SlideShare a Scribd company logo
DDR4 Mini Workshop
DDR4 Mini Workshop
DDR4 Mini Workshop
DDR4 Mini Workshop
Server Memory Forum 2011
Server Memory Forum 2011
Disclaimer
Disclaimer
E th h M j it f DDR4 h b d fi d/Fi d th
Even though Majority of DDR4 spec has been defined/Fixed, there
might be chance of update before publicationt
Rev A is expected to be in publice 1H’12 and the contents of this
material might be changed in Final version
g g
DDR4 Outlook
DDR4 Outlook
DDR4 adopts evolutionary path with High BW & reliability scheme
DDR4 adopts evolutionary path with High BW & reliability scheme
Spec items DDR3 DDR4
D it / S d
512Mbp~8Gb 2Gb~16Gb
Density / Speed
512Mbp 8Gb
1.6~2.1Gbps
2Gb 16Gb
1.6~3.2Gbps
Voltage
(VDD/VDDQ/VPP)
1.5V/1.5V/NA
(1.35V/1.35V/NA)
1.2V/1.2V/2.5V
Vref External Vref (VDD/2) Internal Vref (need training)
Interface
Vref External Vref (VDD/2) Internal Vref (need training)
Data IO CTT (34ohm) POD (34ohm)
CMD/ADDR IO CTT CTT
Strobe Bi-dir / diff Bi-dir / diff
Strobe Bi dir / diff Bi dir / diff
Core
architect
# of banks 8Banks 16Banks (4BG)
Page size(X4/8/16) 1KB / 1KB / 2KB 512B / 1KB / 2KB
architect
# prefetch 8bits 8bits
Added function RESET/ZQ/Dynamic ODT + CRC/DBI/Multi preamble ..
Package type/balls
(X4 8/X16)
78 / 96 BGA 78 / 96 BGA
Physical
(X4,8/X16)
78 / 96 BGA 78 / 96 BGA
DIMM type R,LR,U,SoDIMM + ECC SoDIMM
DIMM pins 240 (R,LR,U) / 204 (So) 284 (R,LR,U) / 256 (So)
Bank Group alleviates the needs to increase core frequency from
Bank Group
Bank Group
p q y
previous gen. products to DDR4
DDR DDR2 DDR3 DDR4
BL 2 4 8 8 with BG
Bank 0 Bank 4
Group 0 Group 1
Bank 0 Bank 0
Group 0
BL 2 4 8 8 with BG
Core freq. 200MHz 200MHz 200MHz 200MHz
Bank 0
Bank 1
Bank 2
Bank 4
Bank 5
Bank 6
Bank 0
Bank 1
Bank 2
Bank 0
Bank 1
Bank 2
Bank 3
Sense Amp
Bank 7
Sense Amp
32/64bit
32/64bit
32/64bit
32/64bit
Bank 3
Sense Amp
Bank 3
Sense Amp
64bit
64bit
64bit
64bit
Bank 8
Bank 9
Sense Amp
Bank 12
Bank 13
Sense Amp
Bank 4
Bank 5
Sense Amp
Bank 4
Bank 5
Sense Amp
Bank 10
Bank 11
Bank 14
Bank 15
Group 2 Group 3
Bank 6
Bank 7
Bank 6
Bank 7
Group 1
<X4/X8 16 B k ith 4 B k G > <X16 8 B k ith 2 B k G >
<X4/X8: 16 Banks with 4 Bank Group> <X16: 8 Banks with 2 Bank Group>
Bank Group defines tCCD / tRRD parameters differently between
Bank Group
Bank Group
p / p y
same bank group and different bank group
Data rate
1600 1866 2133 2400
(Mbps)
1600 1866 2133 2400
tCCD_L
(Diff BG)
5nCK 5nCK 6nCK 6nCK
(Diff BG)
tCCD_S
(Same BG)
4nCK 4nCK 4nCK 4nCK
Column
CMD A0 B0 B1
tCCD_S tCCD_L
A0 & B0 are in different BG, B0 & B1 are in same BG
Fine Granularity
Fine Granularity Refresh
Refresh
As density increases, tRFC gets longer and limits performance
y , g g p
Added new function supporting X2/X4 more frequent refresh with
shorter tRFC
Fine granularity refresh shows better performance
Fine granularity refresh shows better performance
Case: 2Gb based 2Rank system Source : IBM JEDEC material
DDR4 supports WRITE CRC to assure better reliability in system
CRC
CRC(Cyclic Redundancy
(Cyclic Redundancy Check)
Check)
DDR4 supports WRITE CRC to assure better reliability in system
Data bits are followed by CRC bits
<CRC data bit mapping for x8 device> <CRC data bit mapping for x4 device>
CRC polynomial is the ATM-8 HEC (X^8+X^2+X^1+1) and 8 CRC
bits are generated from 72 data+DBI bits
Same polynomial as GDDR5
In BC4 case, chopped 4UI will be treated as “1”
With CRC enabled, using burst ordering with A0:A1 is limited (Fixed to 0:0)
- 7
CRC fi i i f il d li b li bili
CRC
CRC(Cyclic Redundancy
(Cyclic Redundancy Check)
Check)
CRC fixes intermittent failure and realizes better system reliability
About 10% of performance gain is expected
A 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
B 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
C 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
C 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
D 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
E 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
F 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
G 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
H 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
Channel
I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
J 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Frequency 1900 1910 1920 1930 1940 1950 1960 1970 1980 1990 2000 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100
Channel Intermittent failure Freq(MHz)
Channel Intermittent failure q( )
- 8
DBI
DBI & DM
& DM
DBI : With DBI Enabled via MRS, DDR4 converts Data byte lane
DQ[0 7] UI DBI Aft C ti D t # f “0” i l di DBI
DBI : With DBI Enabled via MRS, DDR4 converts Data byte lane
per UI. Therefore, it increases # of “1” which doesn’t have DC
current path in VDDQ Termination
DQ[0:7] per UI DBI After Converting Data # of “0” including DBI
0000_0000 0 1111_1111 1
0000_0001 0 1111_1110 2
0000 0011 0 1111 1100 3
0000_0011 0 1111_1100 3
0000_0111 0 1111_1000 4
0000_1111 1 0000_1111 4
0001 1111 1 0001 1111 3
0001_1111 1 0001_1111 3
0011_1111 1 0011_1111 2
0111_1111 1 0111_1111 1
1111 1111 1 1111 1111 0
_ _ 0
• DBI can be enabled separated for each READ/WRITE with MRS option
• If DM is enabled, then WRITE DBI is not supported
• For Read, CRC & DBI can be supported at the same time
, pp
The following is example of training @initialization based upon
High Level Training/Calibration Flow
High Level Training/Calibration Flow
The following is example of training @initialization based upon
supported function in JEDEC spec
Actual training/calibration sequence would be different depending on controller
E t d DDR4 Fl
Current Typical DDR3 System
Example
Expected DDR4 Flow
Power Up
Power Up
Power Up
MRS Setting
MRS Setting
ZQ Calibration
ZQ Calibration
ZQ Calibration
Leveling
(Read  Write)
Leveling
(Read  Write)
( )
IO Training
More MPR Pattern (832)
IO Training
Vref Training
Preamble Training
DQ training w/ MPR
g
Calibration/Training :
Calibration/Training : Vref
Vref &
& DQ
DQ
DDR4 changed data line
termination from CTT to POD to
save IO Power
save IO Power
One downside of POD in multiple DIMM
configuration, Vref level in each rank
might be different
[source: DDR4 TG]
g
Therefore, DDR4 has internal
VrefDQ which requires training
VrefDQ which requires training
from Host which requires at
initialization
f S /
Vref Step increase/decrease will be
controlled via MRS Opcode
1 Vref Step size is 0.65% of VDDQ
1 St lti l t i /d
1 Step or multiple step increase/decrease
is allowed for efficient calibration time
Calibration/Training : Preamble Training,
Calibration/Training : Preamble Training, MPR
MPR
DDR4 supports READ Preamble Training via MRS to have better
Host enables Rx @ 1st edge : the edge will be different
DDR4 supports READ Preamble Training via MRS to have better
fine alignment of HOST Rx enable time
With this mode, Host can detect when Host Rx should be enabled to get READ
Data from DRAM Host enables Rx @ 1 edge : the edge will be different
depending on board configuration
DDR4 assigned more MPR for DQ training and also it’s Re-
writable
DDR3 MPR is Read only
DDR3 DDR4 Note
# of MPR 8Bits (1Register) 32bits (4Register)
Predefined Pattern 01010101
MPR0: 01010101
MPR1: 00110011
MPR2: 00001111
MPR3: 00000000
Calibration/Training : Preamble Training,
Calibration/Training : Preamble Training, MPR
MPR
DDR4 Supports 3 way of DQ Link Training with 4 MPR as follows
1) Serial Readout : Predefined pattern or
Re-writed pattern is returned to Host Serial
2) Parallel Readout : Predefined pattern or Re-
writed pattern is returned to Host Parallel manner
DDR4 Supports 3 way of DQ Link Training with 4 MPR as follows
p
manner
3) Staggered Readout : Predefined pattern or Re-writed pattern is returned to Host Staggered manner
as following
Stagger UI0-7 UI8-15 UI16-23 UI24-31 UI32-39 UI40-47 UI48-55 UI56-63
DQ0 MPR0 MPR1 MPR2 MPR3 MPR0 MPR1 MPR2 MPR3
DQ1 MPR1 MPR2 MPR3 MPR0 MPR1 MPR2 MPR3 MPR0
DQ2 MPR2 MPR3 MPR0 MPR1 MPR2 MPR3 MPR0 MPR1
DQ3 MPR3 MPR0 MPR1 MPR2 MPR3 MPR0 MPR1 MPR2
DQ4 MPR0 MPR1 MPR2 MPR3 MPR0 MPR1 MPR2 MPR3
DQ5 MPR1 MPR2 MPR3 MPR0 MPR1 MPR2 MPR3 MPR0
DQ6 MPR2 MPR3 MPR0 MPR1 MPR2 MPR3 MPR0 MPR1
DQ7 MPR3 MPR0 MPR1 MPR2 MPR3 MPR0 MPR1 MPR2
Calibration/Training : Preamble Training,
Calibration/Training : Preamble Training, MPR
MPR
MPR can be re-writed via Address Line
Precharge All
Memory Core
Precharge All
MRS to set path to MPR
MPR0/MPR1
MRS
Write Command
-BA1/BA0 indicte the MPR Location
MPR0/MPR1
/MPR2/MPR3
MRS -BA1/BA0 indicte the MPR Location
-- A[7:0] = Data for MPR
DQs [ ]
A[7:0]
Read Command
- MR3 (A12,A11) to select Readout mode
- Serial / Parallel / Staggered
- Serial / Parallel / Staggered

More Related Content

What's hot

DDR SDRAMs
DDR SDRAMsDDR SDRAMs
DDR SDRAMs
Prankit Mishra
 
Dual port ram
Dual port ramDual port ram
Dual port ram
PravallikaTammisetty
 
Creating Your Own PCI Express System Using FPGAs: Embedded World 2010
Creating Your Own PCI Express System Using FPGAs: Embedded World 2010Creating Your Own PCI Express System Using FPGAs: Embedded World 2010
Creating Your Own PCI Express System Using FPGAs: Embedded World 2010Altera Corporation
 
Embedded_Linux_Booting
Embedded_Linux_BootingEmbedded_Linux_Booting
Embedded_Linux_BootingRashila Rr
 
dual-port RAM (DPRAM)
dual-port RAM (DPRAM)dual-port RAM (DPRAM)
dual-port RAM (DPRAM)
SACHINKUMAR1890
 
AMBA AHB 5
AMBA AHB 5AMBA AHB 5
AMBA AHB 5
SUNODH GARLAPATI
 
CAD: Floorplanning
CAD: Floorplanning CAD: Floorplanning
CAD: Floorplanning
Team-VLSI-ITMU
 
Pcie basic
Pcie basicPcie basic
Pcie basic
Saifuddin Kaijar
 
Soc - Intro, Design Aspects, HLS, TLM
Soc - Intro, Design Aspects, HLS, TLMSoc - Intro, Design Aspects, HLS, TLM
Soc - Intro, Design Aspects, HLS, TLMSubhash Iyer
 
ICCE-Presentation-on-VESA-DisplayPort.pdf
ICCE-Presentation-on-VESA-DisplayPort.pdfICCE-Presentation-on-VESA-DisplayPort.pdf
ICCE-Presentation-on-VESA-DisplayPort.pdf
JeffreyWins
 
U-Boot presentation 2013
U-Boot presentation  2013U-Boot presentation  2013
U-Boot presentation 2013
Wave Digitech
 
Introduction to Modern U-Boot
Introduction to Modern U-BootIntroduction to Modern U-Boot
Introduction to Modern U-Boot
GlobalLogic Ukraine
 
Pcie drivers basics
Pcie drivers basicsPcie drivers basics
Pcie drivers basics
Venkatesh Malla
 
IP PCIe
IP PCIeIP PCIe
IP PCIe
SILKAN
 
High Bandwidth Memory(HBM)
High Bandwidth Memory(HBM)High Bandwidth Memory(HBM)
High Bandwidth Memory(HBM)
HARINATH REDDY
 
Designing memory and array structures.pptx
Designing memory and array structures.pptxDesigning memory and array structures.pptx
Designing memory and array structures.pptx
yogeshwaran k
 
SoC Design
SoC DesignSoC Design
LCU14 302- How to port OP-TEE to another platform
LCU14 302- How to port OP-TEE to another platformLCU14 302- How to port OP-TEE to another platform
LCU14 302- How to port OP-TEE to another platform
Linaro
 
Session 8,9 PCI Express
Session 8,9 PCI ExpressSession 8,9 PCI Express
Session 8,9 PCI ExpressSubhash Iyer
 
Bootstrap process of u boot (NDS32 RISC CPU)
Bootstrap process of u boot (NDS32 RISC CPU)Bootstrap process of u boot (NDS32 RISC CPU)
Bootstrap process of u boot (NDS32 RISC CPU)
Macpaul Lin
 

What's hot (20)

DDR SDRAMs
DDR SDRAMsDDR SDRAMs
DDR SDRAMs
 
Dual port ram
Dual port ramDual port ram
Dual port ram
 
Creating Your Own PCI Express System Using FPGAs: Embedded World 2010
Creating Your Own PCI Express System Using FPGAs: Embedded World 2010Creating Your Own PCI Express System Using FPGAs: Embedded World 2010
Creating Your Own PCI Express System Using FPGAs: Embedded World 2010
 
Embedded_Linux_Booting
Embedded_Linux_BootingEmbedded_Linux_Booting
Embedded_Linux_Booting
 
dual-port RAM (DPRAM)
dual-port RAM (DPRAM)dual-port RAM (DPRAM)
dual-port RAM (DPRAM)
 
AMBA AHB 5
AMBA AHB 5AMBA AHB 5
AMBA AHB 5
 
CAD: Floorplanning
CAD: Floorplanning CAD: Floorplanning
CAD: Floorplanning
 
Pcie basic
Pcie basicPcie basic
Pcie basic
 
Soc - Intro, Design Aspects, HLS, TLM
Soc - Intro, Design Aspects, HLS, TLMSoc - Intro, Design Aspects, HLS, TLM
Soc - Intro, Design Aspects, HLS, TLM
 
ICCE-Presentation-on-VESA-DisplayPort.pdf
ICCE-Presentation-on-VESA-DisplayPort.pdfICCE-Presentation-on-VESA-DisplayPort.pdf
ICCE-Presentation-on-VESA-DisplayPort.pdf
 
U-Boot presentation 2013
U-Boot presentation  2013U-Boot presentation  2013
U-Boot presentation 2013
 
Introduction to Modern U-Boot
Introduction to Modern U-BootIntroduction to Modern U-Boot
Introduction to Modern U-Boot
 
Pcie drivers basics
Pcie drivers basicsPcie drivers basics
Pcie drivers basics
 
IP PCIe
IP PCIeIP PCIe
IP PCIe
 
High Bandwidth Memory(HBM)
High Bandwidth Memory(HBM)High Bandwidth Memory(HBM)
High Bandwidth Memory(HBM)
 
Designing memory and array structures.pptx
Designing memory and array structures.pptxDesigning memory and array structures.pptx
Designing memory and array structures.pptx
 
SoC Design
SoC DesignSoC Design
SoC Design
 
LCU14 302- How to port OP-TEE to another platform
LCU14 302- How to port OP-TEE to another platformLCU14 302- How to port OP-TEE to another platform
LCU14 302- How to port OP-TEE to another platform
 
Session 8,9 PCI Express
Session 8,9 PCI ExpressSession 8,9 PCI Express
Session 8,9 PCI Express
 
Bootstrap process of u boot (NDS32 RISC CPU)
Bootstrap process of u boot (NDS32 RISC CPU)Bootstrap process of u boot (NDS32 RISC CPU)
Bootstrap process of u boot (NDS32 RISC CPU)
 

Similar to 2011 DDR4 Mini Workshop.pdf

Embedded Recipes 2019 - Introduction to JTAG debugging
Embedded Recipes 2019 - Introduction to JTAG debuggingEmbedded Recipes 2019 - Introduction to JTAG debugging
Embedded Recipes 2019 - Introduction to JTAG debugging
Anne Nicolas
 
892 f sfp configuration example
892 f sfp configuration example892 f sfp configuration example
892 f sfp configuration example
IT Tech
 
2014 ii c08t-sbc pic para ecg
2014 ii c08t-sbc pic para ecg 2014 ii c08t-sbc pic para ecg
2014 ii c08t-sbc pic para ecg
Aland Bravo Vecorena
 
PBL1-v1-200e.pptx
PBL1-v1-200e.pptxPBL1-v1-200e.pptx
PBL1-v1-200e.pptx
NAIST
 
Mg90 h102 ethernet master
Mg90 h102 ethernet masterMg90 h102 ethernet master
Mg90 h102 ethernet master
confidencial
 
Micro controller(pratheesh)
Micro controller(pratheesh)Micro controller(pratheesh)
Micro controller(pratheesh)Pratheesh Pala
 
Hardware Management Module
Hardware Management ModuleHardware Management Module
Hardware Management ModuleAero Plane
 
GS8208 led datasheet
GS8208 led datasheetGS8208 led datasheet
GS8208 led datasheet
Daisy Xu
 
An Overview of LPC2101/02/03
An Overview of LPC2101/02/03An Overview of LPC2101/02/03
An Overview of LPC2101/02/03
Premier Farnell
 
Commisioning.pptx
Commisioning.pptxCommisioning.pptx
Commisioning.pptx
MdAlamgirHossain790134
 
Phytium 64 core cpu preview
Phytium 64 core cpu previewPhytium 64 core cpu preview
Phytium 64 core cpu preview
inside-BigData.com
 
Architecture of pentium family
Architecture of pentium familyArchitecture of pentium family
Architecture of pentium family
University of Gujrat, Pakistan
 
eMMC Embedded Multimedia Card overview
eMMC Embedded Multimedia Card overvieweMMC Embedded Multimedia Card overview
eMMC Embedded Multimedia Card overview
VijayGESYS
 
Moving message display
Moving message displayMoving message display
Moving message display
viraj1989
 
Arm architecture overview
Arm architecture overviewArm architecture overview
Arm architecture overview
Sathish Arumugasamy
 
Arm architecture
Arm architectureArm architecture
selfridge_alec_chipspec
selfridge_alec_chipspecselfridge_alec_chipspec
selfridge_alec_chipspecAlec Selfridge
 

Similar to 2011 DDR4 Mini Workshop.pdf (20)

Embedded Recipes 2019 - Introduction to JTAG debugging
Embedded Recipes 2019 - Introduction to JTAG debuggingEmbedded Recipes 2019 - Introduction to JTAG debugging
Embedded Recipes 2019 - Introduction to JTAG debugging
 
892 f sfp configuration example
892 f sfp configuration example892 f sfp configuration example
892 f sfp configuration example
 
2014 ii c08t-sbc pic para ecg
2014 ii c08t-sbc pic para ecg 2014 ii c08t-sbc pic para ecg
2014 ii c08t-sbc pic para ecg
 
PBL1-v1-200e.pptx
PBL1-v1-200e.pptxPBL1-v1-200e.pptx
PBL1-v1-200e.pptx
 
Highridge ISA
Highridge ISAHighridge ISA
Highridge ISA
 
Mg90 h102 ethernet master
Mg90 h102 ethernet masterMg90 h102 ethernet master
Mg90 h102 ethernet master
 
Micro controller(pratheesh)
Micro controller(pratheesh)Micro controller(pratheesh)
Micro controller(pratheesh)
 
Hardware Management Module
Hardware Management ModuleHardware Management Module
Hardware Management Module
 
GS8208 led datasheet
GS8208 led datasheetGS8208 led datasheet
GS8208 led datasheet
 
An Overview of LPC2101/02/03
An Overview of LPC2101/02/03An Overview of LPC2101/02/03
An Overview of LPC2101/02/03
 
Introduction to Blackfin BF532 DSP
Introduction to Blackfin BF532 DSPIntroduction to Blackfin BF532 DSP
Introduction to Blackfin BF532 DSP
 
An503
An503An503
An503
 
Commisioning.pptx
Commisioning.pptxCommisioning.pptx
Commisioning.pptx
 
Phytium 64 core cpu preview
Phytium 64 core cpu previewPhytium 64 core cpu preview
Phytium 64 core cpu preview
 
Architecture of pentium family
Architecture of pentium familyArchitecture of pentium family
Architecture of pentium family
 
eMMC Embedded Multimedia Card overview
eMMC Embedded Multimedia Card overvieweMMC Embedded Multimedia Card overview
eMMC Embedded Multimedia Card overview
 
Moving message display
Moving message displayMoving message display
Moving message display
 
Arm architecture overview
Arm architecture overviewArm architecture overview
Arm architecture overview
 
Arm architecture
Arm architectureArm architecture
Arm architecture
 
selfridge_alec_chipspec
selfridge_alec_chipspecselfridge_alec_chipspec
selfridge_alec_chipspec
 

2011 DDR4 Mini Workshop.pdf

  • 1. DDR4 Mini Workshop DDR4 Mini Workshop DDR4 Mini Workshop DDR4 Mini Workshop Server Memory Forum 2011 Server Memory Forum 2011
  • 2. Disclaimer Disclaimer E th h M j it f DDR4 h b d fi d/Fi d th Even though Majority of DDR4 spec has been defined/Fixed, there might be chance of update before publicationt Rev A is expected to be in publice 1H’12 and the contents of this material might be changed in Final version g g
  • 3. DDR4 Outlook DDR4 Outlook DDR4 adopts evolutionary path with High BW & reliability scheme DDR4 adopts evolutionary path with High BW & reliability scheme Spec items DDR3 DDR4 D it / S d 512Mbp~8Gb 2Gb~16Gb Density / Speed 512Mbp 8Gb 1.6~2.1Gbps 2Gb 16Gb 1.6~3.2Gbps Voltage (VDD/VDDQ/VPP) 1.5V/1.5V/NA (1.35V/1.35V/NA) 1.2V/1.2V/2.5V Vref External Vref (VDD/2) Internal Vref (need training) Interface Vref External Vref (VDD/2) Internal Vref (need training) Data IO CTT (34ohm) POD (34ohm) CMD/ADDR IO CTT CTT Strobe Bi-dir / diff Bi-dir / diff Strobe Bi dir / diff Bi dir / diff Core architect # of banks 8Banks 16Banks (4BG) Page size(X4/8/16) 1KB / 1KB / 2KB 512B / 1KB / 2KB architect # prefetch 8bits 8bits Added function RESET/ZQ/Dynamic ODT + CRC/DBI/Multi preamble .. Package type/balls (X4 8/X16) 78 / 96 BGA 78 / 96 BGA Physical (X4,8/X16) 78 / 96 BGA 78 / 96 BGA DIMM type R,LR,U,SoDIMM + ECC SoDIMM DIMM pins 240 (R,LR,U) / 204 (So) 284 (R,LR,U) / 256 (So)
  • 4. Bank Group alleviates the needs to increase core frequency from Bank Group Bank Group p q y previous gen. products to DDR4 DDR DDR2 DDR3 DDR4 BL 2 4 8 8 with BG Bank 0 Bank 4 Group 0 Group 1 Bank 0 Bank 0 Group 0 BL 2 4 8 8 with BG Core freq. 200MHz 200MHz 200MHz 200MHz Bank 0 Bank 1 Bank 2 Bank 4 Bank 5 Bank 6 Bank 0 Bank 1 Bank 2 Bank 0 Bank 1 Bank 2 Bank 3 Sense Amp Bank 7 Sense Amp 32/64bit 32/64bit 32/64bit 32/64bit Bank 3 Sense Amp Bank 3 Sense Amp 64bit 64bit 64bit 64bit Bank 8 Bank 9 Sense Amp Bank 12 Bank 13 Sense Amp Bank 4 Bank 5 Sense Amp Bank 4 Bank 5 Sense Amp Bank 10 Bank 11 Bank 14 Bank 15 Group 2 Group 3 Bank 6 Bank 7 Bank 6 Bank 7 Group 1 <X4/X8 16 B k ith 4 B k G > <X16 8 B k ith 2 B k G > <X4/X8: 16 Banks with 4 Bank Group> <X16: 8 Banks with 2 Bank Group>
  • 5. Bank Group defines tCCD / tRRD parameters differently between Bank Group Bank Group p / p y same bank group and different bank group Data rate 1600 1866 2133 2400 (Mbps) 1600 1866 2133 2400 tCCD_L (Diff BG) 5nCK 5nCK 6nCK 6nCK (Diff BG) tCCD_S (Same BG) 4nCK 4nCK 4nCK 4nCK Column CMD A0 B0 B1 tCCD_S tCCD_L A0 & B0 are in different BG, B0 & B1 are in same BG
  • 6. Fine Granularity Fine Granularity Refresh Refresh As density increases, tRFC gets longer and limits performance y , g g p Added new function supporting X2/X4 more frequent refresh with shorter tRFC Fine granularity refresh shows better performance Fine granularity refresh shows better performance Case: 2Gb based 2Rank system Source : IBM JEDEC material
  • 7. DDR4 supports WRITE CRC to assure better reliability in system CRC CRC(Cyclic Redundancy (Cyclic Redundancy Check) Check) DDR4 supports WRITE CRC to assure better reliability in system Data bits are followed by CRC bits <CRC data bit mapping for x8 device> <CRC data bit mapping for x4 device> CRC polynomial is the ATM-8 HEC (X^8+X^2+X^1+1) and 8 CRC bits are generated from 72 data+DBI bits Same polynomial as GDDR5 In BC4 case, chopped 4UI will be treated as “1” With CRC enabled, using burst ordering with A0:A1 is limited (Fixed to 0:0) - 7
  • 8. CRC fi i i f il d li b li bili CRC CRC(Cyclic Redundancy (Cyclic Redundancy Check) Check) CRC fixes intermittent failure and realizes better system reliability About 10% of performance gain is expected A 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 B 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 C 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 C 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 D 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 E 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 F 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 G 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 H 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 Channel I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 J 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Frequency 1900 1910 1920 1930 1940 1950 1960 1970 1980 1990 2000 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100 Channel Intermittent failure Freq(MHz) Channel Intermittent failure q( ) - 8
  • 9. DBI DBI & DM & DM DBI : With DBI Enabled via MRS, DDR4 converts Data byte lane DQ[0 7] UI DBI Aft C ti D t # f “0” i l di DBI DBI : With DBI Enabled via MRS, DDR4 converts Data byte lane per UI. Therefore, it increases # of “1” which doesn’t have DC current path in VDDQ Termination DQ[0:7] per UI DBI After Converting Data # of “0” including DBI 0000_0000 0 1111_1111 1 0000_0001 0 1111_1110 2 0000 0011 0 1111 1100 3 0000_0011 0 1111_1100 3 0000_0111 0 1111_1000 4 0000_1111 1 0000_1111 4 0001 1111 1 0001 1111 3 0001_1111 1 0001_1111 3 0011_1111 1 0011_1111 2 0111_1111 1 0111_1111 1 1111 1111 1 1111 1111 0 _ _ 0 • DBI can be enabled separated for each READ/WRITE with MRS option • If DM is enabled, then WRITE DBI is not supported • For Read, CRC & DBI can be supported at the same time , pp
  • 10. The following is example of training @initialization based upon High Level Training/Calibration Flow High Level Training/Calibration Flow The following is example of training @initialization based upon supported function in JEDEC spec Actual training/calibration sequence would be different depending on controller E t d DDR4 Fl Current Typical DDR3 System Example Expected DDR4 Flow Power Up Power Up Power Up MRS Setting MRS Setting ZQ Calibration ZQ Calibration ZQ Calibration Leveling (Read  Write) Leveling (Read  Write) ( ) IO Training More MPR Pattern (832) IO Training Vref Training Preamble Training DQ training w/ MPR g
  • 11. Calibration/Training : Calibration/Training : Vref Vref & & DQ DQ DDR4 changed data line termination from CTT to POD to save IO Power save IO Power One downside of POD in multiple DIMM configuration, Vref level in each rank might be different [source: DDR4 TG] g Therefore, DDR4 has internal VrefDQ which requires training VrefDQ which requires training from Host which requires at initialization f S / Vref Step increase/decrease will be controlled via MRS Opcode 1 Vref Step size is 0.65% of VDDQ 1 St lti l t i /d 1 Step or multiple step increase/decrease is allowed for efficient calibration time
  • 12. Calibration/Training : Preamble Training, Calibration/Training : Preamble Training, MPR MPR DDR4 supports READ Preamble Training via MRS to have better Host enables Rx @ 1st edge : the edge will be different DDR4 supports READ Preamble Training via MRS to have better fine alignment of HOST Rx enable time With this mode, Host can detect when Host Rx should be enabled to get READ Data from DRAM Host enables Rx @ 1 edge : the edge will be different depending on board configuration DDR4 assigned more MPR for DQ training and also it’s Re- writable DDR3 MPR is Read only DDR3 DDR4 Note # of MPR 8Bits (1Register) 32bits (4Register) Predefined Pattern 01010101 MPR0: 01010101 MPR1: 00110011 MPR2: 00001111 MPR3: 00000000
  • 13. Calibration/Training : Preamble Training, Calibration/Training : Preamble Training, MPR MPR DDR4 Supports 3 way of DQ Link Training with 4 MPR as follows 1) Serial Readout : Predefined pattern or Re-writed pattern is returned to Host Serial 2) Parallel Readout : Predefined pattern or Re- writed pattern is returned to Host Parallel manner DDR4 Supports 3 way of DQ Link Training with 4 MPR as follows p manner 3) Staggered Readout : Predefined pattern or Re-writed pattern is returned to Host Staggered manner as following Stagger UI0-7 UI8-15 UI16-23 UI24-31 UI32-39 UI40-47 UI48-55 UI56-63 DQ0 MPR0 MPR1 MPR2 MPR3 MPR0 MPR1 MPR2 MPR3 DQ1 MPR1 MPR2 MPR3 MPR0 MPR1 MPR2 MPR3 MPR0 DQ2 MPR2 MPR3 MPR0 MPR1 MPR2 MPR3 MPR0 MPR1 DQ3 MPR3 MPR0 MPR1 MPR2 MPR3 MPR0 MPR1 MPR2 DQ4 MPR0 MPR1 MPR2 MPR3 MPR0 MPR1 MPR2 MPR3 DQ5 MPR1 MPR2 MPR3 MPR0 MPR1 MPR2 MPR3 MPR0 DQ6 MPR2 MPR3 MPR0 MPR1 MPR2 MPR3 MPR0 MPR1 DQ7 MPR3 MPR0 MPR1 MPR2 MPR3 MPR0 MPR1 MPR2
  • 14. Calibration/Training : Preamble Training, Calibration/Training : Preamble Training, MPR MPR MPR can be re-writed via Address Line Precharge All Memory Core Precharge All MRS to set path to MPR MPR0/MPR1 MRS Write Command -BA1/BA0 indicte the MPR Location MPR0/MPR1 /MPR2/MPR3 MRS -BA1/BA0 indicte the MPR Location -- A[7:0] = Data for MPR DQs [ ] A[7:0] Read Command - MR3 (A12,A11) to select Readout mode - Serial / Parallel / Staggered - Serial / Parallel / Staggered