SlideShare a Scribd company logo
Source Basics Copyright
2000
Agenda
 Types of sources
 CW
 Swept
 Signal Generator
 Block Diagrams
 Applications
 Specifications
Source Basics Copyright
2000
Sources Generate Sine Waves
Voltage
Time
Voltage
Frequency
This is the ideal output: most specs deal with deviations from the
ideal and adding modulation to a sine wave
RF Microwave Millimeter
20-50 GHz 300 GHz
3-6 GHz
Spectrum Analyzer
Oscilloscope
Source Basics Copyright
2000
Types of Sources
 CW
– generates a single frequency, fixed sine wave
 Swept
– sweeps over a range of frequencies
– may be phase continuous
 Signal Generator
– adds modulation
– produces “real world” signal
Source Basics Copyright
2000
Agenda
 Types of sources
 CW
 Swept
 Signal Generator
 Block Diagrams
 Applications
 Specifications
Source Basics Copyright
2000
CW Source Specifications
...Frequency
Voltage
Frequency
Uncertainty
 Range: Range of frequencies covered by the source
 Resolution: Smallest frequency increment.
 Accuracy: How accurately can the source frequency be
set.
EXAMPLE
Accuracy =
= CW frequency = 1 GHz
= aging rate = 0.152 ppm/year
= time since last calibrated = 1 year

+
_ fCW
taging cal
t
* *
fCW
taging
cal
t
Accuracy = 152
Hz
+
_
Source Basics Copyright
2000
CW Source Specifications
...Amplitude
DUT
Source protected from accidental transmission from
DUT
Voltage
Frequency
How
accurate is
this number?
What is P out?
What is P out?
max
min
 Range (-136dBm to +13dBm)
 Accuracy (+/- 0.5dB)
 Resolution (0.02dB)
 Switching Speed (25ms)
 Reverse Power Protection
Source Basics Copyright
2000
 Phase Noise
 Residual FM
 Spurious
CW Source Specifications
...Spectral Purity
non-harmonic spur
~65dBc
harmonic spur
~30dBc
CW output
Residual FM is the
integrated phase noise
over 300 Hz - 3 kHz BW phase
noise
0.5 f0 f0
2f0
sub-harmonics
Source Basics Copyright
2000
CW Source Specifications
... Spectral Purity: Phase Noise
CW output
frequency
measured as dBc/Hz
Ch1 PM PSD
1k 10k 100k
TRACE A:
A Marker 10 000 Hz
75 dBc/Hz
-125 dBc/Hz
LogMag
5 dBc/div
-105 dBc/Hz
Source Basics Copyright
2000
RF CW Block Diagram
Reference
Oscillator
VCO
Phase
Detector
Frac-N
divide
by X
ALC
Modulator
ALC
Driver
ALC Detector
Output
Attenuator
ALC = automatic level control
Reference Section
Synthesizer Section
Output Section
Source Basics Copyright
2000
RF CW Block Diagram
Reference Section
Phase
Detector
Optional External
Reference Input Reference Oscillator (TCXO or OCXO)
TCXO OCXO
Aging Rate +/- 2ppm/year +/- 0.1 ppm /year
Temp. +/- 1ppm +/- 0.01 ppm
Line Voltage +/- 0.5ppm +/- 0.001 ppm
to synthesizer section
divide
by X
Source Basics Copyright
2000
RF CW Block Diagram
Synthesizer Section
VCO
Phase
Detector
Frac-N
from reference section
to output section
X 2
multiplier
Front
panel
control
5MHz
465.5 MHz
N = 93.1
931 MHz
5MHz
...produces accurate, clean signals
Source Basics Copyright
2000
RF CW Block Diagram
Synthesizer Section
reference
oscillator
phase noise of source
VCO noise
phase
detector
noise broadband
noise floor
20logN
phase-locked-loop (PLL)
bandwidth selected for
optimum noise performance
PLL / Fractional - N
...suppresses phase noise
frequency
Source Basics Copyright
2000
RF CW Block Diagram
Output Section
ALC = automatic level control
ALC
Modulator
ALC
Driver
ALC Detector
Output
Attenuator
from
synthesizer
section
source output
 ALC
–maintains output
power by
adding/subtracting
power as needed
 Output Attenuator
–mechanical or
electronic
–provides attentuation
to achieve wide output
range (e.g. -136dBm to
+13dBm)
Source Basics Copyright
2000
mWave CW Block Diagram
ALC Detector
ALC
Modulator
ALC
Driver
Output
Attenuator
Sampler
Reference Section
Synthesizer
Section
Output Section
Ref Osc
VCO
Phase
Det
Frac
N
by X
VCO
Phase
Detector
Frac-N
Phase
Detector
Tuning
Coils
YIG
Oscillator
Source Basics Copyright
2000
Applications & Critical Specifications
 Local Oscillator
– phase noise
– frequency accuracy
 Amplifier Distortion
– spurious
– TOI (for system)
 Receiver Testing
– Spurious
 spurious
 level accuracy
Source Basics Copyright
2000
Applications & Critical Specifications
As a Local Oscillator
IF signal transmitter output
poor phase noise spreads
energy into adjacent
channels
poor frequency accuracy
will cause transmitter to
be at the wrong
frequency
DUT
Source Basics Copyright
2000
Applications & Critical Specifications
Amplifier Testing
f2
f1
fU = 2f2 - f1
fL = 2f1 - f2
spurious signals from
source can corrupt
measurement
frequency
test system third order
products will also fall here
output RF
isolator
f1
f2
DUT
Intermodulation
Distortion
Source Basics Copyright
2000
Applications & Critical Specifications
Receiver Testing
IF Rejection Curve
Frequency
Level
(dBm)
spur from source and/or high levels
of phase noise can cause a good
receiver to fail
source output
IF
signal
in-channel signal
(modulated signal)
out-of-channel signal
(CW or modulated signal)
DUT
Receiver Selectivity
Source Basics Copyright
2000
Agilent Families of CW Generators
RF
Microwave
Agilent 8664/65 family
 100 MHz - 6 GHz
 Low out channel noise
 AM/FM/Pulse.
Agilent 8662/63 family
 100 KHz - 2.5 GHz
 Low in channel noise
 AM/FM/Phase/Pulse
Agilent 83711/12B
family
 10 MHz - 20 GHz
 CW only
Source Basics Copyright
2000
Agenda
 Types of sources
 CW
 Swept
 Signal Generator
 Block Diagrams
 Applications
 Specifications
Source Basics Copyright
2000
Sweeper Specifications
...Frequency
 ramp sweep
– accuracy
– sweep time
– resolution
 step sweep
– accuracy
– number of points
– switching time
time
f2
t2
t1
f1
t4
t3
t1 t2
f4
f3
f1
f2
Source Basics Copyright
2000
Sweeper Specifications
...Amplitude
Frequency Sweep
 Level Accuracy
 Flatness
 Source Match (SWR)
Power Sweep
 Power Sweep Range
 Power Slope Range
 Source Match (SWR)
flatness spec
level accuracy
spec
f1 f2
frequency
power
power
}
P2
P1
power sweep
range
t1 t2
Source Basics Copyright
2000
Applications & Critical Specifications
 Frequency Response
– Frequency Accuracy
– Output Power (Level) Accuracy
– Flatness
– Speed
– residual FM
 Amplifier Compression
– Power Range
Source Basics Copyright
2000
Applications & Critical Specifications
Frequency Response Testing
LO
Sweeper Input
 Frequency Accuracy
 Output Power (Level) Accuracy
 Flatness
 Speed
 residual FM
Source Basics Copyright
2000
Applications & Critical Specifications
Frequency Response Testing
Center 2 450.212 MHz Span 1 099.577 MHz
1
1
3
5 6
BW: 429.600 MHz
CF: 2405.782 MHz
Q: 5.60
Loss: -0.84 dB
1:Transmission Log Mag 5.0 dB/ Ref -15.00 dB
-35
-30
-25
-20
-10
-5
0
5
Abs
dB
Ch1
Who Cares About Accuracy?
Source Basics Copyright
2000
Applications & Critical Specifications
Amplifier Compression
Power In
1 dB compression
point
The 1 dB compression point is a common amplifier specification used to
identify the linear operating range of an amplifier. Power sweep is available
on some Agilent sources.
 Power Range
Source Basics Copyright
2000
Synthesized Sweep Generators
 Agilent 83750 Series
 Step/Analog sweep
 AM/FM/Phase modulation
 10MHz to 20GHz
 up to 110GHz with 83550 series
 modules and amplifier
 Agilent 8360L Series
 Step/Analog sweep
 8510/8757 Compatibility
 10MHz to 50GHz
 up to 110GHz with 83550 series
modules
Source Basics Copyright
2000
Agenda
 Types of sources
 CW
 Swept
 Signal Generator
 Block Diagrams
 Applications
 Specifications
Source Basics Copyright
2000
Signal Generators
 Calibrated modulation
– Analog (AM, FM, PM, Pulse)
– Digital (I-Q)
– Format Specific(TDMA,CDMA, etc.)
Source Basics Copyright
2000
Modulation
...Where the information resides
AM, Pulse
FM PM
q
V= A(t) sin[ (t)]
p
V= A(t) sin[2 f(t) + (t)]
f
Source Basics Copyright
2000
Modulation: Analog
Amplitude Modulation
Important Signal Generator Specs
for Amplitude Modulation
Voltage
Time
Carrier
Modulation
 Modulation frequency
 Linear AM
 Log AM
 Depth of modulation (Mod
Index)
Source Basics Copyright
2000
Modulation: Analog
Frequency Modulation
Voltage
Time
Important Signal Generator Specs
for Frequency Modulation
V= A sin[2 f t + m(t)]
p c b
F /F
dev mod
b = D
 Frequency Deviation
 Modulation Frequency
 dcFM
 Accuracy
 Resolution
Source Basics Copyright
2000
Modulation: Analog
Phase Modulation
b = Df peak
V= A sin[2 p f t + m(t)]
Important Signal Generator Specs
for Phase Modulation
 Phase deviation
 Rates
 Accuracy
 Resolution
Voltage
Time
c b
Source Basics Copyright
2000
Modulation: Analog
Pulse Modulation
Time
Pulse
On/Off ratio
Rise
time
Rate=1/T T
Width
Power
t
1/t
1/T
Power
Important Signal Generator Specs
for Pulse Modulation
 Pulse width
 Pulse period
 On/Off ratio
 Rise time
Source Basics Copyright
2000
Digital Modulation
...signal characteristics to modify
Amplitude
Frequency
Phase
Both Amplitude
and Phase
Source Basics Copyright
2000
Digital Modulation
Polar Display: Magnitude & Phase Represented Together
 Magnitude is an absolute value
 Phase is relative to a reference signal
Phase
0 deg
Source Basics Copyright
2000
Digital Modulation
Signal Changes or Modifications
Phase
0 deg
Magnitude Change
Phase
0 deg
Phase Change
Frequency Change
Both Change
0 deg
0 deg
Source Basics Copyright
2000
Digital Modulation
...Binary Phase Shift Keying (BPSK)
f
V= A sin[2 ft + (t)]
(t) =
f1
f2
p f
Source Basics Copyright
2000
Digital Modulation
BPSK IQ Diagram
I
Q
0
1
One Bit Per Symbol
Symbol Rate = Bit Rate
Source Basics Copyright
2000
Digital Modulation
...Quadrature Phase Shift Keying (QPSK)
V= A sin[2 ft + (t)]
f(t) =
f1 = 3 /4
p
f2 = /4
p
f3 = - /4
p
f4 = - 3
/4
p
p f
Source Basics Copyright
2000
Digital Modulation
QPSK IQ Diagram
I
Q
00
01
10
11
Source Basics Copyright
2000
Digital Modulation
p/4 DQPSK IQ Diagram
I
Q
Source Basics Copyright
2000
Digital Modulation
Modulation Accuracy
I
Q Magnitude Error (IQ error mag)
Error Vector
Ideal (Reference) Signal
Phase Error (IQ error phase)
Test
Signal
f
Source Basics Copyright
2000
Digital Signal Generator Block Diagram
IQ Modulator
– modulation
quality
Baseband Generator
– modulation quality
– adjacent channel
performance
– supported modulation
formats
reference section
(supplies timing)
to output section
Source Basics Copyright
2000
Digital Modulation
PSK Implementation: IQ Method
p/2
Carrier
 Good Interface with Digital Signals and
Circuits
 Can be Implemented with Simple Circuits
 Can be Modified for Bandwidth Efficiency
I:
Q:
Source Basics Copyright
2000
Digital Signal Generator Block Diagram
IQ Modulator
p/2
DAC
DAC
Ext I
Ext Q
from synthesizer
section
to output section
Q from Baseband Generator
I from Baseband Generator
Source Basics Copyright
2000
Digital Signal Generator Block Diagram
Baseband Generator
DAC
DAC
Pattern RAM Constellation
Map and
Baseband Filters
Timing
Data
Data Clock
Symbol
Clock
From CPU
I
Q
Analog
Reconstruction
Filters
Source Basics Copyright
2000
Digital Signal Generator
Format Specific Digital Signals
NADC (TDMA IS-54)
Parameter Specification
Access Method TDMA/FDD
Modulation p/4 DQPSK
Channel Bandwidth 30 kHz
Reverse Channel
Frequency Band
824 - 849 MHz
Forward Channel
Frequency Band
869 - 894 MHz
Filtering 0.35 RRC
Source Basics Copyright
2000
Digital Signal Generator
Access and Framing
one frame = 1944 bits (972 symbols) = 40ms; 25frames/sec
slot 1 slot 2 slot 3 slot 4 slot
5 slot 6
324 bit (162 symbols) = 6.667ms
G R Data Sync Data SACCH
CDVCC Data
6 6 16 28 122 12 12
122 Mobile to Base Station
Source Basics Copyright
2000
Applications and Critical Specifications
Analog and Digital
 Receiver Sensitivity
– frequency accuracy
– level accuracy
– error vector magnitude
 Receiver Selectivity
– phase noise
– spurious
– spectral accuracy
 Spectral Regrowth
– ACP performance
Source Basics Copyright
2000
Applications and Critical Specifications
Receiver Sensitivity
Want to measure
sensitivity in a channel
Measurement impaired by
frequency inaccuracy
frequency inaccuracy
amplitude inaccuracy
input for signal
generator
DUT
 Frequency Accuracy
Source Basics Copyright
2000
Applications and Critical Specifications
Receiver Sensitivity
Customer is testing a -110 dB sensitivity pager:
-110 dB specification
Case 1: Source has +/-5 dB of
output power accuracy at
-100 to -120 dBm output power.
Set source to -115 dBm
Actual output power= -114 dBm
X
X
X X
X
O
Case 2: Source has +/-1 dB of
output power accuracy at
-100 to -120 dBm output power.
-110 dB specification
Set source to -111 dBm
Actual output power= -112 dBm
X
X
O O
O
O
X= Failed unit
O=Passed unit
Frequency Frequency
 Level Accuracy
Source Basics Copyright
2000
Applications and Critical Specifications
Receiver Sensitivity
 Error Vector Magnitude (EVM)
Error
Vector
p
e.g. TETRA Signal
/4 DQPSK
EVM < 1.0%
Source Basics Copyright
2000
Applications and Critical Specifications
Receiver Selectivity
IF Rejection Curve
Frequency
Level
(dBm)
spur from source and/or high
levels of phase noise can cause a
good receiver to fail
IF
signal
in-channel signal
(modulated signal)
out-of-channel signal
(CW or modulated signal) DUT
 Phase Noise
 Spurious
Source Basics Copyright
2000
Applications and Critical Specifications
Receiver Selectivity
GSM Signal
0.3GMSK
Spectral Accuracy:
 EVM
 ACP
Source Basics Copyright
2000
Applications and Critical Specifications
Spectral Regrowth
Input from signal generator
Output from amplifier
DUT
 ACP Performance
Source Basics Copyright
2000
Agilent Families of Signal Generators
RF
Microwave
Agilent 8647/48
family
 9 KHz - 4 GHz
 AM/FM/Phase
 Paging, SMR,
Cordless
Agilent ESG family
 250 KHz - 4 GHz
 AM/FM/Phase/Pulse
 Digital/I-Q Mod
 GSM,CDMA,DECT...
Agilent 8360B family
10 MHz - 50 GHz
 AM/FM/Pulse
110 GHz with ext. module
Agilent 83730
family
 10 MHz - 20 GHz
 AM/FM/Pulse
Source Basics Copyright
2000
 Types of sources
 CW
 Swept
 Signal Generator
 Block Diagrams
 Applications
 Specifications
Agenda

More Related Content

Similar to 130310124026_Signal Generator (Source) Basics.ppt

ECE 24 Final Report 052209
ECE 24 Final Report 052209ECE 24 Final Report 052209
ECE 24 Final Report 052209
crh342
 
AM - Modulator and Demodulator
AM - Modulator and DemodulatorAM - Modulator and Demodulator
AM - Modulator and Demodulator
KannanKrishnana
 
amateur radio and electronics slides_dcote_022109_rev1
amateur radio and electronics slides_dcote_022109_rev1amateur radio and electronics slides_dcote_022109_rev1
amateur radio and electronics slides_dcote_022109_rev1
Denis P. Cote, PE, CWI
 
Quantum Computer - Low noise signal processing solution
Quantum Computer - Low noise signal processing solutionQuantum Computer - Low noise signal processing solution
Quantum Computer - Low noise signal processing solution
NIHON DENKEI SINGAPORE
 
Design of CMOS operational Amplifiers using CADENCE
Design of CMOS operational Amplifiers using CADENCEDesign of CMOS operational Amplifiers using CADENCE
Design of CMOS operational Amplifiers using CADENCE
nandivashishth
 
Presentació renovables
Presentació renovablesPresentació renovables
Presentació renovables
Jordi Cusido
 
Amplificador classe d com direct fet
Amplificador classe d com direct fetAmplificador classe d com direct fet
Amplificador classe d com direct fet
Isaac José Grassioto
 
Perfect data reconstruction algorithm of interleaved adc
Perfect data reconstruction algorithm of interleaved adcPerfect data reconstruction algorithm of interleaved adc
Perfect data reconstruction algorithm of interleaved adc
FangXuIEEE
 
modulation of analog communication system
modulation of analog communication systemmodulation of analog communication system
modulation of analog communication system
swatihalunde
 
AD8351.pdf
AD8351.pdfAD8351.pdf
EMI Unit II
EMI Unit IIEMI Unit II
EMI Unit II
GVNSK Sravya
 
Frequency Modulation In Data Transmission
Frequency Modulation In Data TransmissionFrequency Modulation In Data Transmission
Frequency Modulation In Data Transmission
Bise Mond
 
Unit 2 signal generators
Unit 2 signal generatorsUnit 2 signal generators
Unit 2 signal generators
Tejas Prajapati
 
Ad7716
Ad7716Ad7716
Diodos
DiodosDiodos
Amplitude Modulation and Demodulation Techniques
Amplitude Modulation and Demodulation TechniquesAmplitude Modulation and Demodulation Techniques
Amplitude Modulation and Demodulation Techniques
SripalreddyK1
 
Automated Traffic Density Detection and Speed Monitoring
Automated Traffic Density Detection and Speed MonitoringAutomated Traffic Density Detection and Speed Monitoring
Automated Traffic Density Detection and Speed Monitoring
Bharat Biyani
 
Voltage to-frequency frequency-to-voltage converter
Voltage to-frequency frequency-to-voltage converterVoltage to-frequency frequency-to-voltage converter
Voltage to-frequency frequency-to-voltage converter
The Hoa Nguyen
 
RM03D-3_DCOBISC_06_07_09_Final
RM03D-3_DCOBISC_06_07_09_FinalRM03D-3_DCOBISC_06_07_09_Final
RM03D-3_DCOBISC_06_07_09_Final
imranbashir
 
Datasheet Fluke 43B. Hubungi PT. Siwali Swantika 021-45850618
Datasheet Fluke 43B. Hubungi PT. Siwali Swantika 021-45850618Datasheet Fluke 43B. Hubungi PT. Siwali Swantika 021-45850618
Datasheet Fluke 43B. Hubungi PT. Siwali Swantika 021-45850618
PT. Siwali Swantika
 

Similar to 130310124026_Signal Generator (Source) Basics.ppt (20)

ECE 24 Final Report 052209
ECE 24 Final Report 052209ECE 24 Final Report 052209
ECE 24 Final Report 052209
 
AM - Modulator and Demodulator
AM - Modulator and DemodulatorAM - Modulator and Demodulator
AM - Modulator and Demodulator
 
amateur radio and electronics slides_dcote_022109_rev1
amateur radio and electronics slides_dcote_022109_rev1amateur radio and electronics slides_dcote_022109_rev1
amateur radio and electronics slides_dcote_022109_rev1
 
Quantum Computer - Low noise signal processing solution
Quantum Computer - Low noise signal processing solutionQuantum Computer - Low noise signal processing solution
Quantum Computer - Low noise signal processing solution
 
Design of CMOS operational Amplifiers using CADENCE
Design of CMOS operational Amplifiers using CADENCEDesign of CMOS operational Amplifiers using CADENCE
Design of CMOS operational Amplifiers using CADENCE
 
Presentació renovables
Presentació renovablesPresentació renovables
Presentació renovables
 
Amplificador classe d com direct fet
Amplificador classe d com direct fetAmplificador classe d com direct fet
Amplificador classe d com direct fet
 
Perfect data reconstruction algorithm of interleaved adc
Perfect data reconstruction algorithm of interleaved adcPerfect data reconstruction algorithm of interleaved adc
Perfect data reconstruction algorithm of interleaved adc
 
modulation of analog communication system
modulation of analog communication systemmodulation of analog communication system
modulation of analog communication system
 
AD8351.pdf
AD8351.pdfAD8351.pdf
AD8351.pdf
 
EMI Unit II
EMI Unit IIEMI Unit II
EMI Unit II
 
Frequency Modulation In Data Transmission
Frequency Modulation In Data TransmissionFrequency Modulation In Data Transmission
Frequency Modulation In Data Transmission
 
Unit 2 signal generators
Unit 2 signal generatorsUnit 2 signal generators
Unit 2 signal generators
 
Ad7716
Ad7716Ad7716
Ad7716
 
Diodos
DiodosDiodos
Diodos
 
Amplitude Modulation and Demodulation Techniques
Amplitude Modulation and Demodulation TechniquesAmplitude Modulation and Demodulation Techniques
Amplitude Modulation and Demodulation Techniques
 
Automated Traffic Density Detection and Speed Monitoring
Automated Traffic Density Detection and Speed MonitoringAutomated Traffic Density Detection and Speed Monitoring
Automated Traffic Density Detection and Speed Monitoring
 
Voltage to-frequency frequency-to-voltage converter
Voltage to-frequency frequency-to-voltage converterVoltage to-frequency frequency-to-voltage converter
Voltage to-frequency frequency-to-voltage converter
 
RM03D-3_DCOBISC_06_07_09_Final
RM03D-3_DCOBISC_06_07_09_FinalRM03D-3_DCOBISC_06_07_09_Final
RM03D-3_DCOBISC_06_07_09_Final
 
Datasheet Fluke 43B. Hubungi PT. Siwali Swantika 021-45850618
Datasheet Fluke 43B. Hubungi PT. Siwali Swantika 021-45850618Datasheet Fluke 43B. Hubungi PT. Siwali Swantika 021-45850618
Datasheet Fluke 43B. Hubungi PT. Siwali Swantika 021-45850618
 

Recently uploaded

integral complex analysis chapter 06 .pdf
integral complex analysis chapter 06 .pdfintegral complex analysis chapter 06 .pdf
integral complex analysis chapter 06 .pdf
gaafergoudaay7aga
 
Null Bangalore | Pentesters Approach to AWS IAM
Null Bangalore | Pentesters Approach to AWS IAMNull Bangalore | Pentesters Approach to AWS IAM
Null Bangalore | Pentesters Approach to AWS IAM
Divyanshu
 
Design and optimization of ion propulsion drone
Design and optimization of ion propulsion droneDesign and optimization of ion propulsion drone
Design and optimization of ion propulsion drone
bjmsejournal
 
Data Driven Maintenance | UReason Webinar
Data Driven Maintenance | UReason WebinarData Driven Maintenance | UReason Webinar
Data Driven Maintenance | UReason Webinar
UReason
 
ITSM Integration with MuleSoft.pptx
ITSM  Integration with MuleSoft.pptxITSM  Integration with MuleSoft.pptx
ITSM Integration with MuleSoft.pptx
VANDANAMOHANGOUDA
 
一比一原版(CalArts毕业证)加利福尼亚艺术学院毕业证如何办理
一比一原版(CalArts毕业证)加利福尼亚艺术学院毕业证如何办理一比一原版(CalArts毕业证)加利福尼亚艺术学院毕业证如何办理
一比一原版(CalArts毕业证)加利福尼亚艺术学院毕业证如何办理
ecqow
 
Redefining brain tumor segmentation: a cutting-edge convolutional neural netw...
Redefining brain tumor segmentation: a cutting-edge convolutional neural netw...Redefining brain tumor segmentation: a cutting-edge convolutional neural netw...
Redefining brain tumor segmentation: a cutting-edge convolutional neural netw...
IJECEIAES
 
Optimizing Gradle Builds - Gradle DPE Tour Berlin 2024
Optimizing Gradle Builds - Gradle DPE Tour Berlin 2024Optimizing Gradle Builds - Gradle DPE Tour Berlin 2024
Optimizing Gradle Builds - Gradle DPE Tour Berlin 2024
Sinan KOZAK
 
LLM Fine Tuning with QLoRA Cassandra Lunch 4, presented by Anant
LLM Fine Tuning with QLoRA Cassandra Lunch 4, presented by AnantLLM Fine Tuning with QLoRA Cassandra Lunch 4, presented by Anant
LLM Fine Tuning with QLoRA Cassandra Lunch 4, presented by Anant
Anant Corporation
 
People as resource Grade IX.pdf minimala
People as resource Grade IX.pdf minimalaPeople as resource Grade IX.pdf minimala
People as resource Grade IX.pdf minimala
riddhimaagrawal986
 
Welding Metallurgy Ferrous Materials.pdf
Welding Metallurgy Ferrous Materials.pdfWelding Metallurgy Ferrous Materials.pdf
Welding Metallurgy Ferrous Materials.pdf
AjmalKhan50578
 
Computational Engineering IITH Presentation
Computational Engineering IITH PresentationComputational Engineering IITH Presentation
Computational Engineering IITH Presentation
co23btech11018
 
学校原版美国波士顿大学毕业证学历学位证书原版一模一样
学校原版美国波士顿大学毕业证学历学位证书原版一模一样学校原版美国波士顿大学毕业证学历学位证书原版一模一样
学校原版美国波士顿大学毕业证学历学位证书原版一模一样
171ticu
 
An improved modulation technique suitable for a three level flying capacitor ...
An improved modulation technique suitable for a three level flying capacitor ...An improved modulation technique suitable for a three level flying capacitor ...
An improved modulation technique suitable for a three level flying capacitor ...
IJECEIAES
 
CEC 352 - SATELLITE COMMUNICATION UNIT 1
CEC 352 - SATELLITE COMMUNICATION UNIT 1CEC 352 - SATELLITE COMMUNICATION UNIT 1
CEC 352 - SATELLITE COMMUNICATION UNIT 1
PKavitha10
 
2008 BUILDING CONSTRUCTION Illustrated - Ching Chapter 02 The Building.pdf
2008 BUILDING CONSTRUCTION Illustrated - Ching Chapter 02 The Building.pdf2008 BUILDING CONSTRUCTION Illustrated - Ching Chapter 02 The Building.pdf
2008 BUILDING CONSTRUCTION Illustrated - Ching Chapter 02 The Building.pdf
Yasser Mahgoub
 
artificial intelligence and data science contents.pptx
artificial intelligence and data science contents.pptxartificial intelligence and data science contents.pptx
artificial intelligence and data science contents.pptx
GauravCar
 
132/33KV substation case study Presentation
132/33KV substation case study Presentation132/33KV substation case study Presentation
132/33KV substation case study Presentation
kandramariana6
 
Unit-III-ELECTROCHEMICAL STORAGE DEVICES.ppt
Unit-III-ELECTROCHEMICAL STORAGE DEVICES.pptUnit-III-ELECTROCHEMICAL STORAGE DEVICES.ppt
Unit-III-ELECTROCHEMICAL STORAGE DEVICES.ppt
KrishnaveniKrishnara1
 
CompEx~Manual~1210 (2).pdf COMPEX GAS AND VAPOURS
CompEx~Manual~1210 (2).pdf COMPEX GAS AND VAPOURSCompEx~Manual~1210 (2).pdf COMPEX GAS AND VAPOURS
CompEx~Manual~1210 (2).pdf COMPEX GAS AND VAPOURS
RamonNovais6
 

Recently uploaded (20)

integral complex analysis chapter 06 .pdf
integral complex analysis chapter 06 .pdfintegral complex analysis chapter 06 .pdf
integral complex analysis chapter 06 .pdf
 
Null Bangalore | Pentesters Approach to AWS IAM
Null Bangalore | Pentesters Approach to AWS IAMNull Bangalore | Pentesters Approach to AWS IAM
Null Bangalore | Pentesters Approach to AWS IAM
 
Design and optimization of ion propulsion drone
Design and optimization of ion propulsion droneDesign and optimization of ion propulsion drone
Design and optimization of ion propulsion drone
 
Data Driven Maintenance | UReason Webinar
Data Driven Maintenance | UReason WebinarData Driven Maintenance | UReason Webinar
Data Driven Maintenance | UReason Webinar
 
ITSM Integration with MuleSoft.pptx
ITSM  Integration with MuleSoft.pptxITSM  Integration with MuleSoft.pptx
ITSM Integration with MuleSoft.pptx
 
一比一原版(CalArts毕业证)加利福尼亚艺术学院毕业证如何办理
一比一原版(CalArts毕业证)加利福尼亚艺术学院毕业证如何办理一比一原版(CalArts毕业证)加利福尼亚艺术学院毕业证如何办理
一比一原版(CalArts毕业证)加利福尼亚艺术学院毕业证如何办理
 
Redefining brain tumor segmentation: a cutting-edge convolutional neural netw...
Redefining brain tumor segmentation: a cutting-edge convolutional neural netw...Redefining brain tumor segmentation: a cutting-edge convolutional neural netw...
Redefining brain tumor segmentation: a cutting-edge convolutional neural netw...
 
Optimizing Gradle Builds - Gradle DPE Tour Berlin 2024
Optimizing Gradle Builds - Gradle DPE Tour Berlin 2024Optimizing Gradle Builds - Gradle DPE Tour Berlin 2024
Optimizing Gradle Builds - Gradle DPE Tour Berlin 2024
 
LLM Fine Tuning with QLoRA Cassandra Lunch 4, presented by Anant
LLM Fine Tuning with QLoRA Cassandra Lunch 4, presented by AnantLLM Fine Tuning with QLoRA Cassandra Lunch 4, presented by Anant
LLM Fine Tuning with QLoRA Cassandra Lunch 4, presented by Anant
 
People as resource Grade IX.pdf minimala
People as resource Grade IX.pdf minimalaPeople as resource Grade IX.pdf minimala
People as resource Grade IX.pdf minimala
 
Welding Metallurgy Ferrous Materials.pdf
Welding Metallurgy Ferrous Materials.pdfWelding Metallurgy Ferrous Materials.pdf
Welding Metallurgy Ferrous Materials.pdf
 
Computational Engineering IITH Presentation
Computational Engineering IITH PresentationComputational Engineering IITH Presentation
Computational Engineering IITH Presentation
 
学校原版美国波士顿大学毕业证学历学位证书原版一模一样
学校原版美国波士顿大学毕业证学历学位证书原版一模一样学校原版美国波士顿大学毕业证学历学位证书原版一模一样
学校原版美国波士顿大学毕业证学历学位证书原版一模一样
 
An improved modulation technique suitable for a three level flying capacitor ...
An improved modulation technique suitable for a three level flying capacitor ...An improved modulation technique suitable for a three level flying capacitor ...
An improved modulation technique suitable for a three level flying capacitor ...
 
CEC 352 - SATELLITE COMMUNICATION UNIT 1
CEC 352 - SATELLITE COMMUNICATION UNIT 1CEC 352 - SATELLITE COMMUNICATION UNIT 1
CEC 352 - SATELLITE COMMUNICATION UNIT 1
 
2008 BUILDING CONSTRUCTION Illustrated - Ching Chapter 02 The Building.pdf
2008 BUILDING CONSTRUCTION Illustrated - Ching Chapter 02 The Building.pdf2008 BUILDING CONSTRUCTION Illustrated - Ching Chapter 02 The Building.pdf
2008 BUILDING CONSTRUCTION Illustrated - Ching Chapter 02 The Building.pdf
 
artificial intelligence and data science contents.pptx
artificial intelligence and data science contents.pptxartificial intelligence and data science contents.pptx
artificial intelligence and data science contents.pptx
 
132/33KV substation case study Presentation
132/33KV substation case study Presentation132/33KV substation case study Presentation
132/33KV substation case study Presentation
 
Unit-III-ELECTROCHEMICAL STORAGE DEVICES.ppt
Unit-III-ELECTROCHEMICAL STORAGE DEVICES.pptUnit-III-ELECTROCHEMICAL STORAGE DEVICES.ppt
Unit-III-ELECTROCHEMICAL STORAGE DEVICES.ppt
 
CompEx~Manual~1210 (2).pdf COMPEX GAS AND VAPOURS
CompEx~Manual~1210 (2).pdf COMPEX GAS AND VAPOURSCompEx~Manual~1210 (2).pdf COMPEX GAS AND VAPOURS
CompEx~Manual~1210 (2).pdf COMPEX GAS AND VAPOURS
 

130310124026_Signal Generator (Source) Basics.ppt

  • 1. Source Basics Copyright 2000 Agenda  Types of sources  CW  Swept  Signal Generator  Block Diagrams  Applications  Specifications
  • 2. Source Basics Copyright 2000 Sources Generate Sine Waves Voltage Time Voltage Frequency This is the ideal output: most specs deal with deviations from the ideal and adding modulation to a sine wave RF Microwave Millimeter 20-50 GHz 300 GHz 3-6 GHz Spectrum Analyzer Oscilloscope
  • 3. Source Basics Copyright 2000 Types of Sources  CW – generates a single frequency, fixed sine wave  Swept – sweeps over a range of frequencies – may be phase continuous  Signal Generator – adds modulation – produces “real world” signal
  • 4. Source Basics Copyright 2000 Agenda  Types of sources  CW  Swept  Signal Generator  Block Diagrams  Applications  Specifications
  • 5. Source Basics Copyright 2000 CW Source Specifications ...Frequency Voltage Frequency Uncertainty  Range: Range of frequencies covered by the source  Resolution: Smallest frequency increment.  Accuracy: How accurately can the source frequency be set. EXAMPLE Accuracy = = CW frequency = 1 GHz = aging rate = 0.152 ppm/year = time since last calibrated = 1 year  + _ fCW taging cal t * * fCW taging cal t Accuracy = 152 Hz + _
  • 6. Source Basics Copyright 2000 CW Source Specifications ...Amplitude DUT Source protected from accidental transmission from DUT Voltage Frequency How accurate is this number? What is P out? What is P out? max min  Range (-136dBm to +13dBm)  Accuracy (+/- 0.5dB)  Resolution (0.02dB)  Switching Speed (25ms)  Reverse Power Protection
  • 7. Source Basics Copyright 2000  Phase Noise  Residual FM  Spurious CW Source Specifications ...Spectral Purity non-harmonic spur ~65dBc harmonic spur ~30dBc CW output Residual FM is the integrated phase noise over 300 Hz - 3 kHz BW phase noise 0.5 f0 f0 2f0 sub-harmonics
  • 8. Source Basics Copyright 2000 CW Source Specifications ... Spectral Purity: Phase Noise CW output frequency measured as dBc/Hz Ch1 PM PSD 1k 10k 100k TRACE A: A Marker 10 000 Hz 75 dBc/Hz -125 dBc/Hz LogMag 5 dBc/div -105 dBc/Hz
  • 9. Source Basics Copyright 2000 RF CW Block Diagram Reference Oscillator VCO Phase Detector Frac-N divide by X ALC Modulator ALC Driver ALC Detector Output Attenuator ALC = automatic level control Reference Section Synthesizer Section Output Section
  • 10. Source Basics Copyright 2000 RF CW Block Diagram Reference Section Phase Detector Optional External Reference Input Reference Oscillator (TCXO or OCXO) TCXO OCXO Aging Rate +/- 2ppm/year +/- 0.1 ppm /year Temp. +/- 1ppm +/- 0.01 ppm Line Voltage +/- 0.5ppm +/- 0.001 ppm to synthesizer section divide by X
  • 11. Source Basics Copyright 2000 RF CW Block Diagram Synthesizer Section VCO Phase Detector Frac-N from reference section to output section X 2 multiplier Front panel control 5MHz 465.5 MHz N = 93.1 931 MHz 5MHz ...produces accurate, clean signals
  • 12. Source Basics Copyright 2000 RF CW Block Diagram Synthesizer Section reference oscillator phase noise of source VCO noise phase detector noise broadband noise floor 20logN phase-locked-loop (PLL) bandwidth selected for optimum noise performance PLL / Fractional - N ...suppresses phase noise frequency
  • 13. Source Basics Copyright 2000 RF CW Block Diagram Output Section ALC = automatic level control ALC Modulator ALC Driver ALC Detector Output Attenuator from synthesizer section source output  ALC –maintains output power by adding/subtracting power as needed  Output Attenuator –mechanical or electronic –provides attentuation to achieve wide output range (e.g. -136dBm to +13dBm)
  • 14. Source Basics Copyright 2000 mWave CW Block Diagram ALC Detector ALC Modulator ALC Driver Output Attenuator Sampler Reference Section Synthesizer Section Output Section Ref Osc VCO Phase Det Frac N by X VCO Phase Detector Frac-N Phase Detector Tuning Coils YIG Oscillator
  • 15. Source Basics Copyright 2000 Applications & Critical Specifications  Local Oscillator – phase noise – frequency accuracy  Amplifier Distortion – spurious – TOI (for system)  Receiver Testing – Spurious  spurious  level accuracy
  • 16. Source Basics Copyright 2000 Applications & Critical Specifications As a Local Oscillator IF signal transmitter output poor phase noise spreads energy into adjacent channels poor frequency accuracy will cause transmitter to be at the wrong frequency DUT
  • 17. Source Basics Copyright 2000 Applications & Critical Specifications Amplifier Testing f2 f1 fU = 2f2 - f1 fL = 2f1 - f2 spurious signals from source can corrupt measurement frequency test system third order products will also fall here output RF isolator f1 f2 DUT Intermodulation Distortion
  • 18. Source Basics Copyright 2000 Applications & Critical Specifications Receiver Testing IF Rejection Curve Frequency Level (dBm) spur from source and/or high levels of phase noise can cause a good receiver to fail source output IF signal in-channel signal (modulated signal) out-of-channel signal (CW or modulated signal) DUT Receiver Selectivity
  • 19. Source Basics Copyright 2000 Agilent Families of CW Generators RF Microwave Agilent 8664/65 family  100 MHz - 6 GHz  Low out channel noise  AM/FM/Pulse. Agilent 8662/63 family  100 KHz - 2.5 GHz  Low in channel noise  AM/FM/Phase/Pulse Agilent 83711/12B family  10 MHz - 20 GHz  CW only
  • 20. Source Basics Copyright 2000 Agenda  Types of sources  CW  Swept  Signal Generator  Block Diagrams  Applications  Specifications
  • 21. Source Basics Copyright 2000 Sweeper Specifications ...Frequency  ramp sweep – accuracy – sweep time – resolution  step sweep – accuracy – number of points – switching time time f2 t2 t1 f1 t4 t3 t1 t2 f4 f3 f1 f2
  • 22. Source Basics Copyright 2000 Sweeper Specifications ...Amplitude Frequency Sweep  Level Accuracy  Flatness  Source Match (SWR) Power Sweep  Power Sweep Range  Power Slope Range  Source Match (SWR) flatness spec level accuracy spec f1 f2 frequency power power } P2 P1 power sweep range t1 t2
  • 23. Source Basics Copyright 2000 Applications & Critical Specifications  Frequency Response – Frequency Accuracy – Output Power (Level) Accuracy – Flatness – Speed – residual FM  Amplifier Compression – Power Range
  • 24. Source Basics Copyright 2000 Applications & Critical Specifications Frequency Response Testing LO Sweeper Input  Frequency Accuracy  Output Power (Level) Accuracy  Flatness  Speed  residual FM
  • 25. Source Basics Copyright 2000 Applications & Critical Specifications Frequency Response Testing Center 2 450.212 MHz Span 1 099.577 MHz 1 1 3 5 6 BW: 429.600 MHz CF: 2405.782 MHz Q: 5.60 Loss: -0.84 dB 1:Transmission Log Mag 5.0 dB/ Ref -15.00 dB -35 -30 -25 -20 -10 -5 0 5 Abs dB Ch1 Who Cares About Accuracy?
  • 26. Source Basics Copyright 2000 Applications & Critical Specifications Amplifier Compression Power In 1 dB compression point The 1 dB compression point is a common amplifier specification used to identify the linear operating range of an amplifier. Power sweep is available on some Agilent sources.  Power Range
  • 27. Source Basics Copyright 2000 Synthesized Sweep Generators  Agilent 83750 Series  Step/Analog sweep  AM/FM/Phase modulation  10MHz to 20GHz  up to 110GHz with 83550 series  modules and amplifier  Agilent 8360L Series  Step/Analog sweep  8510/8757 Compatibility  10MHz to 50GHz  up to 110GHz with 83550 series modules
  • 28. Source Basics Copyright 2000 Agenda  Types of sources  CW  Swept  Signal Generator  Block Diagrams  Applications  Specifications
  • 29. Source Basics Copyright 2000 Signal Generators  Calibrated modulation – Analog (AM, FM, PM, Pulse) – Digital (I-Q) – Format Specific(TDMA,CDMA, etc.)
  • 30. Source Basics Copyright 2000 Modulation ...Where the information resides AM, Pulse FM PM q V= A(t) sin[ (t)] p V= A(t) sin[2 f(t) + (t)] f
  • 31. Source Basics Copyright 2000 Modulation: Analog Amplitude Modulation Important Signal Generator Specs for Amplitude Modulation Voltage Time Carrier Modulation  Modulation frequency  Linear AM  Log AM  Depth of modulation (Mod Index)
  • 32. Source Basics Copyright 2000 Modulation: Analog Frequency Modulation Voltage Time Important Signal Generator Specs for Frequency Modulation V= A sin[2 f t + m(t)] p c b F /F dev mod b = D  Frequency Deviation  Modulation Frequency  dcFM  Accuracy  Resolution
  • 33. Source Basics Copyright 2000 Modulation: Analog Phase Modulation b = Df peak V= A sin[2 p f t + m(t)] Important Signal Generator Specs for Phase Modulation  Phase deviation  Rates  Accuracy  Resolution Voltage Time c b
  • 34. Source Basics Copyright 2000 Modulation: Analog Pulse Modulation Time Pulse On/Off ratio Rise time Rate=1/T T Width Power t 1/t 1/T Power Important Signal Generator Specs for Pulse Modulation  Pulse width  Pulse period  On/Off ratio  Rise time
  • 35. Source Basics Copyright 2000 Digital Modulation ...signal characteristics to modify Amplitude Frequency Phase Both Amplitude and Phase
  • 36. Source Basics Copyright 2000 Digital Modulation Polar Display: Magnitude & Phase Represented Together  Magnitude is an absolute value  Phase is relative to a reference signal Phase 0 deg
  • 37. Source Basics Copyright 2000 Digital Modulation Signal Changes or Modifications Phase 0 deg Magnitude Change Phase 0 deg Phase Change Frequency Change Both Change 0 deg 0 deg
  • 38. Source Basics Copyright 2000 Digital Modulation ...Binary Phase Shift Keying (BPSK) f V= A sin[2 ft + (t)] (t) = f1 f2 p f
  • 39. Source Basics Copyright 2000 Digital Modulation BPSK IQ Diagram I Q 0 1 One Bit Per Symbol Symbol Rate = Bit Rate
  • 40. Source Basics Copyright 2000 Digital Modulation ...Quadrature Phase Shift Keying (QPSK) V= A sin[2 ft + (t)] f(t) = f1 = 3 /4 p f2 = /4 p f3 = - /4 p f4 = - 3 /4 p p f
  • 41. Source Basics Copyright 2000 Digital Modulation QPSK IQ Diagram I Q 00 01 10 11
  • 42. Source Basics Copyright 2000 Digital Modulation p/4 DQPSK IQ Diagram I Q
  • 43. Source Basics Copyright 2000 Digital Modulation Modulation Accuracy I Q Magnitude Error (IQ error mag) Error Vector Ideal (Reference) Signal Phase Error (IQ error phase) Test Signal f
  • 44. Source Basics Copyright 2000 Digital Signal Generator Block Diagram IQ Modulator – modulation quality Baseband Generator – modulation quality – adjacent channel performance – supported modulation formats reference section (supplies timing) to output section
  • 45. Source Basics Copyright 2000 Digital Modulation PSK Implementation: IQ Method p/2 Carrier  Good Interface with Digital Signals and Circuits  Can be Implemented with Simple Circuits  Can be Modified for Bandwidth Efficiency I: Q:
  • 46. Source Basics Copyright 2000 Digital Signal Generator Block Diagram IQ Modulator p/2 DAC DAC Ext I Ext Q from synthesizer section to output section Q from Baseband Generator I from Baseband Generator
  • 47. Source Basics Copyright 2000 Digital Signal Generator Block Diagram Baseband Generator DAC DAC Pattern RAM Constellation Map and Baseband Filters Timing Data Data Clock Symbol Clock From CPU I Q Analog Reconstruction Filters
  • 48. Source Basics Copyright 2000 Digital Signal Generator Format Specific Digital Signals NADC (TDMA IS-54) Parameter Specification Access Method TDMA/FDD Modulation p/4 DQPSK Channel Bandwidth 30 kHz Reverse Channel Frequency Band 824 - 849 MHz Forward Channel Frequency Band 869 - 894 MHz Filtering 0.35 RRC
  • 49. Source Basics Copyright 2000 Digital Signal Generator Access and Framing one frame = 1944 bits (972 symbols) = 40ms; 25frames/sec slot 1 slot 2 slot 3 slot 4 slot 5 slot 6 324 bit (162 symbols) = 6.667ms G R Data Sync Data SACCH CDVCC Data 6 6 16 28 122 12 12 122 Mobile to Base Station
  • 50. Source Basics Copyright 2000 Applications and Critical Specifications Analog and Digital  Receiver Sensitivity – frequency accuracy – level accuracy – error vector magnitude  Receiver Selectivity – phase noise – spurious – spectral accuracy  Spectral Regrowth – ACP performance
  • 51. Source Basics Copyright 2000 Applications and Critical Specifications Receiver Sensitivity Want to measure sensitivity in a channel Measurement impaired by frequency inaccuracy frequency inaccuracy amplitude inaccuracy input for signal generator DUT  Frequency Accuracy
  • 52. Source Basics Copyright 2000 Applications and Critical Specifications Receiver Sensitivity Customer is testing a -110 dB sensitivity pager: -110 dB specification Case 1: Source has +/-5 dB of output power accuracy at -100 to -120 dBm output power. Set source to -115 dBm Actual output power= -114 dBm X X X X X O Case 2: Source has +/-1 dB of output power accuracy at -100 to -120 dBm output power. -110 dB specification Set source to -111 dBm Actual output power= -112 dBm X X O O O O X= Failed unit O=Passed unit Frequency Frequency  Level Accuracy
  • 53. Source Basics Copyright 2000 Applications and Critical Specifications Receiver Sensitivity  Error Vector Magnitude (EVM) Error Vector p e.g. TETRA Signal /4 DQPSK EVM < 1.0%
  • 54. Source Basics Copyright 2000 Applications and Critical Specifications Receiver Selectivity IF Rejection Curve Frequency Level (dBm) spur from source and/or high levels of phase noise can cause a good receiver to fail IF signal in-channel signal (modulated signal) out-of-channel signal (CW or modulated signal) DUT  Phase Noise  Spurious
  • 55. Source Basics Copyright 2000 Applications and Critical Specifications Receiver Selectivity GSM Signal 0.3GMSK Spectral Accuracy:  EVM  ACP
  • 56. Source Basics Copyright 2000 Applications and Critical Specifications Spectral Regrowth Input from signal generator Output from amplifier DUT  ACP Performance
  • 57. Source Basics Copyright 2000 Agilent Families of Signal Generators RF Microwave Agilent 8647/48 family  9 KHz - 4 GHz  AM/FM/Phase  Paging, SMR, Cordless Agilent ESG family  250 KHz - 4 GHz  AM/FM/Phase/Pulse  Digital/I-Q Mod  GSM,CDMA,DECT... Agilent 8360B family 10 MHz - 50 GHz  AM/FM/Pulse 110 GHz with ext. module Agilent 83730 family  10 MHz - 20 GHz  AM/FM/Pulse
  • 58. Source Basics Copyright 2000  Types of sources  CW  Swept  Signal Generator  Block Diagrams  Applications  Specifications Agenda