紅麴菌基因體計畫及基因研究 Bioresource Collection and Research Center Food Industry Research and Development Institute Dec. 16,  2008   The  Monascus  genome project  and the genes study
The  Monascus  genome project  and the genes study I. Background II. The Monascus genome project III. Genetic transformation of  Monascus IV. Study on the Monacolin K  biosynthesis   gene cluster V. Exploring the distribution of citrinin biosynthesis  related genes among  Monascus  spp. VI. MRT, a new non-LTR retrotransposon in  Monascus  spp. VII. Conclusion
History Review Fermentation history of  Monascus   Previous Study Monascus   strains collected Monascus   mutants generated Monacolin K, GABA, Pigments, Citrinin Liquid/solid fermentation technique   I. Background
cDNA library fosmid / BAC library EST database fosmid/BAC end sequence data whole genome 8x coverage 2x coverage shotgun library 10x coverage draft finishing candidate fosmid/BAC  clone fosmid/BAC  shotgun library whole genomic data functional genomic data contract out Unigene database cDNA sequence data II. The  Monascus  genome project
BCRC 38072 BCRC 38072 is a  Monascus  strain isolated from anka Produce monacolin K High production Mutant strain BCRC 38093 BCRC 38072 identified as  Monascus pilosus   * Type strain DNA hybridization II. The  Monascus  genome project
EST Analytic Platform II. The  Monascus  genome project cDNA Sequence EST DB Phred basecall and qualification EST EST EST EST EST Blastn Tentative Unique Genes  Hit  No Hit  Singleton  Contig  Collapse the Contig  Cap3 Assembly  update update Functional Analysis Blastx
 coverage   qualified reads    average read length    genome size Sequencing Facts BAC Library mpb01-02 BCRC/FIRDI Fosmid Library mpf01 BCRC/FIRDI Plasmid Library mpg01-12, 31-34,  Yang Ming University Plasmid Library mpg61-64 Vita Genomics II. The  Monascus  genome project 0.16x 10,451 12,048 14,506 7,253 80-100 kb mpb01-02 0.41x 22,384 24,066 27,086 13,543 30-40 kb mpf01 795,897 135,028 11,785 612,970 Qualified reads 673,853 127,250 10,663 503,105 Input reads 13.06x 860,225 451,796 Total 2.21x 175,689 79,872 8.0-10.0 kb mpg61-64 0.22x 11,959 6,624 6.0-7.0 kb mpg33-34 2.5-5.0 kb Insert Size 630,985 Reads 10.06x 344,504 mpg01-12, mpg31-32 Coverage  Clones Library Name
Monascus Genome Draft II. The  Monascus  genome project
Genome Features II. The  Monascus  genome project ** novel means no similarity  to known/hypothetical proteins *  by alignment of EST to genome
III. Genetic transformation of  Monascus Heat shock protein Phosphoenolpyruvate carboxykinase Vector construction-with strong  Monascus  promoter
帶螢光之轉形株 III. Genetic transformation of  Monascus Efficiencies of  Monascus  Transformation 44 (colonies/ μg DNA) Electroporation 10 (colonies/μg DNA) PEG 200 (colonies/10 7  spore) Agrobacteria Frequency Method
Restriction-enzyme-mediated integration (REMI) &  Aurintricarboxylic acid (ATA) (Cell Mol. Life Sci., 2001)   ATA III. Genetic transformation of  Monascus Circular vector with selectable marker Restriction enzyme linearized Enzymes digest cell wall cell membrane Nuclear membrane Genomic DNA
a. The plasmid pMS-1.5hp was linearized by  Fsp I restriction enzyme. b. The  Fsp I-linearized pMS-1.5hp was mixed with 1 mM ATA and protoplasts. c. The  Fsp I-linearized pMS-1.5hp was mixed with 10 units  Fsp I restriction enzyme and protoplasts. d. The  Hpa I-linearized pMS-1.5hp was mixed with 10 units  Hpa I restriction enzyme and protoplasts. e. Number of transformants per 5 ug linear plasmid. The values were based on three determinations. Efficient transformation using aurintricarboxylic acid (ATA)   III. Genetic transformation of  Monascus 119 ± 11 48 ± 4 159 ± 24 17 ± 2 M. pilosus e Hpa I (10 units) d Fsp I (10 units) c REMI Treated by ATA (1mM) b Linear plasmid (non-REMI) a Transformation methods Experiment
Wild type pMS-1.5hp  Transformants Southern hybridization analysis using  Hin dIII in the genomes of eight transformants hybridized with  hph  probe Enhanced green fluorescent protein (EGFP) in transformed  M. pilosus H: hyphae C: conidia  Confirmation of  M. pilosus  transformants by Southern blot and fluorescent microscopy III. Genetic transformation of  Monascus
Conclusions The valid and convenient gene transformation in  M. pilosus   was developed using aurintricarboxylic acid (ATA). The method can be applied in various fungi for efficient  genetic transformation.   Chen, Y. –P, Chen, I.-C., Hwang, I.-E., Yuan, G.-F., Liaw, L.-L., Tseng, C.-P. Selection of an effective red-pigment producing  Monascus pilosus  by efficient transformation with aurintricarboxylic acid. 2008. Biosci. Biotechnol. Biochem. (Accepted) III. Genetic transformation of  Monascus
BAC library Screen BAC library containing putative monacolin K biosynthesis gene cluster Shotgun Sequence of complete putative monacolin K biosynthesis genes for   10 X coverage Annotation of the putative monacolin K biosynthesis gene cluster sequences by computer (Blast and Vector NTI software) Design specific probes to  Monascus pilosus IV. Study on the Monacolin K  biosynthesis  gene cluster
Annotation of BAC DNA  mps01   predicted by BLAST and VectorNTI ORF 1  2  3  4  5  6  7  8  9  10  11 12  1314 15  16  17  18 mokB  mokI mokH  mokF mokD  mokA  mokC mokE mokG 19  20  21 159958 bp mokA mokC mokD mokE mokF mokG mokH mokI mokB similar to Adapter-related protein complex 1 beta 1 subunit 1 NADP(H)-dependent alcohol dehydrogenase 2 late sexual development protein 3 predicted protein 4, 9 Non-LTR retrotransposon, MRT 5, 10 DNA primase small subunit 6 SUAPRGA1 7 exonuclease 8 Hypothetical protein 11, 12, 14 actin patches distal 13 ABNA-arabinanase 15 Fum12p(hydroxylase ) 16 Acetotactate synthase 17 related to GABA transport protein 18 Polyketide synthase (nonaketide) P450 monooxygenase Oxidoreductase Dehydrogenase Transesterase HMG-CoA reductase Transcription factor Efflux pump Polyketide synthase (diketide) Hypothetical protein 19 sugar transporter-like protein 20 Crh-like protein 21 IV. Study on the Monacolin K  biosynthesis  gene cluster
Monascus pilosus  (Putative Monacolin K Biosynthesis Gene Cluster) Penicillium citrinum  (compactin biosynthesis gene cluster)   (Mol. Genet. Genomics. 2002. Abe et al.) Aspergillus terreus  (lovastatin   biosynthesis gene cluster) (Science. 1999.  Kennedy  et al.) P450 monooxygenase  ( mokC ) Polyketide synthase ( mokB ) Oxidoreductase ( mokD ) Dehydrogenase ( mokE ) HMG-CoA reductase ( mokG ) Transesterase ( mokF ) Transcription factor ( mokH ) Efflux pump ( mokI ) Polyketide synthase ( mokA ) IV. Study on the Monacolin K  biosynthesis  gene cluster
cDNA sequences analysis of monacolin K gene cluster 5’  GU· · ·AG  3’  (2)  113 99 2 56.9 3156 mokG (HMG-CoA reductase) 5’  GU· · ·AG  3’  (1)  5’  GC· · ·AG  3’  (1)   60.6 71 2 57.3 1575 mokC (P450 monooxygenase) 55.8 57.9 60.5 63.9 63.1 55.1 56.9 GC content(%) 5’  GU· · ·AG  3’  (7)  5’  GU· · ·AG  3’  (1)  5’  GU· · ·AG  3’  (2) 5’  GU· · ·AG  3’  (2) 0 5’  GU· · ·AG  3’  (6) 5’  GU· · ·AG  3’  (7)  Splice site of introns (number) 57.5 73 7 1632 mokI  (Efflux pump) 49.4 96 1 1368 mokH   (Transcription factor) 46.8 91 2 1242 mokF   (Transesterase) 38.9 72 2 1083 mokE (Dehydrogenase) 28.9 0 0 792 mokD  (Oxidoreductase) 276 72 6 7644 mokB (Polyketide synthase) 338 67 7 9228 mokA (Polyketide synthase) molecular weight (kDa) Ave. size of intron (bp) Number of intron Full-length cDNA (bp)  IV. Study on the Monacolin K  biosynthesis  gene cluster
mokA   -Polyketide synthase gene (nonaketide) KS AT DH MeT KR ACP 2kb 3kb Plasmid map of pMkAko for targeted gene disruption of  mokA IV. Study on the Monacolin K  biosynthesis  gene cluster
1: wild type 2. disrupted-strain Disruption of  mokA  gene in  M. pilosus N:  Nde I, F:  Fsp I Mok gene cluster Mok gene cluster pMkAko vector N N N mokA mokC HPH EGFP N N F F 7.1 kb 3.8 kb probe N N N mokC HPH EGFP N mokA IV. Study on the Monacolin K  biosynthesis  gene cluster
Monacolin K analysis of wild-type and disruptant by HPLC Monacolin K Wild type disruptant IV. Study on the Monacolin K  biosynthesis  gene cluster
Transcription factor  mokH  gene Zn(II)2Cys6 binuclear   Cys -X 2 - Cys  –X 6 - Cys  -X 11 - Cys -X 2 - Cys  X 6 - Cys   Overexpression: lovE  in  A. terreus     7~10 fold lovastatin mlcR  in  P.   citrinum     10~15%  compactin 1  100 C C C C C C mlcR lovE mkH Zn Zn 26 29 36 48 51 58 N C X 2 X 6 X 11 X 2 X 6 IV. Study on the Monacolin K  biosynthesis  gene cluster
rRNA pMSmokH 8774 bp probe gpd promoter mokH EGFP HPH hsp promoter S X X X S ptrpR pgpdF pmHF pmHR PCR Northern blot mokH  gene trpC terminator transformants transformants Wild-type Wild-type pMSmokH Confirmation of transformants  containing extra copy  mokH 4 3 2 1 5 4 3 2 1 M kb 4 3 2 1 IV. Study on the Monacolin K  biosynthesis  gene cluster
Real-time RT-PCR analysis of relative expression of transformant  T-mokH1 to  M. pilosus  BCRC38072   IV. Study on the Monacolin K  biosynthesis  gene cluster
Time (days) Monacolin K (mg/ mL) Time (days) Dry cell mass (g/50 mL) Monacolin K analysis within transformant T-mokH1 and wild-type  M. pilosus   1.7-fold monacolin K higher than wild-type 0 0.05 0.1 0.15 0.2 3 5 7 9 11 13 15 38072 T-mokH1 0 2 4 6 8 3 5 7 9 11 13 15 38072 T-mokH1 IV. Study on the Monacolin K  biosynthesis  gene cluster
Conclusions: The monacolin K biosynthesis gene cluster was found within a  42-kb region in the mps01 clone, designated as  mokA - mokI . The  mokA -disrupted strain did not produce monacolin K,  indicating that  mokA  was responsible for monacolin K biosynthesis. The transformant containing two copies of the  mokH  gene-encoded transcription factor shows higher production of monacolin K than wild type.   Chen, Y. –P,   Tseng, C.-P., Liaw, L.-L., Wang, C.-L., Chen, I.-C., Wu, W.-J., Wu, M.-D., Yuan, G.-F. Cloning and characterization of monacolin K biosynthetic gene cluster from  Monascus pilosus . J. Agric. Food Chem. 2008. 56, 5639-5646. IV. Study on the Monacolin K  biosynthesis  gene cluster
1kb orf1 ctnA orf3 orf4 orf5 pksCT H H H H H H H  H H H P P P F1 R1  F2  R2  F3  R3  F4  R4  R5 F5  R6  F6  F7 R7  F8 R8  F9  R9  F10 R10  F11 R11  Citrinin gene cluster in  M. purpureus (Appl. Environ. Microbiol. 2005, 2007) H:  Hin dIII V. Exploring the distribution of citrinin biosynthesis related genes among  Monascus  spp. orf5 :  transporter pksCT :  polyketide synthase orf4 :  oxidoreductase orf3 :  oxygenase ctnA :  transcription factor orf1 :  dehydrogenase
3 kb 2 kb 6 kb 6 kb (A) M. pilosus M. ruber M. purpureus M. kaoliang M. sanguineus pksCT :  polyketide synthase ctnA :  transcription factor orf3 :  oxygenase (C) (B) V. Exploring the distribution of citrinin biosynthesis related genes among  Monascus  spp. 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1
Phylogeny of  PKS  from  Monascus  and various organisms pksCT based on AT domain V. Exploring the distribution of citrinin biosynthesis related genes among  Monascus  spp.
a.a. DNA a.a. DNA M. purpureus  BCRC33325 M. sanguineus   BCRC33446 Sequence analyses of the  pksCT  KS domain V. Exploring the distribution of citrinin biosynthesis related genes among  Monascus  spp. S S S C A T D L T L S S S C P T D L G C A C A G T T C A C A G T C T A C C T A C T G C T C G T A C G G C A C A G T T C A A G T C T A C C T A C T A C T C G T A C C L
V. Exploring the distribution of citrinin biosynthesis related genes among  Monascus  spp.
Phylogeny of  Monascus  spp. based on the β-tubulin gene V. Exploring the distribution of citrinin biosynthesis related genes among  Monascus  spp. M. pilosus  BCRC38072 M. ruber  BCRC33323 M. ruber  BCRC31534 M. barkeri  BCRC33309 M. ruber  BCRC31535 M. ruber  BCRC33314 M. ruber  BCRC31523 M. pilosus  BCRC31502 M. ruber  BCRC31533 M. sanguineus  BCRC33446 M. purpureus  BCRC31541 M. purpureus  BCRC31542 M. kaoliang  BCRC31506 M. purpureus  BCRC31615 M. purpureus  BCRC33325 M. pallens  BCRC33641 M. floridanus  BCRC33310 M. lunisporas  BCRC33640 A. fumigatus  A. parasiticus A. flavus  100 99 99 95 99 67 100 100 0.01 + ctnA  + orf3 + pksCT + mokA + mokE
Conclusions PCR and Southern blot clearly indicate that the citrinin gene cluster in  M. purpureus  and  M. kaoliang  carry out citrinin biosynthesis. A citrinin producing phenotype was detected only in  M. purpureus  and  M. kaoliang . According to the phylogenetic subgroups established with the β-tubulin gene, the citrinin genes can group the species of  Monascus .   Chen Y.-P., Tseng C.-P., Chien I.-L., Wang W.-Y., Liaw L.-L., Yuan G.-F. Exploring the distribution of citrinin biosynthesis related genes among  Monascus  species. 2008. J. Agric. Food Chem. (Accepted)  V. Exploring the distribution of citrinin biosynthesis related genes among  Monascus  spp.
Annotation of BAC DNA mps01 predicted by BLAST and VectorNTI 159958 bp mokA mokC mokD mokE mokF mokG mokH mokI mokB ORF 1  2  3  4  5  6  7  8  9  10  11 12  1314 15  16  17  18 mokB  mokI mokH  mokF mokD  mokA  mokC mokE mokG 19  20  21 similar to Adapter-related protein complex 1 beta 1 subunit 1 NADP(H)-dependent alcohol dehydrogenase 2 late sexual development protein 3 predicted protein 4, 9 Non-LTR retrotransposon, MRT 5, 10 DNA primase small subunit 6 SUAPRGA1 7 exonuclease 8 Hypothetical protein 11, 12, 14 actin patches distal 13 ABNA-arabinanase 15 Fum12p(hydroxylase ) 16 Acetotactate synthase 17 related to GABA transport protein 18 Polyketide synthase (nonaketide) P450 monooxygenase Oxidoreductase Dehydrogenase Transesterase HMG-CoA reductase Transcription factor Efflux pump Polyketide synthase (diketide) Hypothetical protein 19 sugar transporter-like protein 20 Crh-like protein 21 VI. MRT, a new non-LTR retrotransposon  in  Monascus  spp.
Structure of the non-LTR retrotransposon, MRT APE: apurinic/apyrimidinic endonuclease domain CYS: cysteine –rich region  CCHC: Cys-His region RT: reverse transcriptase  RNH: RNaseH VI. MRT, a new non-LTR retrotransposon  in  Monascus  spp.
Phylogeny of non-LTR retrotransposons based on RT domain VI. MRT, a new non-LTR retrotransposon  in  Monascus  spp.
Monascus pilosus Monascus ruber Monascus sanguineus Monascus barkeri Monascus pilosus Monascus ruber Monascus sanguineus Monascus barkeri Southern analysis of MRT within  Monascus  spp. Eco RI Bam HI Monascus purpureus Monascus purpureus BCRC31503 BCRC31503 VI. MRT, a new non-LTR retrotransposon  in  Monascus  spp.
+ MRT —  MRT M. pilosus   BCRC38072 M. ruber   BCRC31523 M. ruber   BCRC33314 M. ruber   BCRC33323  M. barkeri   BCRC33309 M. pilosus   BCRC31502 M. ruber   BCRC31533 M. ruber   BCRC31534 M. ruber   BCRC31535 M. sanguineus   BCRC33446 M. purpureus   BCRC31615 M. purpureus   BCRC33325 M. pilosus   BCRC31503 M. purpureus   BCRC31542 M. kaoliang   BCRC31506 M. purpureus   BCRC31541 M. pallens   BCRC33641 M. lunisporas   BCRC33640 M. floridanus   BCRC33310 P. digitatum A. fumigatus A. flavus A. parasiticus 100 99 95 97 94 100 67 100 100 0.01 Phylogeny of  Monascus  spp. based on the  β -tubulin   gene VI. MRT, a new non-LTR retrotransposon  in  Monascus  spp.
Conclusions A new non-LTR retrotransposon, named MRT, was discovered. The species of  Monascus  can be grouped by the presence or  absence of MRT elements in the hybridization pattern according to phylogenetic subgroups established with the partial β-tubulin gene   Chen, Y.-P., Tseng, C.-P., Liaw, L.-L., Wang, C.-L., Yuan, G.-F. Characterization of MRT, a new non-LTR retrotransposon in  Monascus  spp. Bot. Bull. Acad. Sinica. 2007. 48, 377-385. VI. MRT, a new non-LTR retrotransposon  in  Monascus  spp.
Acknowledgement 基因體醫學國家型計畫 National Research Program for Genomic Medicine 基因庫及遺傳資源的收集保存研發與應用 紅麴菌基因體計畫 Collection, Preservation, Researches and application on Gene Bank and Genetic Resources The  Monascus  Genome project   行政院科發基金 National commission for science and technology development fund   經濟部技術處科專計畫 The Department of Industrial Technology of the Ministry of Economic Affairs
第 頁 BEC / ITRI Bioinformatic Proteomic Libraries and Sequencing Functional Genomics Mycology and  Fermentation TEAMS
六、紅麴菌之 MRT,  non-LTR retrotransposon

20081216 05袁國芳 紅麴菌基因體計畫及基因研究

  • 1.
    紅麴菌基因體計畫及基因研究 Bioresource Collectionand Research Center Food Industry Research and Development Institute Dec. 16, 2008 The Monascus genome project and the genes study
  • 2.
    The Monascus genome project and the genes study I. Background II. The Monascus genome project III. Genetic transformation of Monascus IV. Study on the Monacolin K biosynthesis gene cluster V. Exploring the distribution of citrinin biosynthesis related genes among Monascus spp. VI. MRT, a new non-LTR retrotransposon in Monascus spp. VII. Conclusion
  • 3.
    History Review Fermentationhistory of Monascus Previous Study Monascus strains collected Monascus mutants generated Monacolin K, GABA, Pigments, Citrinin Liquid/solid fermentation technique I. Background
  • 4.
    cDNA library fosmid/ BAC library EST database fosmid/BAC end sequence data whole genome 8x coverage 2x coverage shotgun library 10x coverage draft finishing candidate fosmid/BAC clone fosmid/BAC shotgun library whole genomic data functional genomic data contract out Unigene database cDNA sequence data II. The Monascus genome project
  • 5.
    BCRC 38072 BCRC38072 is a Monascus strain isolated from anka Produce monacolin K High production Mutant strain BCRC 38093 BCRC 38072 identified as Monascus pilosus * Type strain DNA hybridization II. The Monascus genome project
  • 6.
    EST Analytic PlatformII. The Monascus genome project cDNA Sequence EST DB Phred basecall and qualification EST EST EST EST EST Blastn Tentative Unique Genes Hit No Hit Singleton Contig Collapse the Contig Cap3 Assembly update update Functional Analysis Blastx
  • 7.
     coverage  qualified reads  average read length  genome size Sequencing Facts BAC Library mpb01-02 BCRC/FIRDI Fosmid Library mpf01 BCRC/FIRDI Plasmid Library mpg01-12, 31-34, Yang Ming University Plasmid Library mpg61-64 Vita Genomics II. The Monascus genome project 0.16x 10,451 12,048 14,506 7,253 80-100 kb mpb01-02 0.41x 22,384 24,066 27,086 13,543 30-40 kb mpf01 795,897 135,028 11,785 612,970 Qualified reads 673,853 127,250 10,663 503,105 Input reads 13.06x 860,225 451,796 Total 2.21x 175,689 79,872 8.0-10.0 kb mpg61-64 0.22x 11,959 6,624 6.0-7.0 kb mpg33-34 2.5-5.0 kb Insert Size 630,985 Reads 10.06x 344,504 mpg01-12, mpg31-32 Coverage  Clones Library Name
  • 8.
    Monascus Genome DraftII. The Monascus genome project
  • 9.
    Genome Features II.The Monascus genome project ** novel means no similarity to known/hypothetical proteins * by alignment of EST to genome
  • 10.
    III. Genetic transformationof Monascus Heat shock protein Phosphoenolpyruvate carboxykinase Vector construction-with strong Monascus promoter
  • 11.
    帶螢光之轉形株 III. Genetictransformation of Monascus Efficiencies of Monascus Transformation 44 (colonies/ μg DNA) Electroporation 10 (colonies/μg DNA) PEG 200 (colonies/10 7 spore) Agrobacteria Frequency Method
  • 12.
    Restriction-enzyme-mediated integration (REMI)& Aurintricarboxylic acid (ATA) (Cell Mol. Life Sci., 2001) ATA III. Genetic transformation of Monascus Circular vector with selectable marker Restriction enzyme linearized Enzymes digest cell wall cell membrane Nuclear membrane Genomic DNA
  • 13.
    a. The plasmidpMS-1.5hp was linearized by Fsp I restriction enzyme. b. The Fsp I-linearized pMS-1.5hp was mixed with 1 mM ATA and protoplasts. c. The Fsp I-linearized pMS-1.5hp was mixed with 10 units Fsp I restriction enzyme and protoplasts. d. The Hpa I-linearized pMS-1.5hp was mixed with 10 units Hpa I restriction enzyme and protoplasts. e. Number of transformants per 5 ug linear plasmid. The values were based on three determinations. Efficient transformation using aurintricarboxylic acid (ATA) III. Genetic transformation of Monascus 119 ± 11 48 ± 4 159 ± 24 17 ± 2 M. pilosus e Hpa I (10 units) d Fsp I (10 units) c REMI Treated by ATA (1mM) b Linear plasmid (non-REMI) a Transformation methods Experiment
  • 14.
    Wild type pMS-1.5hp Transformants Southern hybridization analysis using Hin dIII in the genomes of eight transformants hybridized with hph probe Enhanced green fluorescent protein (EGFP) in transformed M. pilosus H: hyphae C: conidia Confirmation of M. pilosus transformants by Southern blot and fluorescent microscopy III. Genetic transformation of Monascus
  • 15.
    Conclusions The validand convenient gene transformation in M. pilosus was developed using aurintricarboxylic acid (ATA). The method can be applied in various fungi for efficient genetic transformation. Chen, Y. –P, Chen, I.-C., Hwang, I.-E., Yuan, G.-F., Liaw, L.-L., Tseng, C.-P. Selection of an effective red-pigment producing Monascus pilosus by efficient transformation with aurintricarboxylic acid. 2008. Biosci. Biotechnol. Biochem. (Accepted) III. Genetic transformation of Monascus
  • 16.
    BAC library ScreenBAC library containing putative monacolin K biosynthesis gene cluster Shotgun Sequence of complete putative monacolin K biosynthesis genes for 10 X coverage Annotation of the putative monacolin K biosynthesis gene cluster sequences by computer (Blast and Vector NTI software) Design specific probes to Monascus pilosus IV. Study on the Monacolin K biosynthesis gene cluster
  • 17.
    Annotation of BACDNA mps01 predicted by BLAST and VectorNTI ORF 1 2 3 4 5 6 7 8 9 10 11 12 1314 15 16 17 18 mokB mokI mokH mokF mokD mokA mokC mokE mokG 19 20 21 159958 bp mokA mokC mokD mokE mokF mokG mokH mokI mokB similar to Adapter-related protein complex 1 beta 1 subunit 1 NADP(H)-dependent alcohol dehydrogenase 2 late sexual development protein 3 predicted protein 4, 9 Non-LTR retrotransposon, MRT 5, 10 DNA primase small subunit 6 SUAPRGA1 7 exonuclease 8 Hypothetical protein 11, 12, 14 actin patches distal 13 ABNA-arabinanase 15 Fum12p(hydroxylase ) 16 Acetotactate synthase 17 related to GABA transport protein 18 Polyketide synthase (nonaketide) P450 monooxygenase Oxidoreductase Dehydrogenase Transesterase HMG-CoA reductase Transcription factor Efflux pump Polyketide synthase (diketide) Hypothetical protein 19 sugar transporter-like protein 20 Crh-like protein 21 IV. Study on the Monacolin K biosynthesis gene cluster
  • 18.
    Monascus pilosus (Putative Monacolin K Biosynthesis Gene Cluster) Penicillium citrinum (compactin biosynthesis gene cluster) (Mol. Genet. Genomics. 2002. Abe et al.) Aspergillus terreus (lovastatin biosynthesis gene cluster) (Science. 1999. Kennedy et al.) P450 monooxygenase ( mokC ) Polyketide synthase ( mokB ) Oxidoreductase ( mokD ) Dehydrogenase ( mokE ) HMG-CoA reductase ( mokG ) Transesterase ( mokF ) Transcription factor ( mokH ) Efflux pump ( mokI ) Polyketide synthase ( mokA ) IV. Study on the Monacolin K biosynthesis gene cluster
  • 19.
    cDNA sequences analysisof monacolin K gene cluster 5’ GU· · ·AG 3’ (2) 113 99 2 56.9 3156 mokG (HMG-CoA reductase) 5’ GU· · ·AG 3’ (1) 5’ GC· · ·AG 3’ (1) 60.6 71 2 57.3 1575 mokC (P450 monooxygenase) 55.8 57.9 60.5 63.9 63.1 55.1 56.9 GC content(%) 5’ GU· · ·AG 3’ (7) 5’ GU· · ·AG 3’ (1) 5’ GU· · ·AG 3’ (2) 5’ GU· · ·AG 3’ (2) 0 5’ GU· · ·AG 3’ (6) 5’ GU· · ·AG 3’ (7) Splice site of introns (number) 57.5 73 7 1632 mokI (Efflux pump) 49.4 96 1 1368 mokH (Transcription factor) 46.8 91 2 1242 mokF (Transesterase) 38.9 72 2 1083 mokE (Dehydrogenase) 28.9 0 0 792 mokD (Oxidoreductase) 276 72 6 7644 mokB (Polyketide synthase) 338 67 7 9228 mokA (Polyketide synthase) molecular weight (kDa) Ave. size of intron (bp) Number of intron Full-length cDNA (bp) IV. Study on the Monacolin K biosynthesis gene cluster
  • 20.
    mokA -Polyketide synthase gene (nonaketide) KS AT DH MeT KR ACP 2kb 3kb Plasmid map of pMkAko for targeted gene disruption of mokA IV. Study on the Monacolin K biosynthesis gene cluster
  • 21.
    1: wild type2. disrupted-strain Disruption of mokA gene in M. pilosus N: Nde I, F: Fsp I Mok gene cluster Mok gene cluster pMkAko vector N N N mokA mokC HPH EGFP N N F F 7.1 kb 3.8 kb probe N N N mokC HPH EGFP N mokA IV. Study on the Monacolin K biosynthesis gene cluster
  • 22.
    Monacolin K analysisof wild-type and disruptant by HPLC Monacolin K Wild type disruptant IV. Study on the Monacolin K biosynthesis gene cluster
  • 23.
    Transcription factor mokH gene Zn(II)2Cys6 binuclear Cys -X 2 - Cys –X 6 - Cys -X 11 - Cys -X 2 - Cys X 6 - Cys Overexpression: lovE in A. terreus  7~10 fold lovastatin mlcR in P. citrinum  10~15% compactin 1 100 C C C C C C mlcR lovE mkH Zn Zn 26 29 36 48 51 58 N C X 2 X 6 X 11 X 2 X 6 IV. Study on the Monacolin K biosynthesis gene cluster
  • 24.
    rRNA pMSmokH 8774bp probe gpd promoter mokH EGFP HPH hsp promoter S X X X S ptrpR pgpdF pmHF pmHR PCR Northern blot mokH gene trpC terminator transformants transformants Wild-type Wild-type pMSmokH Confirmation of transformants containing extra copy mokH 4 3 2 1 5 4 3 2 1 M kb 4 3 2 1 IV. Study on the Monacolin K biosynthesis gene cluster
  • 25.
    Real-time RT-PCR analysisof relative expression of transformant T-mokH1 to M. pilosus BCRC38072 IV. Study on the Monacolin K biosynthesis gene cluster
  • 26.
    Time (days) MonacolinK (mg/ mL) Time (days) Dry cell mass (g/50 mL) Monacolin K analysis within transformant T-mokH1 and wild-type M. pilosus 1.7-fold monacolin K higher than wild-type 0 0.05 0.1 0.15 0.2 3 5 7 9 11 13 15 38072 T-mokH1 0 2 4 6 8 3 5 7 9 11 13 15 38072 T-mokH1 IV. Study on the Monacolin K biosynthesis gene cluster
  • 27.
    Conclusions: The monacolinK biosynthesis gene cluster was found within a 42-kb region in the mps01 clone, designated as mokA - mokI . The mokA -disrupted strain did not produce monacolin K, indicating that mokA was responsible for monacolin K biosynthesis. The transformant containing two copies of the mokH gene-encoded transcription factor shows higher production of monacolin K than wild type. Chen, Y. –P, Tseng, C.-P., Liaw, L.-L., Wang, C.-L., Chen, I.-C., Wu, W.-J., Wu, M.-D., Yuan, G.-F. Cloning and characterization of monacolin K biosynthetic gene cluster from Monascus pilosus . J. Agric. Food Chem. 2008. 56, 5639-5646. IV. Study on the Monacolin K biosynthesis gene cluster
  • 28.
    1kb orf1 ctnAorf3 orf4 orf5 pksCT H H H H H H H H H H P P P F1 R1 F2 R2 F3 R3 F4 R4 R5 F5 R6 F6 F7 R7 F8 R8 F9 R9 F10 R10 F11 R11 Citrinin gene cluster in M. purpureus (Appl. Environ. Microbiol. 2005, 2007) H: Hin dIII V. Exploring the distribution of citrinin biosynthesis related genes among Monascus spp. orf5 : transporter pksCT : polyketide synthase orf4 : oxidoreductase orf3 : oxygenase ctnA : transcription factor orf1 : dehydrogenase
  • 29.
    3 kb 2kb 6 kb 6 kb (A) M. pilosus M. ruber M. purpureus M. kaoliang M. sanguineus pksCT : polyketide synthase ctnA : transcription factor orf3 : oxygenase (C) (B) V. Exploring the distribution of citrinin biosynthesis related genes among Monascus spp. 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1
  • 30.
    Phylogeny of PKS from Monascus and various organisms pksCT based on AT domain V. Exploring the distribution of citrinin biosynthesis related genes among Monascus spp.
  • 31.
    a.a. DNA a.a.DNA M. purpureus BCRC33325 M. sanguineus BCRC33446 Sequence analyses of the pksCT KS domain V. Exploring the distribution of citrinin biosynthesis related genes among Monascus spp. S S S C A T D L T L S S S C P T D L G C A C A G T T C A C A G T C T A C C T A C T G C T C G T A C G G C A C A G T T C A A G T C T A C C T A C T A C T C G T A C C L
  • 32.
    V. Exploring thedistribution of citrinin biosynthesis related genes among Monascus spp.
  • 33.
    Phylogeny of Monascus spp. based on the β-tubulin gene V. Exploring the distribution of citrinin biosynthesis related genes among Monascus spp. M. pilosus BCRC38072 M. ruber BCRC33323 M. ruber BCRC31534 M. barkeri BCRC33309 M. ruber BCRC31535 M. ruber BCRC33314 M. ruber BCRC31523 M. pilosus BCRC31502 M. ruber BCRC31533 M. sanguineus BCRC33446 M. purpureus BCRC31541 M. purpureus BCRC31542 M. kaoliang BCRC31506 M. purpureus BCRC31615 M. purpureus BCRC33325 M. pallens BCRC33641 M. floridanus BCRC33310 M. lunisporas BCRC33640 A. fumigatus A. parasiticus A. flavus 100 99 99 95 99 67 100 100 0.01 + ctnA + orf3 + pksCT + mokA + mokE
  • 34.
    Conclusions PCR andSouthern blot clearly indicate that the citrinin gene cluster in M. purpureus and M. kaoliang carry out citrinin biosynthesis. A citrinin producing phenotype was detected only in M. purpureus and M. kaoliang . According to the phylogenetic subgroups established with the β-tubulin gene, the citrinin genes can group the species of Monascus . Chen Y.-P., Tseng C.-P., Chien I.-L., Wang W.-Y., Liaw L.-L., Yuan G.-F. Exploring the distribution of citrinin biosynthesis related genes among Monascus species. 2008. J. Agric. Food Chem. (Accepted) V. Exploring the distribution of citrinin biosynthesis related genes among Monascus spp.
  • 35.
    Annotation of BACDNA mps01 predicted by BLAST and VectorNTI 159958 bp mokA mokC mokD mokE mokF mokG mokH mokI mokB ORF 1 2 3 4 5 6 7 8 9 10 11 12 1314 15 16 17 18 mokB mokI mokH mokF mokD mokA mokC mokE mokG 19 20 21 similar to Adapter-related protein complex 1 beta 1 subunit 1 NADP(H)-dependent alcohol dehydrogenase 2 late sexual development protein 3 predicted protein 4, 9 Non-LTR retrotransposon, MRT 5, 10 DNA primase small subunit 6 SUAPRGA1 7 exonuclease 8 Hypothetical protein 11, 12, 14 actin patches distal 13 ABNA-arabinanase 15 Fum12p(hydroxylase ) 16 Acetotactate synthase 17 related to GABA transport protein 18 Polyketide synthase (nonaketide) P450 monooxygenase Oxidoreductase Dehydrogenase Transesterase HMG-CoA reductase Transcription factor Efflux pump Polyketide synthase (diketide) Hypothetical protein 19 sugar transporter-like protein 20 Crh-like protein 21 VI. MRT, a new non-LTR retrotransposon in Monascus spp.
  • 36.
    Structure of thenon-LTR retrotransposon, MRT APE: apurinic/apyrimidinic endonuclease domain CYS: cysteine –rich region CCHC: Cys-His region RT: reverse transcriptase RNH: RNaseH VI. MRT, a new non-LTR retrotransposon in Monascus spp.
  • 37.
    Phylogeny of non-LTRretrotransposons based on RT domain VI. MRT, a new non-LTR retrotransposon in Monascus spp.
  • 38.
    Monascus pilosus Monascusruber Monascus sanguineus Monascus barkeri Monascus pilosus Monascus ruber Monascus sanguineus Monascus barkeri Southern analysis of MRT within Monascus spp. Eco RI Bam HI Monascus purpureus Monascus purpureus BCRC31503 BCRC31503 VI. MRT, a new non-LTR retrotransposon in Monascus spp.
  • 39.
    + MRT — MRT M. pilosus BCRC38072 M. ruber BCRC31523 M. ruber BCRC33314 M. ruber BCRC33323 M. barkeri BCRC33309 M. pilosus BCRC31502 M. ruber BCRC31533 M. ruber BCRC31534 M. ruber BCRC31535 M. sanguineus BCRC33446 M. purpureus BCRC31615 M. purpureus BCRC33325 M. pilosus BCRC31503 M. purpureus BCRC31542 M. kaoliang BCRC31506 M. purpureus BCRC31541 M. pallens BCRC33641 M. lunisporas BCRC33640 M. floridanus BCRC33310 P. digitatum A. fumigatus A. flavus A. parasiticus 100 99 95 97 94 100 67 100 100 0.01 Phylogeny of Monascus spp. based on the β -tubulin gene VI. MRT, a new non-LTR retrotransposon in Monascus spp.
  • 40.
    Conclusions A newnon-LTR retrotransposon, named MRT, was discovered. The species of Monascus can be grouped by the presence or absence of MRT elements in the hybridization pattern according to phylogenetic subgroups established with the partial β-tubulin gene Chen, Y.-P., Tseng, C.-P., Liaw, L.-L., Wang, C.-L., Yuan, G.-F. Characterization of MRT, a new non-LTR retrotransposon in Monascus spp. Bot. Bull. Acad. Sinica. 2007. 48, 377-385. VI. MRT, a new non-LTR retrotransposon in Monascus spp.
  • 41.
    Acknowledgement 基因體醫學國家型計畫 NationalResearch Program for Genomic Medicine 基因庫及遺傳資源的收集保存研發與應用 紅麴菌基因體計畫 Collection, Preservation, Researches and application on Gene Bank and Genetic Resources The Monascus Genome project 行政院科發基金 National commission for science and technology development fund 經濟部技術處科專計畫 The Department of Industrial Technology of the Ministry of Economic Affairs
  • 42.
    第 頁 BEC/ ITRI Bioinformatic Proteomic Libraries and Sequencing Functional Genomics Mycology and Fermentation TEAMS
  • 43.
    六、紅麴菌之 MRT, non-LTR retrotransposon