...
Satellite telemetry tracking command and monitoring subsystem & Electronic an...Satellite telemetry tracking command and monitoring subsystem & Electronic an...
Satellite telemetry tracking command and monitoring subsystem & Electronic an...
 
4 g lte_drive_test_parameters
4 g lte_drive_test_parameters4 g lte_drive_test_parameters
4 g lte_drive_test_parameters
 
Pilot Pollution
Pilot PollutionPilot Pollution
Pilot Pollution
 

Similar to 3 gpp ts 36.211

Lte x2 ap_3gpp_36423-pdf
Lte x2 ap_3gpp_36423-pdfLte x2 ap_3gpp_36423-pdf
Lte x2 ap_3gpp_36423-pdfsaint_40s
 
3 gpp ts 36.423 36423-800
3 gpp ts 36.423 36423-8003 gpp ts 36.423 36423-800
3 gpp ts 36.423 36423-800
Anderson Brandão
 
23060 8d0
23060 8d023060 8d0
23060 8d0
Eran Gross
 
25331 b50
25331 b5025331 b50
25331 b50
Rajender Reddy
 
Inter rnc procedures
Inter rnc proceduresInter rnc procedures
Inter rnc proceduresradio56
 
25301 660-ran-protocols
25301 660-ran-protocols25301 660-ran-protocols
25301 660-ran-protocols
Abhilash C A
 
3gpp wifi lte_rel_10
3gpp wifi lte_rel_103gpp wifi lte_rel_10
3gpp wifi lte_rel_10
Sankarshan Deb
 
25952 520 base station classification (tdd)
25952 520 base station classification (tdd)25952 520 base station classification (tdd)
25952 520 base station classification (tdd)adelekejare
 
3 gpp key performance indicators (kpi) for umts and gsm release 9
3 gpp key performance indicators (kpi) for umts and gsm release 93 gpp key performance indicators (kpi) for umts and gsm release 9
3 gpp key performance indicators (kpi) for umts and gsm release 9Telecom Consultant
 
LTE Approved Bands
LTE Approved BandsLTE Approved Bands
LTE Approved Bands
Muhammad Ali Basra
 
Document nsn
Document nsnDocument nsn
Document nsn
Lm Tài
 
25951 620 base station (bs) classification (fdd)
25951 620 base station (bs) classification (fdd)25951 620 base station (bs) classification (fdd)
25951 620 base station (bs) classification (fdd)adelekejare
 
mac spects lte
mac spects ltemac spects lte
mac spects lte
Mukesh Pattnayak
 
R3 030340(tr25.891 v030 improvement of rrm across rns and rns bss)-clean
R3 030340(tr25.891 v030 improvement of rrm across rns and rns bss)-cleanR3 030340(tr25.891 v030 improvement of rrm across rns and rns bss)-clean
R3 030340(tr25.891 v030 improvement of rrm across rns and rns bss)-cleanadelekejare
 
3GPP A25133 450
3GPP A25133 4503GPP A25133 450
3GPP A25133 450
Georgios Giannakopoulos
 
3 gpp ts 32.522 self-organizing networks (son) policy network resource mode...
3 gpp ts 32.522   self-organizing networks (son) policy network resource mode...3 gpp ts 32.522   self-organizing networks (son) policy network resource mode...
3 gpp ts 32.522 self-organizing networks (son) policy network resource mode...Telecom Consultant
 
Interface specification for rcs interconnection additional topics - v1.0
Interface specification for rcs interconnection  additional topics - v1.0Interface specification for rcs interconnection  additional topics - v1.0
Interface specification for rcs interconnection additional topics - v1.0
Fédération Française des Télécoms
 

Similar to 3 gpp ts 36.211 (20)

Lte x2 ap_3gpp_36423-pdf
Lte x2 ap_3gpp_36423-pdfLte x2 ap_3gpp_36423-pdf
Lte x2 ap_3gpp_36423-pdf
 
3 gpp ts 36.423 36423-800
3 gpp ts 36.423 36423-8003 gpp ts 36.423 36423-800
3 gpp ts 36.423 36423-800
 
23060 8d0
23060 8d023060 8d0
23060 8d0
 
25331 b50
25331 b5025331 b50
25331 b50
 
Inter rnc procedures
Inter rnc proceduresInter rnc procedures
Inter rnc procedures
 
25301 660-ran-protocols
25301 660-ran-protocols25301 660-ran-protocols
25301 660-ran-protocols
 
3gpp wifi lte_rel_10
3gpp wifi lte_rel_103gpp wifi lte_rel_10
3gpp wifi lte_rel_10
 
25952 520 base station classification (tdd)
25952 520 base station classification (tdd)25952 520 base station classification (tdd)
25952 520 base station classification (tdd)
 
3 gpp key performance indicators (kpi) for umts and gsm release 9
3 gpp key performance indicators (kpi) for umts and gsm release 93 gpp key performance indicators (kpi) for umts and gsm release 9
3 gpp key performance indicators (kpi) for umts and gsm release 9
 
LTE Approved Bands
LTE Approved BandsLTE Approved Bands
LTE Approved Bands
 
37.801 0a0
37.801 0a037.801 0a0
37.801 0a0
 
Document nsn
Document nsnDocument nsn
Document nsn
 
25951 620 base station (bs) classification (fdd)
25951 620 base station (bs) classification (fdd)25951 620 base station (bs) classification (fdd)
25951 620 base station (bs) classification (fdd)
 
mac spects lte
mac spects ltemac spects lte
mac spects lte
 
R3 030340(tr25.891 v030 improvement of rrm across rns and rns bss)-clean
R3 030340(tr25.891 v030 improvement of rrm across rns and rns bss)-cleanR3 030340(tr25.891 v030 improvement of rrm across rns and rns bss)-clean
R3 030340(tr25.891 v030 improvement of rrm across rns and rns bss)-clean
 
3GPP A25133 450
3GPP A25133 4503GPP A25133 450
3GPP A25133 450
 
srvcc stage2
 srvcc stage2 srvcc stage2
srvcc stage2
 
3 gpp ts 32.522 self-organizing networks (son) policy network resource mode...
3 gpp ts 32.522   self-organizing networks (son) policy network resource mode...3 gpp ts 32.522   self-organizing networks (son) policy network resource mode...
3 gpp ts 32.522 self-organizing networks (son) policy network resource mode...
 
3 gpp tr 23.907v1.2.0
3 gpp tr 23.907v1.2.03 gpp tr 23.907v1.2.0
3 gpp tr 23.907v1.2.0
 
Interface specification for rcs interconnection additional topics - v1.0
Interface specification for rcs interconnection  additional topics - v1.0Interface specification for rcs interconnection  additional topics - v1.0
Interface specification for rcs interconnection additional topics - v1.0
 

Recently uploaded

Student information management system project report ii.pdf
Student information management system project report ii.pdfStudent information management system project report ii.pdf
Student information management system project report ii.pdf
Kamal Acharya
 
power quality voltage fluctuation UNIT - I.pptx
power quality voltage fluctuation UNIT - I.pptxpower quality voltage fluctuation UNIT - I.pptx
power quality voltage fluctuation UNIT - I.pptx
ViniHema
 
NO1 Uk best vashikaran specialist in delhi vashikaran baba near me online vas...
NO1 Uk best vashikaran specialist in delhi vashikaran baba near me online vas...NO1 Uk best vashikaran specialist in delhi vashikaran baba near me online vas...
NO1 Uk best vashikaran specialist in delhi vashikaran baba near me online vas...
Amil Baba Dawood bangali
 
CME397 Surface Engineering- Professional Elective
CME397 Surface Engineering- Professional ElectiveCME397 Surface Engineering- Professional Elective
CME397 Surface Engineering- Professional Elective
karthi keyan
 
Water Industry Process Automation and Control Monthly - May 2024.pdf
Water Industry Process Automation and Control Monthly - May 2024.pdfWater Industry Process Automation and Control Monthly - May 2024.pdf
Water Industry Process Automation and Control Monthly - May 2024.pdf
Water Industry Process Automation & Control
 
Sachpazis:Terzaghi Bearing Capacity Estimation in simple terms with Calculati...
Sachpazis:Terzaghi Bearing Capacity Estimation in simple terms with Calculati...Sachpazis:Terzaghi Bearing Capacity Estimation in simple terms with Calculati...
Sachpazis:Terzaghi Bearing Capacity Estimation in simple terms with Calculati...
Dr.Costas Sachpazis
 
block diagram and signal flow graph representation
block diagram and signal flow graph representationblock diagram and signal flow graph representation
block diagram and signal flow graph representation
Divya Somashekar
 
Governing Equations for Fundamental Aerodynamics_Anderson2010.pdf
Governing Equations for Fundamental Aerodynamics_Anderson2010.pdfGoverning Equations for Fundamental Aerodynamics_Anderson2010.pdf
Governing Equations for Fundamental Aerodynamics_Anderson2010.pdf
WENKENLI1
 
RAT: Retrieval Augmented Thoughts Elicit Context-Aware Reasoning in Long-Hori...
RAT: Retrieval Augmented Thoughts Elicit Context-Aware Reasoning in Long-Hori...RAT: Retrieval Augmented Thoughts Elicit Context-Aware Reasoning in Long-Hori...
RAT: Retrieval Augmented Thoughts Elicit Context-Aware Reasoning in Long-Hori...
thanhdowork
 
road safety engineering r s e unit 3.pdf
road safety engineering  r s e unit 3.pdfroad safety engineering  r s e unit 3.pdf
road safety engineering r s e unit 3.pdf
VENKATESHvenky89705
 
H.Seo, ICLR 2024, MLILAB, KAIST AI.pdf
H.Seo,  ICLR 2024, MLILAB,  KAIST AI.pdfH.Seo,  ICLR 2024, MLILAB,  KAIST AI.pdf
H.Seo, ICLR 2024, MLILAB, KAIST AI.pdf
MLILAB
 
English lab ppt no titlespecENG PPTt.pdf
English lab ppt no titlespecENG PPTt.pdfEnglish lab ppt no titlespecENG PPTt.pdf
English lab ppt no titlespecENG PPTt.pdf
BrazilAccount1
 
Planning Of Procurement o different goods and services
Planning Of Procurement o different goods and servicesPlanning Of Procurement o different goods and services
Planning Of Procurement o different goods and services
JoytuBarua2
 
AKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdf
AKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdfAKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdf
AKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdf
SamSarthak3
 
CFD Simulation of By-pass Flow in a HRSG module by R&R Consult.pptx
CFD Simulation of By-pass Flow in a HRSG module by R&R Consult.pptxCFD Simulation of By-pass Flow in a HRSG module by R&R Consult.pptx
CFD Simulation of By-pass Flow in a HRSG module by R&R Consult.pptx
R&R Consult
 
MCQ Soil mechanics questions (Soil shear strength).pdf
MCQ Soil mechanics questions (Soil shear strength).pdfMCQ Soil mechanics questions (Soil shear strength).pdf
MCQ Soil mechanics questions (Soil shear strength).pdf
Osamah Alsalih
 
Railway Signalling Principles Edition 3.pdf
Railway Signalling Principles Edition 3.pdfRailway Signalling Principles Edition 3.pdf
Railway Signalling Principles Edition 3.pdf
TeeVichai
 
space technology lecture notes on satellite
space technology lecture notes on satellitespace technology lecture notes on satellite
space technology lecture notes on satellite
ongomchris
 
Runway Orientation Based on the Wind Rose Diagram.pptx
Runway Orientation Based on the Wind Rose Diagram.pptxRunway Orientation Based on the Wind Rose Diagram.pptx
Runway Orientation Based on the Wind Rose Diagram.pptx
SupreethSP4
 
AP LAB PPT.pdf ap lab ppt no title specific
AP LAB PPT.pdf ap lab ppt no title specificAP LAB PPT.pdf ap lab ppt no title specific
AP LAB PPT.pdf ap lab ppt no title specific
BrazilAccount1
 

Recently uploaded (20)

Student information management system project report ii.pdf
Student information management system project report ii.pdfStudent information management system project report ii.pdf
Student information management system project report ii.pdf
 
power quality voltage fluctuation UNIT - I.pptx
power quality voltage fluctuation UNIT - I.pptxpower quality voltage fluctuation UNIT - I.pptx
power quality voltage fluctuation UNIT - I.pptx
 
NO1 Uk best vashikaran specialist in delhi vashikaran baba near me online vas...
NO1 Uk best vashikaran specialist in delhi vashikaran baba near me online vas...NO1 Uk best vashikaran specialist in delhi vashikaran baba near me online vas...
NO1 Uk best vashikaran specialist in delhi vashikaran baba near me online vas...
 
CME397 Surface Engineering- Professional Elective
CME397 Surface Engineering- Professional ElectiveCME397 Surface Engineering- Professional Elective
CME397 Surface Engineering- Professional Elective
 
Water Industry Process Automation and Control Monthly - May 2024.pdf
Water Industry Process Automation and Control Monthly - May 2024.pdfWater Industry Process Automation and Control Monthly - May 2024.pdf
Water Industry Process Automation and Control Monthly - May 2024.pdf
 
Sachpazis:Terzaghi Bearing Capacity Estimation in simple terms with Calculati...
Sachpazis:Terzaghi Bearing Capacity Estimation in simple terms with Calculati...Sachpazis:Terzaghi Bearing Capacity Estimation in simple terms with Calculati...
Sachpazis:Terzaghi Bearing Capacity Estimation in simple terms with Calculati...
 
block diagram and signal flow graph representation
block diagram and signal flow graph representationblock diagram and signal flow graph representation
block diagram and signal flow graph representation
 
Governing Equations for Fundamental Aerodynamics_Anderson2010.pdf
Governing Equations for Fundamental Aerodynamics_Anderson2010.pdfGoverning Equations for Fundamental Aerodynamics_Anderson2010.pdf
Governing Equations for Fundamental Aerodynamics_Anderson2010.pdf
 
RAT: Retrieval Augmented Thoughts Elicit Context-Aware Reasoning in Long-Hori...
RAT: Retrieval Augmented Thoughts Elicit Context-Aware Reasoning in Long-Hori...RAT: Retrieval Augmented Thoughts Elicit Context-Aware Reasoning in Long-Hori...
RAT: Retrieval Augmented Thoughts Elicit Context-Aware Reasoning in Long-Hori...
 
road safety engineering r s e unit 3.pdf
road safety engineering  r s e unit 3.pdfroad safety engineering  r s e unit 3.pdf
road safety engineering r s e unit 3.pdf
 
H.Seo, ICLR 2024, MLILAB, KAIST AI.pdf
H.Seo,  ICLR 2024, MLILAB,  KAIST AI.pdfH.Seo,  ICLR 2024, MLILAB,  KAIST AI.pdf
H.Seo, ICLR 2024, MLILAB, KAIST AI.pdf
 
English lab ppt no titlespecENG PPTt.pdf
English lab ppt no titlespecENG PPTt.pdfEnglish lab ppt no titlespecENG PPTt.pdf
English lab ppt no titlespecENG PPTt.pdf
 
Planning Of Procurement o different goods and services
Planning Of Procurement o different goods and servicesPlanning Of Procurement o different goods and services
Planning Of Procurement o different goods and services
 
AKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdf
AKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdfAKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdf
AKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdf
 
CFD Simulation of By-pass Flow in a HRSG module by R&R Consult.pptx
CFD Simulation of By-pass Flow in a HRSG module by R&R Consult.pptxCFD Simulation of By-pass Flow in a HRSG module by R&R Consult.pptx
CFD Simulation of By-pass Flow in a HRSG module by R&R Consult.pptx
 
MCQ Soil mechanics questions (Soil shear strength).pdf
MCQ Soil mechanics questions (Soil shear strength).pdfMCQ Soil mechanics questions (Soil shear strength).pdf
MCQ Soil mechanics questions (Soil shear strength).pdf
 
Railway Signalling Principles Edition 3.pdf
Railway Signalling Principles Edition 3.pdfRailway Signalling Principles Edition 3.pdf
Railway Signalling Principles Edition 3.pdf
 
space technology lecture notes on satellite
space technology lecture notes on satellitespace technology lecture notes on satellite
space technology lecture notes on satellite
 
Runway Orientation Based on the Wind Rose Diagram.pptx
Runway Orientation Based on the Wind Rose Diagram.pptxRunway Orientation Based on the Wind Rose Diagram.pptx
Runway Orientation Based on the Wind Rose Diagram.pptx
 
AP LAB PPT.pdf ap lab ppt no title specific
AP LAB PPT.pdf ap lab ppt no title specificAP LAB PPT.pdf ap lab ppt no title specific
AP LAB PPT.pdf ap lab ppt no title specific
 

3 gpp ts 36.211

  • 1. 3GPP TS 36.211 V2.0.0 (2007-09) Technical Specification 3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio Access (E-UTRA); Physical Channels and Modulation (Release 8) The present document has been developed within the 3rd Generation Partnership Project (3GPP TM) and may be further elaborated for the purposes of 3GPP. The present document has not been subject to any approval process by the 3GPP Organizational Partners and shall not be implemented. This Specification is provided for future development work within 3GPP only. The Organizational Partners accept no liability for any use of this Specification. Specifications and reports for implementation of the 3GPP TM system should be obtained via the 3GPP Organizational Partners' Publications Offices.
  • 2. Release 8 2 3GPP TS 36.211 V2.0.0 (2007-09) Keywords UMTS, radio, layer 1 3GPP Postal address 3GPP support office address 650 Route des Lucioles - Sophia Antipolis Valbonne - FRANCE Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16 Internet http://www.3gpp.org Copyright Notification No part may be reproduced except as authorized by written permission. The copyright and the foregoing restriction extend to reproduction in all media. © 2006, 3GPP Organizational Partners (ARIB, ATIS, CCSA, ETSI, TTA, TTC). All rights reserved. 3GPP
  • 3. Release 8 3 3GPP TS 36.211 V2.0.0 (2007-09) Contents Foreword ............................................................................................................................................................6 1 Scope .......................................................................................................................................................6 2 References ................................................................................................................................................6 3 Definitions, symbols and abbreviations ...................................................................................................7 3.1 Symbols................................................................................................................................................................. 7 3.2 Abbreviations ........................................................................................................................................................ 8 4 Frame structure.........................................................................................................................................8 4.1 Frame structure type 1 .......................................................................................................................................... 8 4.2 Frame structure type 2 .......................................................................................................................................... 9 5 Uplink.......................................................................................................................................................9 5.1 Overview ............................................................................................................................................................... 9 5.1.1 Physical channels ............................................................................................................................................ 9 5.1.2 Physical signals ............................................................................................................................................... 9 5.2 Slot structure and physical resources.................................................................................................................. 10 5.2.1 Resource grid................................................................................................................................................. 10 5.2.2 Resource elements......................................................................................................................................... 11 5.2.3 Resource blocks............................................................................................................................................. 11 5.3 Physical uplink shared channel........................................................................................................................... 11 5.3.1 Scrambling..................................................................................................................................................... 11 5.3.2 Modulation .................................................................................................................................................... 12 5.3.3 Transform precoding ..................................................................................................................................... 12 5.3.4 Mapping to physical resources...................................................................................................................... 12 5.4 Physical uplink control channel.......................................................................................................................... 12 5.4.1 Scrambling..................................................................................................................................................... 13 5.4.2 Modulation .................................................................................................................................................... 13 5.4.2.1 Sequence modulation for PUCCH format 0 and 1 ................................................................................. 13 5.4.2.2 Sequence modulation for PUCCH format 2 ........................................................................................... 14 5.4.3 Mapping to physical resources...................................................................................................................... 14 5.5 Reference signals ................................................................................................................................................ 14 5.5.1 Generation of the base reference signal sequence........................................................................................ 14 5.5.1.1 Reference signal sequences of length 36 or larger ................................................................................. 15 5.5.1.2 Reference signal sequences of length less than 36 ................................................................................. 15 5.5.2 Demodulation reference signal ..................................................................................................................... 15 5.5.2.1 Demodulation reference signal for PUSCH............................................................................................ 15 5.5.2.1.1 Reference signal sequence................................................................................................................. 15 5.5.2.1.2 Mapping to physical resources .......................................................................................................... 16 5.5.2.2 Demodulation reference signal for PUCCH ........................................................................................... 16 5.5.2.2.1 Reference signal sequence................................................................................................................. 16 5.5.2.2.2 Mapping to physical resources .......................................................................................................... 17 5.5.3 Sounding reference signal ............................................................................................................................. 17 5.5.3.1 Sequence generation................................................................................................................................ 17 5.5.3.2 Mapping to physical resources................................................................................................................ 17 5.6 SC-FDMA baseband signal generation .............................................................................................................. 18 5.7 Physical random access channel......................................................................................................................... 18 5.7.1 Time and frequency structure ....................................................................................................................... 18 5.7.2 Preamble sequence generation ...................................................................................................................... 19 5.7.3 Baseband signal generation........................................................................................................................... 19 5.8 Modulation and upconversion ............................................................................................................................ 20 6 Downlink................................................................................................................................................20 6.1 Overview ............................................................................................................................................................. 20 6.1.1 Physical channels .......................................................................................................................................... 20 6.1.2 Physical signals ............................................................................................................................................. 21 6.2 Slot structure and physical resource elements.................................................................................................... 21 3GPP
  • 4. Release 8 4 3GPP TS 36.211 V2.0.0 (2007-09) 6.2.1 Resource grid................................................................................................................................................. 21 6.2.2 Resource elements......................................................................................................................................... 21 6.2.3 Resource blocks............................................................................................................................................. 22 6.2.4 Guard Period for TDD Operation ................................................................................................................. 25 6.3 General structure for downlink physical channels ............................................................................................. 25 6.3.1 Scrambling..................................................................................................................................................... 25 6.3.2 Modulation .................................................................................................................................................... 26 6.3.3 Layer mapping............................................................................................................................................... 26 6.3.3.1 Layer mapping for transmission on a single antenna port...................................................................... 26 6.3.3.2 Layer mapping for spatial multiplexing.................................................................................................. 26 6.3.3.3 Layer mapping for transmit diversity...................................................................................................... 27 6.3.4 Precoding....................................................................................................................................................... 27 6.3.4.1 Precoding for transmission on a single antenna port .............................................................................. 27 6.3.4.2 Precoding for spatial multiplexing .......................................................................................................... 27 6.3.4.2.1 Precoding for zero and small-delay CDD......................................................................................... 27 6.3.4.2.2 Precoding for large delay CDD ......................................................................................................... 28 6.3.4.2.3 Codebook for precoding .................................................................................................................... 29 6.3.4.3 Precoding for transmit diversity.............................................................................................................. 30 6.3.5 Mapping to resource elements ...................................................................................................................... 31 6.4 Physical downlink shared channel...................................................................................................................... 31 6.5 Physical multicast channel.................................................................................................................................. 31 6.6 Physical broadcast channel ................................................................................................................................. 32 6.6.1 Scrambling..................................................................................................................................................... 32 6.6.2 Modulation .................................................................................................................................................... 32 6.6.3 Layer mapping and precoding....................................................................................................................... 32 6.6.4 Mapping to resource elements ...................................................................................................................... 32 6.7 Physical control format indicator channel.......................................................................................................... 32 6.7.1 Scrambling..................................................................................................................................................... 33 6.7.2 Modulation .................................................................................................................................................... 33 6.7.3 Layer mapping and precoding....................................................................................................................... 33 6.7.4 Mapping to resource elements ...................................................................................................................... 33 6.8 Physical downlink control channel..................................................................................................................... 33 6.8.1 PDCCH formats ............................................................................................................................................ 33 6.8.2 Scrambling..................................................................................................................................................... 33 6.8.3 Modulation .................................................................................................................................................... 34 6.8.4 Layer mapping and precoding....................................................................................................................... 34 6.8.5 Mapping to resource elements ...................................................................................................................... 34 6.9 Physical hybrid ARQ indicator channel ............................................................................................................. 34 6.9.1 Scrambling..................................................................................................................................................... 34 6.9.2 Modulation .................................................................................................................................................... 35 6.9.3 Layer mapping and precoding....................................................................................................................... 35 6.9.4 Mapping to resource elements ...................................................................................................................... 35 6.10 Reference signals ................................................................................................................................................ 35 6.10.1 Cell-specific reference signals ...................................................................................................................... 36 6.10.1.1 Sequence generation................................................................................................................................ 36 6.10.1.1.1 Orthogonal sequence generation ....................................................................................................... 36 6.10.1.1.2 Pseudo-random sequence generation ................................................................................................ 37 6.10.1.2 Mapping to resource elements................................................................................................................. 37 6.10.2 MBSFN reference signals ............................................................................................................................. 41 6.10.2.1 Sequence generation................................................................................................................................ 41 6.10.2.2 Mapping to resource elements................................................................................................................. 41 6.10.3 UE-specific reference signals........................................................................................................................ 43 6.10.3.1 Sequence generation................................................................................................................................ 44 6.10.3.2 Mapping to resource elements................................................................................................................. 44 6.11 Synchronization signals ...................................................................................................................................... 44 6.11.1 Primary synchronization signal..................................................................................................................... 44 6.11.1.1 Sequence generation................................................................................................................................ 44 6.11.1.2 Mapping to resource elements................................................................................................................. 44 6.11.2 Secondary synchronization signal................................................................................................................. 45 6.11.2.1 Sequence generation................................................................................................................................ 45 6.11.2.2 Mapping to resource elements................................................................................................................. 45 6.12 OFDM baseband signal generation .................................................................................................................... 45 3GPP
  • 5. Release 8 5 3GPP TS 36.211 V2.0.0 (2007-09) 6.13 Modulation and upconversion ............................................................................................................................ 46 7 Modulation mapper ................................................................................................................................46 7.1 BPSK................................................................................................................................................................... 46 7.2 QPSK................................................................................................................................................................... 46 7.3 16QAM................................................................................................................................................................ 47 7.4 64QAM................................................................................................................................................................ 47 8 Timing....................................................................................................................................................49 8.1 Uplink-downlink frame timing ........................................................................................................................... 49 Annex A (informative): Change history .......................................................................................................49 3GPP
  • 6. Release 8 6 3GPP TS 36.211 V2.0.0 (2007-09) Foreword This Technical Specification has been produced by the 3rd Generation Partnership Project (3GPP). The contents of the present document are subject to continuing work within the TSG and may change following formal TSG approval. Should the TSG modify the contents of the present document, it will be re-released by the TSG with an identifying change of release date and an increase in version number as follows: 3GPP Version x.y.z where: x the first digit: 1 presented to TSG for information; 2 presented to TSG for approval; 3 or greater indicates TSG approved document under change control. y the second digit is incremented for all changes of substance, i.e. technical enhancements, corrections, updates, etc. z the third digit is incremented when editorial only changes have been incorporated in the document. 1 Scope The present document describes the physical channels for evolved UTRA. 2 References The following documents contain provisions which, through reference in this text, constitute provisions of the present document. • References are either specific (identified by date of publication, edition number, version number, etc.) or non-specific. • For a specific reference, subsequent revisions do not apply. • For a non-specific reference, the latest version applies. In the case of a reference to a 3GPP document (including a GSM document), a non-specific reference implicitly refers to the latest version of that document in the same Release as the present document. [1] 3GPP TR 21.905: "Vocabulary for 3GPP Specifications". [2] 3GPP TS 36.201: "LTE Physical Layer – General Description ". [3] 3GPP TS 36.212: "Multiplexing and channel coding". [4] 3GPP TS 36.213: "Physical layer procedures". [5] 3GPP TS 36.214: "Physical layer – Measurements". [6] 3GPP TS xx.xxx: <RAN4 specification listing supported transmission bandwidths>
  • 7. Release 8 7 3GPP TS 36.211 V2.0.0 (2007-09) 3 Definitions, symbols and abbreviations 3.1 Symbols For the purposes of the present document, the following symbols apply: (k, l) Resource element with frequency-domain index k and time-domain index l ( ) p ak l Value of resource element (k, l) [for antenna port p ] D Matrix for supporting cyclic delay diversity f0 Carrier frequency 3GPP , PUSCH Msc Scheduled bandwidth for uplink transmission, expressed as a number of subcarriers M(q) bit Number of coded bits to transmit on a physical channel [for code word q ] M(q) symb Number of modulation symbols to transmit on a physical channel [for code word q ] layer Msymb Number of modulation symbols to transmit per layer for a physical channel ap Msymb Number of modulation symbols to transmit per antenna port for a physical channel N A constant equal to 2048 for Δf = 15 kHz and 4096 for Δf = 7.5 kHz NCP,l Downlink cyclic prefix length for OFDM symbol l in a slot NGP Number of OFDM symbols reserved for guard period for TDD with frame structure type 1 DL NRB Downlink bandwidth configuration, expressed in units of RB Nsc UL NRB Uplink bandwidth configuration, expressed in units of RB Nsc DL Nsymb Number of OFDM symbols in a downlink slot UL Nsymb Number of SC-FDMA symbols in an uplink slot RB Nsc Resource block size in the frequency domain, expressed as a number of subcarriers NOS Number of orthogonal two-dimensional downlink reference signal sequences NPRS Number of pseudo-random two-dimensional downlink reference signal sequences PUCCH NRS Number of reference symbols per slot for PUCCH NTA Timing offset between uplink and downlink radio frames at the UE, expressed in units of Ts nPDCCH Number of PDCCHs present in a subframe nPRB Physical resource block number P Number of antenna ports p Antenna port number q Code word number OS rm,n Two-dimensional orthogonal sequence for reference signal generation PRS ( ) rm,n i Two-dimensional pseudo-random sequence for reference signal generation in slot i s p (t) l ( ) Time-continuous baseband signal for antenna port p and OFDM symbol l in a slot Tf Radio frame duration Ts Basic time unit Tslot Slot duration W Precoding matrix for downlink spatial multiplexing β PRACH Amplitude scaling for PRACH β PUCCH Amplitude scaling for PUCCH β PUSCH Amplitude scaling for PUSCH βSRS Amplitude scaling for sounding reference symbols Δf Subcarrier spacing ΔfRA Subcarrier spacing for the random access preamble
  • 8. Release 8 8 3GPP TS 36.211 V2.0.0 (2007-09) υ Number of transmission layers 3.2 Abbreviations For the purposes of the present document, the following abbreviations apply: CCE Control Channel Element CDD Cyclic Delay Diversity PBCH Physical broadcast channel PCFICH Physical control format indicator channel PDCCH Physical downlink control channel PDSCH Physical downlink shared channel PHICH Physical hybrid-ARQ indicator channel PMCH Physical multicast channel PRACH Physical random access channel PUCCH Physical uplink control channel PUSCH Physical uplink shared channel 4 Frame structure Throughout this specification, unless otherwise noted, the size of various fields in the time domain is expressed as a number of time units Ts = 1 (15000× 2048) seconds. Downlink and uplink transmissions are organized into radio frames with Tf = 307200×Ts = 10ms duration. Two radio frame structures are supported: - Type 1, applicable to both FDD and TDD, - Type 2, applicable to TDD only. 4.1 Frame structure type 1 Frame structure type 1 is applicable to both full duplex and half duplex FDD and to TDD. Each radio frame is Tf = 307200×Ts = 10ms long and consists of 20 slots of length Tslot = 15360×Ts = 0.5ms , numbered from 0 to 19. A subframe is defined as two consecutive slots where subframe i consists of slots 2i and 2i +1. For FDD, 10 subframes are available for downlink transmission and 10 subframes are available for uplink transmissions in each 10 ms interval. Uplink and downlink transmissions are separated in the frequency domain. For TDD, a subframe is either allocated to downlink or uplink transmission. Subframe 0 and subframe 5 are always allocated for downlink transmission. Figure 4.1-1: Frame structure type 1. 3GPP
  • 9. Release 8 9 3GPP TS 36.211 V2.0.0 (2007-09) 4.2 Frame structure type 2 Frame structure type 2 is only applicable to TDD. Each radio frame consists of two half-frames of length Tf = 153600×Ts = 5ms each. The structure of each half-frame in a radio frame is identical. Each half-frame consists of seven slots, numbered from 0 to 6, and three special fields, DwPTS, GP, and UpPTS. A subframe is defined as one slot where subframe i consists of slot i . Subframe 0 and DwPTS are always reserved for downlink transmission. UpPTS and subframe 1 are always reserved for uplink transmission. Figure 4.2-1: Frame structure type 2. 5 Uplink 5.1 Overview The smallest resource unit for uplink transmissions is denoted a resource element and is defined in section 5.2.2. 5.1.1 Physical channels An uplink physical channel corresponds to a set of resource elements carrying information originating from higher layers and is the interface defined between 36.212 and 36.211. The following uplink physical channels are defined: - Physical Uplink Shared Channel, PUSCH - Physical Uplink Control Channel, PUCCH - Physical Random Access Channel, PRACH 5.1.2 Physical signals An uplink physical signal is used by the physical layer but does not carry information originating from higher layers. The following uplink physical signals are defined: 3GPP - reference signal
  • 10. Release 8 10 3GPP TS 36.211 V2.0.0 (2007-09) 5.2 Slot structure and physical resources 5.2.1 Resource grid The transmitted signal in each slot is described by a resource grid of RB 3GPP NRB UL N UL sc subcarriers and Nsymb SC-FDMA symbols. The resource grid is illustrated in Figure 5.2.1-1. The quantity UL NRB depends on the uplink transmission bandwidth configured in the cell and shall fulfil 6 UL 110 ≤ NRB ≤ The set of allowed values for UL NRB is given by [6]. The number of SC-FDMA symbols in a slot depends on the cyclic prefix length configured by higher layers and is given in Table 5.2.3-1. UL Nsymb Tslot l = 0 UL 1 l = Nsymb − RB sc UL NRB × N RB Nsc RB sc UL Nsymb × N (k,l) Figure 5.2.1-1: Uplink resource grid.
  • 11. 3GPP T Release 8 11 S 36.211 V2.0.0 (2007-09) 5.2.2 Resource elements Each element in the resource grid is called a resource element and is uniquely defined by the index pair (k,l) in a slot where 0,..., RB 1 UL Nsymb × N resource elements, corresponding to one slot in the time domain and 180 kHz in the ⎢ = RB n k 3GPP k = NRB UL N sc − and 0,..., UL 1 l = Nsymb − are the indices in the frequency and time domain, respectively. Resource element (k,l) corresponds to the complex value ak ,l . Quantities ak,l corresponding to resource elements not used for transmission of a physical channel or a physical signal in a slot shall be set to zero. 5.2.3 Resource blocks A resource block is defined as UL Nsymb consecutive SC-FDMA symbols in the time domain and RB Nsc consecutive subcarriers in the frequency domain, where UL Nsymb and RB Nsc are given by Table 5.2.3-1. A resource block in the uplink thus consists of RB sc frequency domain. Table 5.2.3-1: Resource block parameters. Configuration Nsc RB Nsymb UL Frame structure type 1 Frame structure type 2 Normal cyclic prefix 12 7 9 Extended cyclic prefix 12 6 8 The relation between the resource block number nPRB and resource elements (k, l) in a slot is given by ⎥ ⎥ ⎥⎦ ⎢ ⎢⎣ sc PRB N 5.3 Physical uplink shared channel The baseband signal representing the physical uplink shared channel is defined in terms of the following steps: - scrambling - modulation of scrambled bits to generate complex-valued symbols - transform precoding to generate complex-valued modulation symbols - mapping of complex-valued modulation symbols to resource elements - generation of complex-valued time-domain SC-FDMA signal for each antenna port Figure 5.3-1: Overview of uplink physical channel processing. 5.3.1 Scrambling If scrambling is configured, the block of bits b(0),...,b(Mbit −1) , where Mbit is the number of bits transmitted on the physical uplink shared channel in one subframe, shall be scrambled with a UE-specific scrambling sequence prior to modulation, resulting in a block of scrambled bits c(0),...,c(Mbit −1) .
  • 12. Release 8 12 3GPP TS 36.211 V2.0.0 (2007-09) 5.3.2 Modulation The block of scrambled bits c(0),...,c(Mbit −1) shall be modulated as described in Section 7, resulting in a block of complex-valued symbols d(0),..., d(Msymb −1) . Table 5.3.2-1 specifies the modulation mappings applicable for the physical uplink shared channel. Table 5.3.2-1: Uplink modulation schemes Physical channel Modulation schemes PUSCH QPSK, 16QAM, 64QAM 5.3.3 Transform precoding The block of complex-valued symbols d(0),..., d(Msymb −1) is divided into PUSCH 1 − M ⋅ + = Σ ⋅ + z ( l M k ) d ( l M i ) e PUSCH sc = i k M 0,..., 1 = − M = N ⋅ 2α 2 ⋅3α3 ⋅5α5 ≤ N ⋅ N 3GPP Msymb Msc sets, each corresponding to one SC-FDMA symbol. Transform precoding shall be applied according to PUSCH 0,..., 1 symb sc 0 j 2 π ik PUSCH sc PUSCH sc PUSCH sc PUSCH sc = − − l M M M resulting in a block of complex-valued modulation symbols z(0),..., z(Msymb −1) . The variable PUSCH Msc represents the number of scheduled subcarriers used for PUSCH transmission in an SC-FDMA symbol and shall fulfil UL RB RB sc RB sc PUSCH sc where α 2 ,α3 ,α5 is a set of non-negative integers. 5.3.4 Mapping to physical resources The block of complex-valued symbols z(0),..., z(Msymb −1) shall be multiplied with the amplitude scaling factor β PUSCH and mapped in sequence starting with z(0) to resource blocks assigned for transmission of PUSCH. The mapping to resource elements (k,l) not used for transmission of reference signals shall be in increasing order of first the index l , then the slot number and finally the index k . The index k is given by ( ),..., ( ) PUSCH 1 k = k0 + fhop ⋅ k0 + fhop ⋅ +Msc − where fhop (⋅) denotes the frequency-hopping pattern and k0 is given by the scheduling decision. 5.4 Physical uplink control channel The physical uplink control channel, PUCCH, carries uplink control information. The PUCCH is never transmitted simultaneously with the PUSCH. The physical uplink control channel supports multiple formats as shown in Table 5.4-1.
  • 13. Release 8 13 3GPP TS 36.211 V2.0.0 (2007-09) Table 5.4-1: Supported PUCCH formats. PUCCH Number of bits per subframe, Mbit format Modulation scheme Normal cyclic prefix Extended cyclic prefix 0 BPSK 1 1 1 QPSK 2 2 2 QPSK 20 20 5.4.1 Scrambling If scrambling is configured, the block of bits b(0),...,b(Mbit −1) , where Mbit is the number of bits transmitted on the physical uplink control channel in one subframe, shall be scrambled with a UE-specific scrambling sequence prior to modulation, resulting in a block of scrambled bits c(0),...,c(Mbit −1) . 5.4.2 Modulation The block of scrambled bits c(0),...,c(Mbit −1) shall be modulated as described in Section 7, resulting in a block of complex-valued symbols d(0),...,d(Msymb −1) . The modulation scheme for the different PUCCH formats is given by Table 5.4-1. For BPSK, Msymb = Mbit , while for QPSK Msymb = Mbit 2 . 5.4.2.1 Sequence modulation for PUCCH format 0 and 1 For PUCCH format 0 and 1, the complex-valued symbol d(0) shall be multiplied with a cyclically shifted length PUCCH 12 Nseq = sequence generated according to section 5.5.1 with PUCCH seq PUCCH SF m N 0,..., 1 = − PUCCH seq n N = − 0,1 for frame structure type1 3GPP RS Msc = N , resulting in a block of complex-valued symbols (0),..., ( PUCCH 1) y y Nseq − . Note that different cyclic shifts of the sequence can be used in different PUCCH SC-FDMA symbols within a slot. The block of complex-valued symbols (0),..., ( PUCCH 1) y y Nseq − shall be block-wise spread with the orthogonal sequence w(i) according to z(m'⋅N ⋅ N + m⋅ N PUCCH + n)= w(m) ⋅ y(n) seq PUCCH seq PUCCH SF where ⎩ ⎨ ⎧ = 0 for frame structure type 2 ' 0,..., 1 m The sequence w(i) and PUCCH NSF are given by Table 5.4.2.1-1.
  • 14. Release 8 14 3GPP TS 36.211 V2.0.0 (2007-09) Table 5.4.2.1-1: Orthogonal sequences [ (0) ( PUCCH 1)] w L w NSF − for PUCCH format 0 and 1 Sequence index Frame structure type 1 Frame structure type 2 PUCCH 4 NSF = 0 [+1 +1 +1 +1] 1 [+1 −1 +1 −1] 2 [+1 +1 −1 −1] 3 [+1 −1 −1 +1] 5.4.2.2 Sequence modulation for PUCCH format 2 For PUCCH format 2, each complex-valued symbol d(i) shall be multiplied with a cyclically shifted length PUCCH 12 Nseq = sequence generated according to section 5.5.1 with PUCCH seq 3GPP RS Msc = N , resulting in a block of complex-valued PUCCH z z Nseq M − . symbols (0),..., ( symb 1) 5.4.3 Mapping to physical resources The block of complex-valued symbols z(i) shall be multiplied with the amplitude scaling factor β PUCCH and mapped in sequence starting with z(0) to resource elements assigned for transmission of PUCCH. The mapping to resource elements (k,l) not used for transmission of reference signals shall start with the first slot in the subframe. The set of values for index k shall be different in the first and second slot of the subframe, resulting in frequency hopping at the slot boundary. Mapping of modulation symbols for the physical uplink control channel is illustrated in Figure 5.4.3-1. frequency 1 ms subframe resource i resource j resource i resource j Figure 5.4.3-1: Physical uplink control channel 5.5 Reference signals Two types of uplink reference signals are supported: - demodulation reference signal, associated with transmission of PUSCH or PUCCH - sounding reference signal, not associated with transmission of PUSCH or PUCCH The same set of base sequences is used for demodulation and sounding reference signals. 5.5.1 Generation of the base reference signal sequence The definition of the base sequence (0),..., ( RS 1) r r Msc − of length RS Msc depends on the sequence length.
  • 15. Release 8 15 3GPP TS 36.211 V2.0.0 (2007-09) 5.5.1.1 Reference signal sequences of length 36 or larger For RS 36 = jαn +θ ≤ < + j um m x m e N m N r PUSCH m⋅M + n = r n 0,1 for frame structure type1 ⎩ ⎨ ⎧ 0 for frame structure type 2 3GPP Msc ≥ , the sequence (0),..., ( 1) RS r r Msc − is given by RS sc RS r(n) e xu ((n )mod NZC ), 0 n M where θ is an offset and the uth root Zadoff-Chu sequence is defined by − ( ) , 0 RS 1 ZC ( 1) RS = ZC ≤ ≤ − u π and the length RS NZC of the Zadoff-Chu sequence is given by the largest prime number such that RS sc RS NZC < M . The factor e jαn corresponds to a cyclic shift in the time domain. 5.5.1.2 Reference signal sequences of length less than 36 For RS 36 Msc < , the sequence (0),..., ( 1) RS r r Msc − is given by Table 5.5.1.2-1. Table 5.5.1.2-1: Reference signal sequences of length RS 36 Msc < . (0), (1),..., ( RS 1) r r r Msc − Sequence index RS 12 Msc = 24 RS Msc = 5.5.2 Demodulation reference signal 5.5.2.1 Demodulation reference signal for PUSCH 5.5.2.1.1 Reference signal sequence The demodulation reference signal sequence r PUSCH (⋅) for PUSCH is defined by ( RS ) ( ,α ) sc where RS n M 0,..., 1 = = sc − m and PUSCH sc RS Msc = M Section 5.5.1 defines the sequence (0),..., ( RS 1) r r Msc − . Note that different cyclic shifts α can be used in different slots of a subframe. The cyclic shift to use in the first slot of the subframe is given by the uplink scheduling grant in case of multiple shifts within the cell.
  • 16. Release 8 16 3GPP TS 36.211 V2.0.0 (2007-09) 5.5.2.1.2 Mapping to physical resources The sequence r PUSCH (⋅) shall be multiplied with the amplitude scaling factor β PUSCH and mapped in sequence starting with r PUSCH (0) to the same set of resource blocks used for the corresponding PUSCH transmission defined in Section 5.3.4. The mapping to resource elements (k, l) in the subframe shall be in increasing order of first k , then the slot number. For frame structure type 1 l = 3 and for frame structure type 2 l = 4 . For frame structure type 2, an additional demodulation reference signal per subframe can be configured. 5.5.2.2 Demodulation reference signal for PUCCH 5.5.2.2.1 Reference signal sequence The demodulation reference signal sequence r PUCCH (⋅) for PUCCH is defined by ( ' RS ) ( ) ( ,α ) r PUCCH m⋅N ⋅M + m⋅M + n = w m ⋅ r n PUCCH RS m N 0,..., 1 = − RS sc n M = − 0,1 for frame structure type1 3GPP sc RS sc PUCCH RS where ⎩ ⎨ ⎧ = 0 for frame structure type 2 ' 0,..., 1 m The sequence r(n) is given by Section 5.5.1 with. RS 12 Msc = . The number of reference symbols per slot PUCCH NRS and the sequence w(n) are given by Table 5.5.2.2.1-1 and 5.5.2.2.1-2, respectively. Note that different cyclic shifts α can be used for different reference symbols within a slot. For PUCCH format 0 and 1, different orthogonal sequences can be used for different slots. Table 5.5.2.2.1-1: Number of PUCCH demodulation reference symbols per slot PUCCH NRS . Frame structure type 1 Frame structure type 2 PUCCH format Normal cyclic prefix Extended cyclic prefix Normal cyclic prefix Extended cyclic prefix 0 1 3 2 2 2 1
  • 17. Release 8 17 3GPP TS 36.211 V2.0.0 (2007-09) Table 5.5.2.2.1-2: Orthogonal sequences [ (0) ( PUCCH 1)] w L w NRS − for PUCCH format 0 and 1. Frame structure type 1 Frame structure type 2 rSRS rSRS M − shall be multiplied with the amplitude scaling factor β SRS and mapped in ( ) 0,1,..., RS 1 SRS a r k k M k k l 3GPP Sequence index Normal cyclic prefix Extended cyclic prefix Normal cyclic prefix Extended cyclic prefix 0 [1 1 1] [1 1] 1 [1 e j2π 3 e j4π 3 ] [1 −1] 2 [1 e j4π 3 e j2π 3 ] N/A Table 5.5.2.2.1-3: Orthogonal sequences [ (0) ( PUCCH 1)] w L w NRS − for PUCCH format 2. Frame structure type 1 Frame structure type 2 Normal cyclic prefix Extended cyclic prefix Normal cyclic prefix Extended cyclic prefix [1 1] [1] 5.5.2.2.2 Mapping to physical resources The sequence r PUCCH (⋅) shall be multiplied with the amplitude scaling factor β PUCCH and mapped in sequence starting with r PUCCH (0) to resource elements (k, l) . The mapping shall be in increasing order of first k , then l and finally the slot number. The same set of values for k as for the corresponding PUCCH transmission shall be used. The values of the symbol index l in a slot are given by Table 5.5.2.2.2-1. Table 5.5.2.2.2-1: Demodulation reference signal location for different PUCCH formats Set of values for l Frame structure type 1 Frame structure type 2 PUCCH Format Normal cyclic prefix Extended cyclic prefix Normal cyclic prefix Extended cyclic prefix 0 1 2, 3, 4 2, 3 2 1, 5 3 5.5.3 Sounding reference signal 5.5.3.1 Sequence generation The sounding reference signal sequence rSRS (⋅) is defined by Section 5.5.1. The sequence index to use is derived from the PUCCH base sequence index. 5.5.3.2 Mapping to physical resources The sequence (0),..., ( RS 1) sc sequence starting with rSRS (0) to resource elements (k, l) according to ⎪⎩ ⎪⎨ ⎧ = − sc SRS + = 0 otherwise 2 0 , β where k0 is the frequency-domain starting position of the sounding reference signal and RS sc M is the length of the sounding reference signal sequence.
  • 18. Release 8 18 3GPP TS 36.211 V2.0.0 (2007-09) 5.6 SC-FDMA baseband signal generation This section applies to all uplink physical signals and physical channels except the physical random access channel. The SC-FDMA symbols in a slot shall be transmitted in increasing order of l . The time-continuous signal sl (t) in SC-FDMA s t = a − ⋅ e π + Δ − l 3GPP symbol l in an uplink slot is defined by ⎡ ⎤ Σ − ( ) ( ) ( ) ⎣ ⎦ =− / 2 1 / 2 2 1 2 , RB sc UL RB RB sc UL RB CP, s ( ) N N k N N j k f t N T l k l for 0 ≤ t < ( NCP,l + N ) ×Ts where ( ) ⎣ UL RB 2⎦ sc k = k + NRBN − , N = 2048 and Δf = 15 kHz . Tables 5.6-1lists the values of NCP,l that shall be used for the two frame structures. Note that different SC-FDMA symbols within a slot may have different cyclic prefix lengths. Table 5.6-1. SC-FDMA parameters. Cyclic prefix length NCP,l Configuration Frame structure type 1 Frame structure type 2 Normal cyclic prefix 160 for l = 0 144 for l = 1,2,...,6 256 for 0,1,...,8 l = Extended cyclic prefix 512 for l = 0,1,...,5 544 for l = 0,1,...,7 5.7 Physical random access channel 5.7.1 Time and frequency structure The physical layer random access burst, illustrated in Figure 5.7.1-1, consists of a cyclic prefix of length TCP , and a preamble of length TPRE . The parameter values are listed in Table 5.7.1-1 and depend on the frame structure and the random access configuration. Higher layers control the preamble format. TCP TPRE Figure 5.7.1-1: Random access preamble format. Table 5.7.1-1: Random access burst parameters. Frame structure Burst format TCP TPRE 0 3152×Ts 24576×Ts 1 21012×Ts 24576×Ts 2 6224×Ts 2× 24576×Ts Type 1 3 21012×Ts 2× 24576×Ts 0 0×Ts 4096×Ts 1 0×Ts 16384×Ts Type 2 2
  • 19. Release 8 19 3GPP TS 36.211 V2.0.0 (2007-09) For frame structure type 1, the timing of the random access burst depends on the PRACH configuration. Table 5.7.1-2 lists the subframes in which random access burst transmission is possible. Table 5.7.1-2: Random access burst timing for frame structure type 1. PRACH configuration Subframes For frame structure type 2, the start of the random access burst depends on the burst format configured. For burst format 0, the burst shall start 5120Ts before the end of the UpPTS at the UE. For burst format 1, the start of the random access burst shall be aligned with the start of an uplink subframe. In the frequency domain, the random access burst occupies a bandwidth corresponding to 6 resource blocks for both frame structures. 5.7.2 Preamble sequence generation The random access preambles are generated from Zadoff-Chu sequences with zero correlation zone, generated from one or several root Zadoff-Chu sequences. The network configures the set of preamble sequences the UE is allowed to use. The uth root Zadoff-Chu sequence is defined by j un n ( + 1) ( ) = ZC , 0 ≤ ≤ ZC − 1 j π nk s t xu v n e e π ϕ 3GPP − x n e N n N u π where the length NZC of the Zadoff-Chu sequence is given by Table 5.7.2-1. From the uth root Zadoff-Chu sequence, random access preambles with zero correlation zone are defined by cyclic shifts of multiples of NCS according to xu,v (n) = xu ((n + vNCS )mod NZC) where NCS is given by Table 5.7.2-1. Table 5.7.2-1: Random access preamble sequence parameters. Frame structure Burst format NZC NCS Number of preambles Preamble sequences per cell Type 1 0 – 3 839 64 Type 2 0 139 552 1 557 16 5.7.3 Baseband signal generation The time-continuous random access signal s(t) is defined by 1 − ZC ( ) Σ Σ ( ( )) ( ) = + + + Δ − − = − = ⋅ ⋅ 0 2 1 0 2 PRACH , 2 RA CP 1 0 ZC ( ) ZC N k j k K k f t T N n N β where 0 ≤ t < TPRE +TCP , β PRACH is an amplitude scaling factor and RB UL RB RB sc 2 k0 = kRANsc − N N . The location in the frequency domain is controlled by the parameter kRA , expressed as a resource block number configured by higher layers and fulfilling 0 UL 6 ≤ kRA ≤ NRB − . The factor K = Δf ΔfRA accounts for the difference in subcarrier spacing between the random access preamble and uplink data transmission. The variable ΔfRA , the subcarrier spacing for the random access preamble, and the variable ϕ , a fixed offset determining the frequency-domain location of the random access preamble within the resource blocks, are both given by Table 5.7.3-1.
  • 20. Release 8 20 3GPP TS 36.211 V2.0.0 (2007-09) Table 5.7.3-1: Random access baseband parameters. Frame structure Burst format ΔfRA ϕ Type 1 0 – 3 1250 Hz 12 Type 2 0 7500 Hz 2 1 1875 Hz 9 5.8 Modulation and upconversion Modulation and upconversion to the carrier frequency of the complex-valued SC-FDMA baseband signal for each antenna port is shown in Figure 5.8-1. The filtering required prior to transmission is defined by the requirements in [6]. 3GPP Re{sl (t)} Im{sl (t)} cos (2πf0t) − sin (2πf0t) sl (t) Figure 5.8-1: Uplink modulation. 6 Downlink 6.1 Overview The smallest time-frequency unit for downlink transmission is denoted a resource element and is defined in Section 6.2.2. 6.1.1 Physical channels A downlink physical channel corresponds to a set of resource elements carrying information originating from higher layers and is the interface defined between 36.212 and 36.211. The following downlink physical channels are defined: - Physical Downlink Shared Channel, PDSCH - Physical Broadcast Channel, PBCH - Physical Multicast Channel, PMCH - Physical Control Format Indicator Channel, PCFICH - Physical Downlink Control Channel, PDCCH - Physical Hybrid ARQ Indicator Channel, PHICH
  • 21. Release 8 21 3GPP TS 36.211 V2.0.0 (2007-09) 6.1.2 Physical signals A downlink signal corresponds to a set of resource elements used by the physical layer but does not carry information originating from higher layers. The following downlink physical signals are defined: - reference signal - synchronization signal 6.2 Slot structure and physical resource elements 6.2.1 Resource grid The transmitted signal in each slot is described by a resource grid of RB 3GPP NRB DL N DL sc subcarriers and Nsymb OFDM symbols. The resource grid structure is illustrated in Figure 6.2.2-1. The quantity DL NRB depends on the downlink transmission bandwidth configured in the cell and shall fulfil 6 DL 110 ≤ NRB ≤ The set of allowed values for DL NRB is given by [6]. The number of OFDM symbols in a slot depends on the cyclic prefix length and subcarrier spacing configured and is given in Table 6.2.3-1. In case of multi-antenna transmission, there is one resource grid defined per antenna port. An antenna port is defined by its associated reference signal. The set of antenna ports supported depends on the reference signal configuration in the cell: - Cell-specific reference signals, associated with non-MBSFN transmission, support a configuration of one, two, or four antenna ports, i.e. the antenna port number p shall fulfil p = 0 , p∈{0,1}, and p∈{0,1,2,3}, respectively. - MBSFN reference signals, associated with MBSFN transmission, are transmitted on antenna port p = 4 . - UE-specific reference signals, supported in frame structure type 2 only, are transmitted on antenna port p = 5 . 6.2.2 Resource elements Each element in the resource grid for antenna port p is called a resource element and is uniquely identified by the index pair (k, l) in a slot where 0,..., RB 1 sc DL k = NRB N − and 0,..., 1 DL l = Nsymb − are the indices in the frequency and time domains, respectively. Resource element (k, l) on antenna port p corresponds to the complex value ( ) ak p , l . When there is no risk for confusion, or no particular antenna port is specified, the index p may be dropped.
  • 22. Release 8 22 3GPP TS 36.211 V2.0.0 (2007-09) Nsymb and RB DL Nsymb × N resource elements, corresponding to one slot in the time domain and 180 kHz in the frequency ⎢ = RB n k 3GPP DL Nsymb Tslot l = 0 DL 1 l = Nsymb − RB sc DL NRB × N RB Nsc RB sc DL Nsymb × N (k,l) Figure 6.2.2-1: Downlink resource grid. 6.2.3 Resource blocks Physical and virtual resource blocks are defined. A physical resource block is defined as DL Nsymb consecutive OFDM symbols in the time domain and RB Nsc consecutive subcarriers in the frequency domain, where DL Nsc are given by Table 6.2.3-1. A physical resource block thus consists of RB sc domain. The relation between physical resource blocks and resource elements depends on DL NRB and the subframe number. The relation between the physical resource block number nPRB and resource elements (k, l) in a slot is given by ⎥ ⎥ ⎥⎦ ⎢ ⎢⎣ sc PRB N
  • 23. Release 8 23 3GPP TS 36.211 V2.0.0 (2007-09) for 0 7 for 6 for 7 3GPP with the exception of subframe 0 in case of DL NRB being an odd number in which case RB sc DL RB RB sc DL RB ⎢ = n k ⎢ − = ⎥ n k N ⎢ = n k RB sc PRB RB sc DL RB RB sc DL RB RB sc RB sc PRB RB sc DL RB RB sc PRB 2 1 2 6 2 2 1 2 N N k N N N N N k N N N k N N N ⋅ ≤ ≤ ⋅ + ⎥ ⎥ ⎥⎦ ⎢ ⎢⎣ ⋅ − + ⋅ ≤ ≤ − ⎥ ⎥ ⎥⎦ ⎢ ⎢⎣ ⋅ − − ≤ ≤ ⎥ ⎥⎦ ⎢ ⎢⎣ The resulting resource block structure is illustrated in Figure 6.2.3-1. Note that there is no physical resource block with number (( DL 1) 2) 3 nPRB = NRB − + in subframe 0 in case of DL NRB being an odd number. Table 6.2.3-1: Physical resource block parameters. DL Nsymb Configuration RB Nsc Frame structure type 1 Frame structure type 2 Normal cyclic prefix Δf = 15 kHz 7 9 Δf = 15 kHz 12 6 8 Extended cyclic prefix Δf = 7.5 kHz 24 3 4
  • 24. Release 8 24 3GPP TS 36.211 V2.0.0 (2007-09) 3GPP DC DL NRB an even number of resource blocks Resource block DL 1 NRB − Resource block 0 All subframes DL NRB an odd number of resource blocks Resource block DL 1 DL 1 RB + N − RB Nsc unused subcarriers DC DC All subframes except subframe 0 Subframe 0 2 NRB − Resource block 4 2 DL NRB an odd number of resource blocks DL NRB an even number of resource blocks Resource block DL 1 NRB − Resource block 0 DL 1 RB + N − Resource block 2 2 DL 1 RB − N − Resource block 3 2 RB Nsc unused subcarriers 2 DL 1 RB − N − Resource block 4 2 Resource block 0 Figure 6.2.3-1: Illustration of the relation between resource blocks and resource elements. A virtual resource block is of the same size as a physical resource block. Two types of virtual resource blocks are defined: - virtual resource blocks of distributed type - virtual resource blocks of localized type Virtual resource blocks are mapped to physical resource blocks with the mapping depending on the diversity order configured. For second-order diversity, one virtual resource block is mapped to one physical resource block. The virtual-to-physical resource block mapping is different in the two slots of a subframe.
  • 25. Release 8 25 3GPP TS 36.211 V2.0.0 (2007-09) 6.2.4 Guard Period for TDD Operation For TDD operation with frame structure type 1, the last NGP downlink OFDM symbol(s) in a subframe immediately preceding a downlink-to-uplink switch point can be reserved for guard time and consequently not transmitted. The supported guard periods are listed in Table 6.2.4-1. Table 6.2.4-1: Guard periods for TDD operation with frame structure type 1. Configuration Supported guard periods in OFDM symbols Subframe 0 Subframe 5 All other subframes Normal cyclic prefix Δf = 15 kHz 0, 1, 2, 3, 4, 5 0, 1, 2, 3, 4, 5 0, 1, 2, 3, 4, 5, 12 Extended cyclic prefix Δf = 15 kHz 0, 1, 2, 3 0, 1, 2, 3, 4 0, 1, 2, 3, 4, 10 For frame structure type 2, the GP field in Figure 4.2-1 serves as a guard period. Longer guard periods can be obtained by not using UpPTS and subframe 1 for transmission. 6.3 General structure for downlink physical channels This section describes a general structure, applicable to more than one physical channel. The baseband signal representing a downlink physical channel is defined in terms of the following steps: - scrambling of coded bits in each of the code words to be transmitted on a physical channel - modulation of scrambled bits to generate complex-valued modulation symbols - mapping of the complex-valued modulation symbols onto one or several transmission layers - precoding of the complex-valued modulation symbols on each layer for transmission on the antenna ports - mapping of complex-valued modulation symbols for each antenna port to resource elements - generation of complex-valued time-domain OFDM signal for each antenna port Figure 6.3-1: Overview of physical channel processing. 6.3.1 Scrambling For each code word q , the block of bits (0),..., ( ( ) 1) b(q) b(q) M q − , where ( ) bit c(q) c(q) M − . Up to two code words can be transmitted in one subframe, i.e., q∈{0,1}. 3GPP M q is the number of bits in code word q bit transmitted on the physical channel in one subframe, shall be scrambled prior to modulation, resulting in a block of scrambled bits (0),..., ( (q) 1) bit
  • 26. Release 8 26 3GPP TS 36.211 V2.0.0 (2007-09) 6.3.2 Modulation For each code word q , the block of scrambled bits c(q) (0),..., c(q) ( M (q) − 1) shall be modulated as described in d (q) d (q) M − for code word q shall be mapped onto the x i d i 2 (1) x i d i x i d i x i d i x i d i x i d i 3GPP bit Section 7 using one of the modulation schemes in Table 6.3.2-1, resulting in a block of complex-valued modulation symbols d (q) (0),..., d (q) ( M (q) − 1) . symb Table 6.3.2-1: Modulation schemes Physical channel Modulation schemes PDSCH QPSK, 16QAM, 64QAM PMCH QPSK, 16QAM, 64QAM 6.3.3 Layer mapping The complex-valued modulation symbols for each of the code words to be transmitted are mapped onto one or several layers. Complex-valued modulation symbols (0),..., ( (q) 1) symb layers [ ]T x(i) = x(0) (i) ... x(υ −1) (i) , 0,1,..., layer 1 i = Msymb − where υ is the number of layers and layer Msymb is the number of modulation symbols per layer. 6.3.3.1 Layer mapping for transmission on a single antenna port For transmission on a single antenna port, a single layer is used, υ = 1 , and the mapping is defined by x(0) (i) = d (0) (i) with (0) Msymb layer = M symb . 6.3.3.2 Layer mapping for spatial multiplexing For spatial multiplexing, the layer mapping shall be done according to Table 6.3.3.2-1. The number of layers υ is less than or equal to the number of antenna ports P used for transmission of the physical channel. Table 6.3.3.2-1: Codeword-to-layer mapping for spatial multiplexing Number of layers Number of code words Codeword-to-layer mapping 0,1,..., layer 1 i = Msymb − 1 1 x(0) (i) = d (0) (i) (0) symb layer Msymb = M x(0) (i) = d (0) (i) 2 2 x(1) (i) = d (1) (i) (1) symb Msymb layer = M (0) symb = M x(0) (i) = d (0) (i) 3 2 (1) (1) ( ) = (2 ) (2) (1) ( ) = (2 + 1) symb Msymb layer = M (0) symb = M (0) (0) ( ) = (2 ) (1) (0) ( ) = (2 + 1) 4 2 (2) (1) ( ) = (2 ) (3) (1) ( ) = (2 + 1) layer Msymb = M = M 2 (1) 2 symb (0) symb
  • 27. Release 8 27 3GPP TS 36.211 V2.0.0 (2007-09) 6.3.3.3 Layer mapping for transmit diversity For transmit diversity, the layer mapping shall be done according to Table 6.3.3.3-1. There is only one codeword and the number of layers υ is equal to the number of antenna ports P used for transmission of the physical channel. Table 6.3.3.3-1: Codeword-to-layer mapping for transmit diversity x i d i x i d i x i d i x i d i x i d i x i d i ( ) ( ) M M 3GPP Number of layers Number of code words Codeword-to-layer mapping 0,1,..., layer 1 i = Msymb − (0) (0) = ( ) (2 ) 2 1 (1) ( ) = (0) (2 + 1) (0) 2 symb layer Msymb = M 4 1 (0) (0) = ( ) (4 ) (1) (0) = + ( ) (4 1) (2) (0) = + ( ) (4 2) (3) (0) = + ( ) (4 3) (0) 4 symb layer Msymb = M 6.3.4 Precoding The precoder takes as input a block of vectors [ ]T x(i) = x(0) (i) ... x(υ −1) (i) , 0,1,..., layer 1 i = Msymb − from the layer mapping and generates a block of vectors y(i) = [... y( p) (i) ...]T , 0,1,..., ap 1 i = Msymb − to be mapped onto resources on each of the antenna ports, where y ( p) (i) represents the signal for antenna port p . 6.3.4.1 Precoding for transmission on a single antenna port For transmission on a single antenna port, precoding is defined by y( p) (i) = x(0) (i) where p∈{0,4,5} is the number of the single antenna port used for transmission of the physical channel and i = 0,1,..., Msymb ap − 1 , layer symb ap Msymb = M . 6.3.4.2 Precoding for spatial multiplexing Precoding for spatial multiplexing is only used in combination with layer mapping for spatial multiplexing as described in Section 6.3.3.2. Spatial multiplexing supports two or four antenna ports and the set of antenna ports used is p∈{0,1}or p∈{0,1,2,3}, respectively. 6.3.4.2.1 Precoding for zero and small-delay CDD For zero-delay and small-delay cyclic delay diversity (CDD), precoding for spatial multiplexing is defined by ⎤ ⎥ ⎥ ⎥ ⎦ ⎡ ⎢ ⎢ ⎢ ⎣ = ⎤ ⎥ ⎥ ⎥ ⎦ ⎡ ⎢ ⎢ ⎢ ⎣ x i ( ) y i ( ) (0) (0) − − ( ) ( ) ( 1) ( 1) x i D k W i y i i P υ where the precoding matrix W(i) is of size P×υ , the quantity D(ki ) is a diagonal matrix for support of cyclic delay diversity, ki represents the frequency-domain index of the resource element to which modulation symbol i is mapped to and 0,1,..., ap 1 i = Msymb − , layer symb ap Msymb = M .
  • 28. Release 8 28 3GPP TS 36.211 V2.0.0 (2007-09) The matrix D(ki ) shall be selected from Table 6.3.4.2.1-1, where a UE-specific value of δ is semi-statically configured in the UE and the eNodeB by higher layer signalling. The quantity η in Table 6.3.4.2.1-1 is the smallest number from the set {128,256,512,1024,2048} such that RB 1 0 ⎡ 0 e− j2π ⋅ki ⋅δ 1 0 0 0 0 0 0 0 0 0 ( ) ( ) M M P υ 3GPP sc DL η ≥ NRB N . Table 6.3.4.2.1-1: Zero and small delay cyclic delay diversity. Set of δ antenna Number of layers υ D(ki ) No ports used CDD Small delay 1 {0,1} 2 ⎤ ⎥⎦ ⎢⎣ 0 2 η 1 2 3 {0,1,2,3} 4 ⎤ ⎥ ⎥ ⎥ ⎥ ⎦ ⎡ ⎢ ⎢ ⎢ ⎢ ⎣ − ⋅ ⋅ − ⋅ ⋅ − ⋅ ⋅ π δ π δ π δ 2 3 2 2 2 0 0 0 i i i j k j k j k e e e 0 1η For spatial multiplexing, the values of W(i) shall be selected among the precoder elements in the codebook configured in the eNodeB and the UE. The eNodeB can further confine the precoder selection in the UE to a subset of the elements in the codebook using codebook subset restrictions. The configured codebook shall be selected from Table 6.3.4.2.3-1 or 6.3.4.2.3-2. 6.3.4.2.2 Precoding for large delay CDD For large-delay CDD, precoding for spatial multiplexing is defined by ⎤ ⎥ ⎥ ⎥ ⎦ ⎡ ⎢ ⎢ ⎢ ⎣ = ⎤ ⎥ ⎥ ⎥ ⎦ ⎡ ⎢ ⎢ ⎢ ⎣ x i ( ) y i ( ) (0) (0) − ( ) − ( ) ( 1) ( 1) x i W i D i U y i where the precoding matrix W(i) is of size P×υ and 0,1,..., ap 1 i = Msymb − , layer symb ap Msymb = M . The diagonal size-υ ×υ matrix D(i) supporting cyclic delay diversity and the size-υ ×υ matrix U are both given by Table 6.3.4.2.2-1 for different numbers of layers υ . The values of the precoding matrix W(i) shall be selected among the precoder elements in the codebook configured in the eNodeB and the UE. The eNodeB can further confine the precoder selection in the UE to a subset of the elements in the codebook using codebook subset restriction. The configured codebook shall be selected from Table 6.3.4.2.3-1 or 6.3.4.2.3-2.
  • 29. Release 8 29 3GPP TS 36.211 V2.0.0 (2007-09) Table 6.3.4.2.2-1: Large-delay cyclic delay diversity 1 1 ⎡ 1 − 2 2 ⎤ 1 1 1 j j e e 2 3 4 3 − π − π j 4 3 j 8 3 1 1 1 1 j j j 2 4 4 4 6 4 − − − π π π e e e j j j 4 4 8 4 12 4 − − − π π π e e e j j j 6 4 12 4 18 4 ⎤ 1 ⎡ 0 ⎤ ⎡ 1 ⎡ 1 2 1 ⎤ ⎡ −1 ⎤ ⎡ 1 2 j ⎤ ⎡ − j 3GPP Number of layers υ U D(i) 1 [1] [1] 2 ⎥⎦ ⎤ ⎢⎣ ⎤ 1 0 ⎡ 0 − 2 2 π j e ⎥⎦ ⎢⎣ e j πi 3 ⎥ ⎥ ⎥ ⎦ ⎡ ⎢ ⎢ ⎢ 1 ⎣ e e − − 1 π π ⎤ ⎥ ⎥ ⎥ ⎦ 1 0 0 ⎡ ⎢ ⎢ ⎢ ⎣ 0 0 − − 4 3 2 3 0 0 j i j i e e π π 4 ⎤ ⎥ ⎥ ⎥ ⎥ ⎦ ⎡ ⎢ ⎢ ⎢ ⎢ 1 1 ⎣ − − − 1 π π π e e e ⎤ ⎥ ⎥ ⎥ ⎥ ⎦ 1 0 0 0 ⎡ ⎢ ⎢ ⎢ ⎢ ⎣ 0 0 0 0 0 0 − − − 6 4 4 4 2 4 0 0 0 j i j i j i e e e π π π 6.3.4.2.3 Codebook for precoding For transmission on two antenna ports, p∈{0,1}, the precoding matrix W(i) for zero, small, and large-delay CDD shall be selected from Table 6.3.4.2.3-1 or a subset thereof. Table 6.3.4.2.3-1: Codebook for transmission on antenna ports {0,1}. Codebook index Number of layers υ 1 2 0 ⎥⎦ ⎢⎣ ⎤ ⎥⎦ ⎡ 1 0 2 0 1 ⎢⎣ 1 1 ⎥⎦ ⎢⎣ 0 ⎤ ⎥⎦ 1 1 2 ⎢⎣ ⎡ 1 −1 1 2 ⎥⎦ ⎢⎣ 1 ⎤ ⎥⎦ 1 1 2 ⎡ j − j ⎢⎣ 1 3 ⎥⎦ ⎤ ⎢⎣ 1 1 2 - 4 ⎥⎦ ⎢⎣ 1 - 1 5 ⎥⎦ ⎢⎣ 1 2 - For transmission on four antenna ports, p∈{0,1,2,3}, the precoding matrix W for zero, small, and large-delay CDD shall be selected from Table 6.3.4.2.3-2 or a subset thereof. The quantity {s} Wn denotes the matrix defined by the H n H columns given by the set {s} from the expression n Wn = I − 2unun u u where I is the 4× 4 identity matrix and the vector un is given by Table 6.3.4.2.3-2.
  • 30. Release 8 30 3GPP TS 36.211 V2.0.0 (2007-09) Table 6.3.4.2.3-2: Codebook for transmission on antenna ports {0,1,2,3}. Codebook index un Number of layers υ 1 0 0 0 1 0 0 1 0 3GPP 1 2 3 4 0 u0 = [1 −1 −1 −1]T {1} W0 3 {124} W0 2 {1234} W0 2 {14} W0 1 u1 = [1 − j 1 j]T {1} W1 3 {123} W1 2 {1234} W1 2 {12} W1 2 u [1 1 1 1]T 2 = − {1} W2 3 {123} W2 2 {3214} W2 2 {12} W2 3 u3 = [1 j 1 − j]T {1} W3 2 {12} W3 W3 {123} 3 W3 {3214} 2 4 [ ]T u4 = 1 (−1− j) 2 − j (1− j) 2 {1} W4 3 {124} W4 2 {1234} W4 2 {14} W4 5 [ ]T u5 = 1 (1− j) 2 j (−1− j) 2 {1} W5 3 {124} W5 2 {1234} W5 2 {14} W5 6 [ ]T u6 = 1 (1+ j) 2 − j (−1+ j) 2 {1} W6 3 {134} W6 2 {1324} W6 2 {13} W6 7 [ ]T u7 = 1 (−1+ j) 2 j (1+ j) 2 {1} W7 3 {134} W7 2 {1324} W7 2 {13} W7 8 u8 = [1 −1 1 1]T {1} W8 3 {124} W8 2 {1234} W8 2 {12} W8 9 u9 = [1 − j −1 − j]T {1} W9 2 {14} W9 W9 {134} 3 W9 {1234} 2 10 u10 = [1 1 1 −1]T {1} W10 3 {123} W10 2 {1324} W10 2 {13} W10 11 u11 = [1 j −1 j]T {1} W11 3 {134} W11 2 {1324} W11 2 {13} W11 12 u12 = [1 −1 −1 1]T {1} W12 3 {123} W12 2 {1234} W12 2 {12} W12 13 u13 = [1 −1 1 −1]T {1} W13 3 {123} W13 2 {1324} W13 2 {13} W13 14 u14 = [1 1 −1 −1]T {1} W14 3 {123} W14 2 {3214} W14 2 {13} W14 15 u15 = [1 1 1 1]T {1} W15 3 {123} W15 2 {1234} W15 2 {12} 15 W 6.3.4.3 Precoding for transmit diversity Precoding for transmit diversity is only used in combination with layer mapping for transmit diversity as described in Section 6.3.3.3. The precoding operation for transmit diversity is defined for two and four antenna ports. For transmission on two antenna ports, p∈{0,1}, the output [ ]T y(i) = y(0) (i) y(1) (i) of the precoding operation is defined by ( ) ( ) ( ) ( )⎥ ⎥ ⎥ ⎥ ⎥ ⎤ ⎦ ⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ ⎤ ⎥ ⎥ ⎥ ⎥ ⎦ ⎡ ⎢ ⎢ ⎢ ⎢ ⎣ − − = ⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ ⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ y i (2 ) y i (2 ) (0) (1) y i (2 + 1) + (0) x i Re ( ) (1) x i Re ( ) (0) x i Im ( ) Im ( ) j 1 0 0 (2 1) (1) (0) (1) x i j j j y i for 0,1,..., layer 1 i = Msymb − with layer symb ap Msymb = 2M . For transmission on four antenna ports, p∈{0,1,2,3}, the output [ ]T y(i) = y(0) (i) y(1) (i) y(2) (i) y(3) (i) of the precoding operation is defined by
  • 31. Release 8 31 3GPP TS 36.211 V2.0.0 (2007-09) 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 j 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 j 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 y( p) y( p) M − shall be mapped in sequence starting with y( p) (0) to virtual resource blocks assigned for transmission. The mapping to resource elements (k,l) on antenna port p not reserved for other purposes shall be in increasing order of first the index k and then the index l , starting with the first slot in a subframe. 6.4 Physical downlink shared channel The physical downlink shared channel shall be processed and mapped to resource elements as described in Section 6.3 with the following exceptions: 3GPP ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎤ ⎦ ⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ ⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ ⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ − − − − = ⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ ⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ y i (4 ) y i (4 ) y i (4 ) y i (4 ) (0) (1) (2) (3) y i (4 + 1) y i (4 + 1) y i (4 + 1) y i (4 + 1) y i (4 + 2) (0) (1) (2) (3) y i (4 + 2) y i (4 + 2) y i (4 + 2) y i (4 + 3) y i (4 + 3) y i (4 + 3) + (0) x i Re ( ) (1) x i Re ( ) (2) x i Re ( ) (3) x i Re ( ) (0) x i Im ( ) (1) x i Im ( ) (2) x i Im ( ) Im ( ) 0 0 1 0 0 0 0 (4 3) (3) (0) (1) (2) (3) (0) (1) (2) (3) x i j j j j j j y i for 0,1,..., layer 1 i = Msymb − with layer symb ap Msymb = 4M . 6.3.5 Mapping to resource elements For each of the antenna ports used for transmission of the physical channel, the block of complex-valued symbols (0),..., ( ap 1) symb - The set of antenna ports used for transmission of the PDSCH is one of {0}, {0,1}, or {0,1,2,3} if UE-specific reference signals are not transmitted - The antenna ports used for transmission of the PDSCH is {5} if UE-specific reference signals are transmitted 6.5 Physical multicast channel The physical multicast channel shall be processed and mapped to resource elements as described in Section 6.3 with the following exceptions: - No transmit diversity scheme is specified - For transmission on a single antenna port, layer mapping and precoding shall be done assuming a single antenna port and the transmission shall use antenna port 4.
  • 32. Release 8 32 3GPP TS 36.211 V2.0.0 (2007-09) 6.6 Physical broadcast channel 6.6.1 Scrambling The block of bits b(0),...,b(Mbit −1) , where Mbit is the number of bits transmitted on the physical broadcast channel, shall be scrambled prior to modulation, resulting in a block of scrambled bits c(0),...,c(Mbit −1). 6.6.2 Modulation The block of scrambled bits c(0),...,c(Mbit −1) shall be modulated as described in Section 7, resulting in a block of complex-valued modulation symbols d(0),..., d(Msymb −1) . Table 6.6.2-1 specifies the modulation mappings applicable for the physical broadcast channel. Table 6.6.2-1: PBCH modulation schemes Physical channel Modulation schemes PBCH QPSK 6.6.3 Layer mapping and precoding The block of modulation symbols d(0),...,d(Msymb −1) shall be mapped to layers according to one of Sections 6.3.3.1 or 6.3.3.3 with symb (0) Msymb = M and precoded according to one of Sections 6.3.4.1 or 6.3.4.3, resulting in a block of vectors y(i) = [y(0) (i) ... y(P−1) (i)]T , i = 0,...,Msymb −1, where y ( p) (i) represents the signal for antenna port p and where p = 0,..., P −1and the number of antenna ports P∈{1,2,4}. 6.6.4 Mapping to resource elements The block of complex-valued symbols y( p) (0),..., y( p) ( M symb − 1) for each antenna port is transmitted during 4 consecutive radio frames and shall be mapped in sequence starting with y(0) to physical resource blocks number ( DL 1) 2 3 NRB − − to ( 1) 2 2 DL NRB − + in case DL RB N is an odd number and DL 2 3 3GPP NRB − to 2 2 DL NRB + in case DL NRB is an even number. The mapping to resource elements (k,l) not reserved for transmission of reference signals shall be in increasing order of first the index k , then the index l in subframe 0, then the slot number and finally the radio frame number. For frame structure type 2, only subframe 0 in the first half-frame of a radio frame is used for PBCH transmission. The set of values of the index l to be used in subframe 0 in each of the four radio frames during which the physical broadcast channel is transmitted is given by Table 6.6.4-1. Table 6.6.4-1: Index value l for the PBCH Configuration Values of index l Frame structure type 1 Frame structure type 2 Normal cyclic prefix Δf = 15 kHz 3, 4 in slot 0 of subframe 0 0, 1 in slot 1 of subframe 0 3, 4, 5, 6 In subframe 0 in the first half-frame of a radio frame Extended cyclic prefix Δf = 15 kHz 3 in slot 0 of subframe 0 0, 1, 2 in slot 1 of subframe 0 3, 4, 5, 6 In subframe 0 in the first half-frame of a radio frame 6.7 Physical control format indicator channel The physical control format indicator channel carries information about the number of OFDM symbols (1, 2 or 3) used for transmission of PDCCHs in a subframe.
  • 33. Release 8 33 3GPP TS 36.211 V2.0.0 (2007-09) 6.7.1 Scrambling The block of bits b(0),...,b(31) transmitted in one subframe shall be scrambled prior to modulation, resulting in a block of scrambled bits c(0),...,c(31) . The scrambling sequence is uniquely defined by the physical-layer cell identity. 6.7.2 Modulation The block of scrambled bits c(0),...,c(31) shall be modulated as described in Section 7, resulting in a block of complex-valued modulation symbols d(0),...,d(15) . Table 6.7.2-1 specifies the modulation mappings applicable for the physical b(i) b(i) M − on each of the control channels to be transmitted in a subframe, where (i) 3GPP control format indicator channel. Table 6.7.2-1: PCFICH modulation schemes Physical channel Modulation schemes PCFICH QPSK 6.7.3 Layer mapping and precoding The block of modulation symbols d(0),...,d(15) shall be mapped to layers according to one of Sections 6.3.3.1 or 6.3.3.3 with symb (0) Msymb = M and precoded according to one of Sections 6.3.4.1 or 6.3.4.3, resulting in a block of vectors y(i) = [y(0) (i) ... y(P−1) (i)]T , i = 0,...,15 , where y ( p) (i) represents the signal for antenna port p and where p = 0,..., P −1and the number of antenna ports P∈{1,2,4}. 6.7.4 Mapping to resource elements For transmission on two or four antenna ports, the block of vectors y(i) = [y(0) (i) ... y(P−1) (i)]T , i = 0,...,15 shall be mapped in a cell-specific way to four groups of four contiguous physical resource elements excluding reference symbols in the first OFDM symbol in a downlink subframe. 6.8 Physical downlink control channel 6.8.1 PDCCH formats The physical downlink control channel carries scheduling assignments and other control information. A physical control channel is transmitted on an aggregation of one or several control channel elements (CCEs), where a control channel element corresponds to a set of resource elements. Multiple PDCCHs can be transmitted in a subframe. The PDCCH supports multiple formats as listed in Table 6.8.1-1. Table 6.8.1-1: Supported PDCCH formats PDCCH format Number of CCEs Number of PDCCH bits 0 1 1 2 2 4 3 8 6.8.2 Scrambling The block of bits (0),..., ( (i) 1) bit Mbit is the number of bits in one subframe to be transmitted on physical downlink control channel number i , shall be multiplexed, resulting in a block of
  • 34. Release 8 34 3GPP TS 36.211 V2.0.0 (2007-09) b(0) b(0) M − b b M − b nPDCCH − b nPDCCH − M nPDCCH − , where nPDCCH is the bits (0),..., ( 1), (0),..., ( 1),..., (0),..., ( ( -1) 1) b(0) b(0) M − b b M − b nPDCCH − b nPDCCH − M nPDCCH − shall be z( p) z( p) M − shall be cyclically shifted by 4NCSS symbols, w( p) w( p) M − where ( ) ( ) CSS symb w( p) w( p) M − shall be mapped in sequence starting with w( p) (0) 3GPP bit (1) ( 1) ( 1) bit (0) (1) (1) bit number of PDCCHs transmitted in the subframe. The block of bits (0),..., ( 1), (0),..., ( 1),..., (0),..., ( ( -1) 1) bit (1) ( 1) ( 1) bit (0) (1) (1) bit nPDCCH i scrambled prior to modulation, resulting in a block of scrambled bits c(0),...,c(Mtot −1) where Σ − = = 1 M M i . 0 ( ) tot bit 6.8.3 Modulation The block of scrambled bits c(0),...,c(Mtot −1) shall be modulated as described in Section 7, resulting in a block of complex-valued modulation symbols d(0),..., d(Msymb −1) . Table 6.8.3-1 specifies the modulation mappings applicable for the physical downlink control channel. Table 6.8.3-1: PDCCH modulation schemes Physical channel Modulation schemes PDCCH QPSK 6.8.4 Layer mapping and precoding The block of modulation symbols d(0),...,d(Msymb −1) shall be mapped to layers according to one of Sections 6.3.3.1 or 6.3.3.3 with symb (0) Msymb = M and precoded according to one of Sections 6.3.4.1 or 6.3.4.3, resulting in a block of vectors y(i) = [y(0) (i) ... y(P−1) (i)]T , i = 0,...,Msymb −1 to be mapped onto resources on the antenna ports used for transmission, where y ( p) (i) represents the signal for antenna port p . 6.8.5 Mapping to resource elements The block of complex-valued symbols (0),..., ( symb 1) y( p) y( p) M − for each antenna port used for transmission shall be z( p) z( p) M − . permuted in groups of four symbols, resulting in a block of complex-valued symbols (0),..., ( symb 1) The block of complex-valued symbols (0),..., ( symb 1) resulting in the sequence (0),..., ( symb 1) w( p) i = z( p) (i + 4N )modM . The block of complex-valued symbols (0),..., ( symb 1) to resource elements corresponding to the physical control channels. The mapping to resource elements (k,l) on antenna port p not used for reference signals, PHICH or PCFICH shall be in increasing order of first the index k and then the index l , where l = 0,..., L −1 and L ≤ 3 corresponds to the value transmitted on the PCFICH. In case of the PDCCHs being transmitted using antenna port 0 only, the mapping operation shall assume reference signals corresponding to antenna port 0 and antenna port 1 being present, otherwise the mapping operation shall assume reference signals being present corresponding to the actual antenna ports used for transmission of the PDCCH. 6.9 Physical hybrid ARQ indicator channel The PHICH carries the hybrid-ARQ ACK/NAK. 6.9.1 Scrambling The block of bits b(0),...,b(Mbit −1) transmitted in one subframe shall be scrambled prior to modulation, resulting in a block of scrambled bits c(0),...,c(Mbit −1) .
  • 35. Release 8 35 3GPP TS 36.211 V2.0.0 (2007-09) 6.9.2 Modulation For transmission on one or two antenna ports, the block of scrambled bits c(0),...,c(Mbit −1) shall be bit-wise multiplied with an orthogonal sequence according to ( PHICH ) ( ) ( ) z i ⋅ NSF + m = w m ⋅ c i PHICH SF m N 0,..., 1 = − i = M − 3GPP where 0,..., 1 bit The sequence [ (0) ( PHICH 1)] w L w NSF − is given by Table 6.9.2-1. Table 6.9.2-1: Orthogonal sequences [ (0) ( PHICH 1)] w L w NSF − for PHICH Sequence index Orthogonal sequence PHICH 4 NSF = 0 1 2 3 The block of bits z(i) shall be modulated as described in Section 7, resulting in a block of complex-valued modulation symbols d(0),...,d(Msymb −1) . Table 6.9.2-2 specifies the modulation mappings applicable for the physical hybrid ARQ indicator channel. Table 6.9.2-2: PHICH modulation schemes Physical channel Modulation schemes PHICH 6.9.3 Layer mapping and precoding For transmission on one or two antenna ports, the block of modulation symbols d(0),..., d(Msymb −1) shall be mapped to layers according to one of Sections 6.3.3.1 or 6.3.3.3 with symb (0) Msymb = M and precoded according to one of Sections 6.3.4.1 or 6.3.4.3, resulting in a block of vectors y(i) = [y(0) (i) ... y(P−1) (i)]T , i = 0,...,Msymb −1, where y ( p) (i) represents the signal for antenna port p and where p = 0,..., P −1and the number of antenna ports P∈{1,2,4}. 6.9.4 Mapping to resource elements The block of complex-valued symbols y( p) (0),..., y( p) ( M symb − 1) for each of the antenna ports used for transmission shall be mapped to three groups of four contiguous physical resource elements not used for reference signals and PCFICH. In case multiple PHICHes are mapped to the same resource elements, these PHICHes shall be summed prior to the mapping. Higher layers can configure the PHICH to span the first or the first three OFDM symbols in a subframe. The value configured puts a lower limit on the size of the control region signalled by the PCFICH. If the PHICH is configured to span three OFDM symbols, there is one group of four resource elements in each of the three OFDM symbols. 6.10 Reference signals Three types of downlink reference signals are defined:
  • 36. Release 8 36 3GPP TS 36.211 V2.0.0 (2007-09) - Cell-specific reference signals, associated with non-MBSFN transmission - MBSFN reference signals, associated with MBSFN transmission - UE-specific reference signals (supported in frame structure type 2 only) There is one reference signal transmitted per downlink antenna port. 6.10.1 Cell-specific reference signals Editor’s note: The reference signal description in this section is applicable to Δf = 15 kHz only. Cell-specific reference signals shall be transmitted in all downlink subframes in a cell supporting non-MBSFN transmission. In case the subframe is used for transmission with MBSFN, only the first two OFDM symbols in a subframe can be used for transmission of cell-specific reference symbols. Cell-specific reference signals are transmitted on one or several of antenna ports 0 to 3. 6.10.1.1 Sequence generation The generation of the two-dimensional reference signal sequence rm,n (ns ) , where ns is the slot number within the radio frame, depends on the cyclic prefix used. For normal cyclic prefix, rm,n (ns ) is generated as the symbol-by-symbol product ( ) ( s ) S = S S S T i = T i 144424443 4 3 1 1 π π π π j j j j e e e e 0 1 1 3GPP PRS , OS rm,n ns = rm,n ⋅ rm n n of a two-dimensional orthogonal sequence OS PRS rm,n n . There are NOS = 3 rm,n and a two-dimensional pseudo-random sequence ( s ) different two-dimensional orthogonal sequences and NPRS = 170 different two-dimensional pseudo-random sequences. There is a one-to-one mapping between the three identities within the physical-layer cell identity group and the three two-dimensional orthogonal sequences such that orthogonal sequence n∈{0,1,2} corresponds to identity n within the physical-layer cell identity group in Section 6.11.1.1. For extended cyclic length, rm,n (ns ) is generated from a two-dimensional pseudo-random sequence rm,PRS n ( n s ) . There is a one-to-one mapping between the physical-layer cell identity and the NPRS = 510 different two-dimensional pseudo-random sequences. 6.10.1.1.1 Orthogonal sequence generation The two-dimensional orthogonal sequence for normal cyclic prefix shall be generated according to OS m n r , = sm,n , n = 0,1 and m = 0,1,...,219 The quantity sm,n is the entry at the m:th row and the n:th column of the matrix Si , defined as [ ... ] , 0,1,2 74 entries i T i T i where ⎤ ⎥ ⎥ ⎥ ⎦ ⎡ = ⎢ ⎢ ⎢ ⎣ ⎤ ⎥ ⎥ ⎥ ⎦ ⎡ = ⎢ ⎢ ⎢ ⎣ ⎤ ⎥ ⎥ ⎥ 1 1 ⎦ ⎡ = ⎢ ⎢ ⎢ ⎣ 4 3 2 3 2 3 4 3 2 2 3 4 3 2 3 1 1 , 1 , 1 1 π π π π j j j j e e S e e S S for orthogonal sequence 0, 1, and 2, respectively. The orthogonal sequence to use is configured by higher layers.
  • 37. Release 8 37 3GPP TS 36.211 V2.0.0 (2007-09) 6.10.1.1.2 Pseudo-random sequence generation The two-dimensional binary pseudo-random sequence is denoted ( s ) ( ) a , rm n n m v v 6 mod 6 for frame structure type1 shift 6 mod 6 for frame structure type 2 n p 0 if = 0 and ∈ 0,1 n p 1 if = 0 and ∈ 2,3 + + N n p 3 if 1and 0,1 − = ∈ DL RB m N 0,1,...,2 1 m ' m 110 N DL RB p 0,1 if 0,1 p 0 if 2,3 and frame structure type1is used n p 3 if = 0 n p 3 + 3 if = 1 = n p 3 3( mod 2) if 3 3( mod 2) if 2 s n p n p 3 if = 0 n p 3 + 3 if = 1 = 3 n if p 2 3 3 n if p 3 3GPP PRS rm,n n where ns is the slot number within a radio frame. 6.10.1.2 Mapping to resource elements The two-dimensional reference signal sequence rm,n (ns ) shall be mapped to complex-valued modulation symbols ( ) ak p , l used as reference symbols for antenna port p in slot ns according to ', ( s ) p k l = where ( ) ( ) ⎪ ⎪ ⎧ { } { } { } ⎩ { } ⎪ ⎪ ⎨ − = ∈ = ⎩ ⎨ ⎧ + + = 2 if 1and 2,3 DL symb DL symb shift N n p l m v v k and = ⋅ − = + − ⎪⎩ ⎧ { } { } { } ⎪⎨ ∈ ∈ ∈ = p 0,1 if 2,3 and frame structure type 2 is used n The variables v and vshift define the position in the frequency domain for the different reference signals where v is given by ⎧ ⎪ ⎪ ⎩ ⎪ ⎪ ⎨ = + = s v for frame structure type 1 and by ⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ = + = v for frame structure type 2. The cell-specific frequency shift vshift ∈{0,1,...,5} is derived from the physical-layer cell identity. Resource elements (k, l) used for reference signal transmission on any of the antenna ports in a slot shall not be used for any transmission on any other antenna port in the same slot and set to zero. When the number of antenna ports configured for cell-specific reference signals equals four, the eNodeB can control in which subframes the reference signals for p = 2,3 are transmitted.
  • 38. Release 8 38 3GPP TS 36.211 V2.0.0 (2007-09) Figures 6.10.1.2-1, 6.10.1.2-2, and 6.10.1.2-3 and 6.10.1.2-4 illustrate the resource elements used for reference signal transmission according to the above definition. The notation Rp is used to denote a resource element used for reference signal transmission on antenna port p . l = 0 l = 6 l = 0 l = 6 3GPP R0 R0 R0 R0 R0 R0 R0 R0 l = 0 l = 6 l = 0 l = 6 R0 R0 R0 R0 R0 R0 R0 R0 l = 0 l = 6 l = 0 l = 6 R1 R1 R1 R1 R1 R1 R1 R1 l = 0 l = 6 l = 0 l = 6 R3 R3 R3 R3 l = 0 l = 6 l = 0 l = 6 even-numbered slots odd-numbered slots R0 R0 R0 R0 R0 R0 R0 R0 l = 0 l = 6 l = 0 l = 6 even-numbered slots odd-numbered slots R1 R1 R1 R1 R1 R1 R1 R1 even-numbered slots odd-numbered slots Resource element (k,l) Not used for transmission on this antenna port Reference symbols on this antenna port R2 R2 R2 R2 l = 0 l = 6 l = 0 l = 6 even-numbered slots odd-numbered slots Four antenna ports Two antenna ports One antenna port Antenna port 0 Antenna port 1 Antenna port 2 Antenna port 3 Figure 6.10.1.2-1. Mapping of downlink reference signals (frame structure type 1, normal cyclic prefix).
  • 39. Release 8 39 3GPP TS 36.211 V2.0.0 (2007-09) l = 0 l = 5 l = 0 l = 5 even-numbered slots odd-numbered slots 3GPP R0 R0 l = 0 l = 5 l = 0 l = 5 R0 R0 R0 R0 R0 R0 R0 R0 R0 R0 R0 R0 R0 R0 l = 0 l = 5 l = 0 l = 5 R1 R1 R1 R1 R1 R1 R1 R1 l = 0 l = 5 l = 0 l = 5 R0 R0 R0 R0 R0 R0 R0 R0 l = 0 l = 5 l = 0 l = 5 even-numbered slots odd-numbered slots Four antenna ports Two antenna ports One antenna port Resource element (k,l) Not used for transmission on this antenna port R1 R1 R1 R1 R1 R1 R1 R1 R3 R3 R3 R3 l = 0 l = 5 l = 0 l = 5 even-numbered slots odd-numbered slots Reference symbols on this antenna port R2 R2 R2 R2 l = 0 l = 5 l = 0 l = 5 even-numbered slots odd-numbered slots Antenna port 0 Antenna port 1 Antenna port 2 Antenna port 3 Figure 6.10.1.2-2. Mapping of downlink reference signals (frame structure type 1, extended cyclic prefix).
  • 40. Release 8 40 3GPP TS 36.211 V2.0.0 (2007-09) Resource element (k,l) Not used for transmission on this antenna port Reference symbols on this antenna port 3GPP R0 R0 R0 R0 l = 0 l = 8 R0 R0 R0 R0 l = 0 l = 8 R1 R1 R1 R1 l = 0 l = 8 subframe R0 R0 R0 R0 l = 0 l = 8 R1 R1 R1 R1 l = 0 l = 8 subframe R2 R2 R2 R2 l = 0 l = 8 subframe R3 R3 R3 R3 l = 0 l = 8 subframe Four antenna ports Two antenna ports One antenna port Antenna port 0 Antenna port 1 Antenna port 2 Antenna port 3 Figure 6.10.1.2-3. Mapping of downlink reference signals (frame structure type 2, normal cyclic prefix).
  • 41. Release 8 41 3GPP TS 36.211 V2.0.0 (2007-09) Resource element (k,l) Not used for transmission on this antenna port Reference symbols on this antenna port 3GPP R0 R0 R0 R0 l = 0 l = 7 R0 R0 R0 R0 l = 0 l = 7 R1 R1 R1 R1 l = 0 l = 7 subframe R0 R0 R0 R0 l = 0 l = 7 R1 R1 R1 R1 l = 0 l = 7 subframe R2 R2 R2 R2 l = 0 l = 7 subframe R3 R3 R3 R3 l = 0 l = 7 subframe Four antenna ports Two antenna ports One antenna port Antenna port 0 Antenna port 1 Antenna port 2 Antenna port 3 Figure 6.10.1.2-4: Mapping of downlink reference signals (frame structure type 2, extended cyclic prefix). 6.10.2 MBSFN reference signals MBSFN reference signals shall only be transmitted in subframes allocated for MBSFN transmissions. MBSFN reference signals are transmitted on antenna port 4. 6.10.2.1 Sequence generation 6.10.2.2 Mapping to resource elements Figures 6.10.2.2-1 and 6.10.2.2-2 illustrate the resource elements used for MBSFN reference signal transmission in case of Δf = 15 kHz for frame structure type 1 and 2 respectively. In case of Δf = 7.5 kHz for a MBSFN-dedicated cell, the MBSFN reference signal shall be mapped to resource elements according to Figures 6.10.2.2-3 and 6.10.2.2-4 for frame structure type 1 and 2, respectively. The notation Rp is used to denote a resource element used for reference signal transmission on antenna port p .
  • 42. Release 8 42 3GPP TS 36.211 V2.0.0 (2007-09) R4 R4 R4 R4 R4 R4 3GPP R4 R4 R4 R4 R4 R4 R4 R4 R4 R4 R4 R4 l = 0 l = 5 l = 0 l = 5 even-numbered slots odd-numbered slots Antenna port 4 Figure 6.10.2.2-1: Mapping of MBSFN reference signals (frame structure type 1, extended cyclic prefix, Δf = 15 kHz ) R4 R4 R4 R4 R4 R4 R4 R4 R4 R4 R4 R4 l = 0 l = 7 subframe Antenna port 4 Figure 6.10.2.2-2: Mapping of MBSFN reference signals (frame structure type 2, extended cyclic prefix, Δf = 15 kHz )
  • 43. Release 8 43 3GPP TS 36.211 V2.0.0 (2007-09) R4 R4 R4 R4 R4 l = 0 l = 2 l = 0 l = 2 R4 R4 R4 3GPP R4 R4 R4 R4 even-numbered slots odd-numbered slots Antenna port 4 Figure 6.10.2.2-3: Mapping of MBSFN reference signals (frame structure type 1, extended cyclic prefix, Δf = 7.5 kHz ) R4 R4 R4 l = 0 l = 3 subframe Antenna port 4 Figure 6.10.2.2-4: Mapping of MBSFN reference signals (frame structure type 2, extended cyclic prefix, Δf = 7.5 kHz ) 6.10.3 UE-specific reference signals UE-specific reference signals are supported for single-antenna-port transmission of PDSCH in frame structure type 2 only and are transmitted on antenna port 5. The UE is informed by higher layers whether the UE-specific reference signal is present and is a valid phase reference for PDSCH demodulation or not.
  • 44. Release 8 44 3GPP TS 36.211 V2.0.0 (2007-09) 6.10.3.1 Sequence generation 6.10.3.2 Mapping to resource elements 6.11 Synchronization signals There are 510 unique physical-layer cell identities. The physical-layer cell identities are grouped into 170 unique physical-layer cell-identity groups, each group containing three unique identities. The grouping is such that each physical-layer cell identity is part of one and only one physical-layer cell-identity group. A physical-layer cell identity is thus uniquely defined by a number in the range of 0 to 169, representing the physical-layer cell-identity group, and a number in the range of 0 to 2, representing the physical-layer identity within the physical-layer cell-identity group. 6.11.1 Primary synchronization signal 6.11.1.1 Sequence generation The sequence used for the primary synchronization signal in a cell shall be selected from a set of three different sequences. There is a one-to-one mapping between the three physical-layer cell identities within the physical-layer cell-identity group and the three sequences used for the primary synchronization signal. The sequence d(n) used for the primary synchronization signal is generated from a frequency-domain Zadoff-Chu sequence according to j un n ( 1) d n e n j u n n ( ) 0,1,...,30 63 = = + + ( 1)( 2) e n ⎥ ⎢ ak l = d n k N N , = n − 31 + l N DL n ⎥ DL RB = − = − − − ⎢ k n N N = − 31 + l N DL n 3GPP ⎧ ⎪⎩ ⎪⎨ = − + − 31,32,...,61 63 u π π where the Zadoff-Chu root sequence index u is given by Table 6.11.1.1-1. Table 6.11.1.1-1: Root indices for the primary synchronization signal. Physical-layer cell identity within the physical-layer cell-identity group Root index u 0 25 1 29 2 34 6.11.1.2 Mapping to resource elements The mapping of the sequence to resource elements depends on the frame structure. The antenna port used for transmission of the primary synchronization signal is not specified. For frame structure type 1, the primary synchronization signal is only transmitted in slots 0 and 10 and the sequence d(n) shall be mapped to the resource elements according to ( ) , 1, 0,...,61 2 symb RB sc DL RB , = − = ⎥ ⎥⎦ ⎢ ⎢⎣ Resource elements (k, l) in slots 0 and 10 where , 1, 5, 4,..., 1,62,63,...,66 2 symb RB sc ⎥ ⎥⎦ ⎢ ⎢⎣ are reserved and not used for transmission of the primary synchronization signal. For frame structure type 2, the primary synchronization signal is transmitted in the DwPTS field.
  • 45. Release 8 45 3GPP TS 36.211 V2.0.0 (2007-09) 6.11.2 Secondary synchronization signal 6.11.2.1 Sequence generation The sequence used for the second synchronization signal is an interleaved concatenation of two length-31 binary sequences obtained as cyclic shifts of a single length-31 M-sequence generated by x5 + x 2 +1. The concatenated sequence is scrambled with a scrambling sequence given by the primary synchronization signal. 6.11.2.2 Mapping to resource elements The mapping of the sequence to resource elements depends on the frame structure. In a subframe, the same antenna port as for the primary synchronization signal shall be used for the secondary synchronization signal. For frame structure type 1, the secondary synchronization signal is only transmitted in slots 0 and 10 and the sequence d(n) shall be mapped to the resource elements according to ⎥ ⎢ ak l = d n k = n − + N N l N n ( ) , 31 , DL 2, 0,...,61 2 ⎥ DL RB = − = − − − ⎢ k n N N = − 31 + l N DL n = ⋅ Δ − + ⋅ − + s t a e l a e l π π k (−) = k + N N and ⎣ RB 2⎦ 1 3GPP symb RB sc DL RB , = − = ⎥ ⎥⎦ ⎢ ⎢⎣ Resource elements (k, l) in slots 0 and 10 where , 2, 5, 4,..., 1,62,63,...,66 2 symb RB sc ⎥ ⎥⎦ ⎢ ⎢⎣ are reserved and not used for transmission of the secondary synchronization signal. For frame structure type 2, the secondary synchronization signal is transmitted in the last OFDM symbol of subframe 0. 6.12 OFDM baseband signal generation The OFDM symbols in a slot shall be transmitted in increasing order of l . The time-continuous signal s ( p ) (t) on l antenna port p in OFDM symbol l in a downlink slot is defined by ( ) ( ) ⎣ ⎦ ⎡ ⎤ ( ) Σ Σ = Δ − − =− / 2 1 ( ) 2 , 1 / 2 ( ) 2 , ( ) RB sc DL RB CP, s ( ) RB sc DL RB CP, s ( ) N N k p j k f t N T k l k N N p j k f t N T k l p l for 0 ≤ t < ( NCP,l + N ) ×Ts where ⎣ DL RB 2⎦ RB sc k (+) = k + N N − . The variable N equals sc DL RB 2048 for Δf =15 kHz subcarrier spacing and 4096 for Δf = 7.5 kHz subcarrier spacing. Table 6.12-1 lists the value of NCP,l that shall be used for the two frame structures. Note that different OFDM symbols within a slot in some cases have different cyclic prefix lengths.
  • 46. Release 8 46 3GPP TS 36.211 V2.0.0 (2007-09) Table 6.12-1: OFDM parameters. Cyclic prefix length NCP,l Configuration Frame structure type 1 Frame structure type 2 Normal cyclic prefix Δf = 15 kHz 160 for l = 0 144 for l = 1,2,...,6 256 for l 0,1,...,8 = Δf = 15 kHz 512 for l = 0,1,...,5 544 for l = 0,1,...,7 3GPP Extended cyclic prefix Δf = 7.5 kHz 1024 for l = 0,1,2 1088 for l = 0,1,...,3 6.13 Modulation and upconversion Modulation and upconversion to the carrier frequency of the complex-valued OFDM baseband signal for each antenna port is shown in Figure 6.13-1. The filtering required prior to transmission is defined by the requirements in [6]. Re{s( p) (t)} l Im{s( p) (t)} l cos (2πf0t) − sin (2πf0t) s( p) (t) l Figure 6.13-1: Downlink modulation. 7 Modulation mapper The modulation mapper takes binary digits, 0 or 1, as input and produces complex-valued modulation symbols, x=I+jQ, as output. 7.1 BPSK In case of BPSK modulation, a single bit0, b(i) , is mapped to a complex-valued modulation symbol x=I+jQ according to Table 7.1-1. Table 7.1-1: BPSK modulation mapping b(i) I Q 0 1 2 1 2 1 −1 2 −1 2 7.2 QPSK In case of QPSK modulation, pairs of bits, b(i),b(i +1) , are mapped to complex-valued modulation symbols x=I+jQ according to Table 7.2-1.
  • 47. Release 8 47 3GPP TS 36.211 V2.0.0 (2007-09) Table 7.2-1: QPSK modulation mapping b(i),b(i +1) I Q 00 1 2 1 2 01 1 2 −1 2 10 −1 2 1 2 11 −1 2 −1 2 7.3 16QAM In case of 16QAM modulation, quadruplets of bits, b(i),b(i +1),b(i + 2),b(i + 3) , are mapped to complex-valued modulation symbols x=I+jQ according to Table 7.3-1. Table 7.3-1: 16QAM modulation mapping b(i),b(i +1),b(i + 2),b(i + 3) I Q 0000 1 10 1 10 0001 1 10 3 10 0010 3 10 1 10 0011 3 10 3 10 0100 1 10 −1 10 0101 1 10 − 3 10 0110 3 10 −1 10 0111 3 10 − 3 10 1000 −1 10 1 10 1001 −1 10 3 10 1010 − 3 10 1 10 1011 − 3 10 3 10 1100 −1 10 −1 10 1101 −1 10 − 3 10 1110 − 3 10 −1 10 1111 − 3 10 − 3 10 7.4 64QAM In case of 64QAM modulation, hextuplets of bits, b(i),b(i +1),b(i + 2),b(i + 3),b(i + 4),b(i + 5) , are mapped to complex-valued modulation symbols x=I+jQ according to Table 7.4-1. 3GPP
  • 48. Release 8 48 3GPP TS 36.211 V2.0.0 (2007-09) Table 7.4-1: 64QAM modulation mapping b(i), b(i + 1), b(i + 2), b(i + 3), b(i + 4), b(i + 5) I Q b(i), b(i + 1), b(i + 2), b(i + 3), b(i + 4), b(i + 5) I Q 000000 3 42 3 42 100000 − 3 42 3 42 000001 3 42 1 42 100001 − 3 42 1 42 000010 1 42 3 42 100010 −1 42 3 42 000011 1 42 1 42 100011 −1 42 1 42 000100 3 42 5 42 100100 − 3 42 5 42 000101 3 42 7 42 100101 − 3 42 7 42 000110 1 42 5 42 100110 −1 42 5 42 000111 1 42 7 42 100111 −1 42 7 42 001000 5 42 3 42 101000 − 5 42 3 42 001001 5 42 1 42 101001 − 5 42 1 42 001010 7 42 3 42 101010 − 7 42 3 42 001011 7 42 1 42 101011 − 7 42 1 42 001100 5 42 5 42 101100 − 5 42 5 42 001101 5 42 7 42 101101 − 5 42 7 42 001110 7 42 5 42 101110 − 7 42 5 42 001111 7 42 7 42 101111 − 7 42 7 42 010000 3 42 − 3 42 110000 − 3 42 − 3 42 010001 3 42 −1 42 110001 − 3 42 −1 42 010010 1 42 − 3 42 110010 −1 42 − 3 42 010011 1 42 −1 42 110011 −1 42 −1 42 010100 3 42 − 5 42 110100 − 3 42 − 5 42 010101 3 42 − 7 42 110101 − 3 42 − 7 42 010110 1 42 − 5 42 110110 −1 42 − 5 42 010111 1 42 − 7 42 110111 −1 42 − 7 42 011000 5 42 − 3 42 111000 − 5 42 − 3 42 011001 5 42 −1 42 111001 − 5 42 −1 42 011010 7 42 − 3 42 111010 − 7 42 − 3 42 011011 7 42 −1 42 111011 − 7 42 −1 42 011100 5 42 − 5 42 111100 − 5 42 − 5 42 011101 5 42 − 7 42 111101 − 5 42 − 7 42 011110 7 42 − 5 42 111110 − 7 42 − 5 42 011111 7 42 − 7 42 111111 − 7 42 − 7 42 3GPP