SlideShare a Scribd company logo
Equations of the form asinx + bcosx = c
Method 1: Using the t results
Equations of the form asinx + bcosx = c
Method 1: Using the t results
eg (i) 3cos θ + 4sin θ = 2      0 ≤ θ ≤ 360
Equations of the form asinx + bcosx = c
Method 1: Using the t results
eg (i) 3cos θ + 4sin θ = 2      0 ≤ θ ≤ 360
                   θ
       let t = tan
                   2
Equations of the form asinx + bcosx = c
Method 1: Using the t results
eg (i) 3cos θ + 4sin θ = 2                 0 ≤ θ ≤ 360
                   θ                                           θ
                            1 − t 2   2t 
       let t = tan                    + 4        =2      0≤     ≤ 180
                         3                    2
                                   2
                   2       1+ t  1+ t                      2
Equations of the form asinx + bcosx = c
Method 1: Using the t results
eg (i) 3cos θ + 4sin θ = 2                 0 ≤ θ ≤ 360
                   θ                                                  θ
                            1 − t 2   2t 
       let t = tan                    + 4          =2           0≤     ≤ 180
                         3                     2
                                   2
                   2       1+ t  1+ t                             2
                                      3 − 3t 2 + 8t = 2 + 2t 2
Equations of the form asinx + bcosx = c
Method 1: Using the t results
eg (i) 3cos θ + 4sin θ = 2                  0 ≤ θ ≤ 360
                   θ                                                  θ
                            1 − t 2   2t 
       let t = tan                    + 4          =2           0≤     ≤ 180
                         3                      2
                                   2
                   2       1+ t  1+ t                             2
                                      3 − 3t 2 + 8t = 2 + 2t 2
                                       5t 2 − 8t − 1 = 0
Equations of the form asinx + bcosx = c
Method 1: Using the t results
eg (i) 3cos θ + 4sin θ = 2                  0 ≤ θ ≤ 360
                   θ                                                  θ
                            1 − t 2   2t 
       let t = tan                    + 4          =2           0≤     ≤ 180
                         3                      2
                                   2
                   2       1+ t  1+ t                             2
                                      3 − 3t 2 + 8t = 2 + 2t 2
                                       5t 2 − 8t − 1 = 0
                                             8 ± 84
                                         t=
                                                 10
Equations of the form asinx + bcosx = c
Method 1: Using the t results
eg (i) 3cos θ + 4sin θ = 2                  0 ≤ θ ≤ 360
                   θ                                                   θ
                            1 − t 2   2t 
       let t = tan                    + 4           =2           0≤     ≤ 180
                         3                      2
                                   2
                   2       1+ t  1+ t                              2
                                       3 − 3t 2 + 8t = 2 + 2t 2
                                       5t 2 − 8t − 1 = 0
                                              8 ± 84
                                         t=
                                                 10
        θ 4 − 21                         θ 4 + 21
    tan =                            tan =
                         or
        2        5                       2         5
Equations of the form asinx + bcosx = c
Method 1: Using the t results
eg (i) 3cos θ + 4sin θ = 2                  0 ≤ θ ≤ 360
                   θ                                                   θ
                            1 − t 2   2t 
       let t = tan                    + 4           =2           0≤     ≤ 180
                         3                      2
                                   2
                   2       1+ t  1+ t                              2
                                       3 − 3t 2 + 8t = 2 + 2t 2
                                       5t 2 − 8t − 1 = 0
                                              8 ± 84
                                         t=
                                                 10
        θ 4 − 21                         θ 4 + 21
    tan =                            tan =
                         or
        2        5                       2         5
  Q2
Equations of the form asinx + bcosx = c
Method 1: Using the t results
eg (i) 3cos θ + 4sin θ = 2                  0 ≤ θ ≤ 360
                   θ                                                   θ
                            1 − t 2   2t 
       let t = tan                    + 4           =2           0≤     ≤ 180
                         3                      2
                                   2
                   2       1+ t  1+ t                              2
                                       3 − 3t 2 + 8t = 2 + 2t 2
                                       5t 2 − 8t − 1 = 0
                                              8 ± 84
                                         t=
                                                 10
        θ 4 − 21                         θ 4 + 21
    tan =                            tan =
                         or
        2        5                       2         5
                  21 − 4
 Q2 tan α =
                    5
           α = 639′
Equations of the form asinx + bcosx = c
Method 1: Using the t results
eg (i) 3cos θ + 4sin θ = 2                  0 ≤ θ ≤ 360
                   θ                                                   θ
                            1 − t 2   2t 
       let t = tan                    + 4           =2           0≤     ≤ 180
                         3                      2
                                   2
                   2       1+ t  1+ t                              2
                                       3 − 3t 2 + 8t = 2 + 2t 2
                                       5t 2 − 8t − 1 = 0
                                              8 ± 84
                                         t=
                                                 10
        θ 4 − 21                         θ 4 + 21
    tan =                            tan =
                         or
        2        5                       2         5
                  21 − 4
 Q2 tan α =
                    5
           α = 639′
           θ
              = 173 21′
            2
           θ = 346 42′
Equations of the form asinx + bcosx = c
Method 1: Using the t results
eg (i) 3cos θ + 4sin θ = 2                  0 ≤ θ ≤ 360
                   θ                                                   θ
                            1 − t 2   2t 
       let t = tan                    + 4           =2           0≤     ≤ 180
                         3                      2
                                   2
                   2       1+ t  1+ t                              2
                                       3 − 3t 2 + 8t = 2 + 2t 2
                                       5t 2 − 8t − 1 = 0
                                              8 ± 84
                                         t=
                                                 10
        θ 4 − 21                         θ 4 + 21
    tan =                            tan =
                         or
        2        5                       2         5
                  21 − 4
 Q2 tan α =                   Q1
                    5
           α = 639′
           θ
              = 173 21′
            2
           θ = 346 42′
Equations of the form asinx + bcosx = c
Method 1: Using the t results
eg (i) 3cos θ + 4sin θ = 2                  0 ≤ θ ≤ 360
                   θ                                                   θ
                            1 − t 2   2t 
       let t = tan                    + 4           =2           0≤     ≤ 180
                         3                      2
                                   2
                   2       1+ t  1+ t                              2
                                       3 − 3t 2 + 8t = 2 + 2t 2
                                       5t 2 − 8t − 1 = 0
                                              8 ± 84
                                         t=
                                                 10
        θ 4 − 21                         θ 4 + 21
    tan =                            tan =
                         or
        2        5                       2         5
                  21 − 4                        4 + 21
 Q2 tan α =                   Q1 tan α =
                    5                              5
           α = 639′                     α = 59 47′
           θ
              = 173 21′
            2
           θ = 346 42′
Equations of the form asinx + bcosx = c
Method 1: Using the t results
eg (i) 3cos θ + 4sin θ = 2                  0 ≤ θ ≤ 360
                   θ                                                   θ
                            1 − t 2   2t 
       let t = tan                    + 4           =2           0≤     ≤ 180
                         3                      2
                                   2
                   2       1+ t  1+ t                              2
                                       3 − 3t 2 + 8t = 2 + 2t 2
                                       5t 2 − 8t − 1 = 0
                                              8 ± 84
                                         t=
                                                 10
        θ 4 − 21                         θ 4 + 21
    tan =                            tan =
                         or
        2        5                       2         5
                  21 − 4                        4 + 21
 Q2 tan α =                   Q1 tan α =
                    5                              5
           α = 639′                     α = 59 47′
                                          θ
           θ
                                             = 59 47′
                       ′
              = 173 21
                    

                                          2
            2
                                          θ = 11933′
           θ = 346 42′
Equations of the form asinx + bcosx = c
Method 1: Using the t results
eg (i) 3cos θ + 4sin θ = 2                   0 ≤ θ ≤ 360
                   θ                                                 θ
                            1 − t 2   2t 
       let t = tan                     + 4          =2          0 ≤ ≤ 180
                         3                        
                             1+ t 2  1+ t 2 
                   2                                                 2
                                    
                                       3 − 3t 2 + 8t = 2 + 2t 2
                                        5t 2 − 8t − 1 = 0
                                              8 ± 84
                                          t=
                                                  10
        θ 4 − 21                         θ 4 + 21
    tan =                            tan =
                         or
                                                                Test : θ = 180
        2        5                        2        5
                  21 − 4                        4 + 21
 Q2 tan α =                   Q1 tan α =
                    5                               5
           α = 639′                      α = 59 47′
                                           θ
           θ
                                              = 59 47′
                       ′
              = 173 21
                    

                                           2
            2
                                          θ = 11933′
           θ = 346 42′
Equations of the form asinx + bcosx = c
Method 1: Using the t results
eg (i) 3cos θ + 4sin θ = 2                   0 ≤ θ ≤ 360
                   θ                                                 θ
                            1 − t 2   2t 
       let t = tan                     + 4          =2          0 ≤ ≤ 180
                         3                        
                             1+ t 2  1+ t 2 
                   2                                                 2
                                    
                                       3 − 3t 2 + 8t = 2 + 2t 2
                                        5t 2 − 8t − 1 = 0
                                              8 ± 84
                                          t=
                                                  10
        θ 4 − 21                         θ 4 + 21
    tan =                            tan =
                         or
                                                                Test : θ = 180
        2        5                        2        5
                  21 − 4                        4 + 21
 Q2 tan α =                   Q1 tan α =                    3cos180 + 4sin180
                    5                               5
                                                                  = −4 ≠ 2
           α = 639′                      α = 59 47′
                                           θ
           θ
                                              = 59 47′
                       ′
              = 173 21
                    

                                           2
            2
                                          θ = 11933′
           θ = 346 42′
Equations of the form asinx + bcosx = c
Method 1: Using the t results
eg (i) 3cos θ + 4sin θ = 2                   0 ≤ θ ≤ 360
                   θ                                                 θ
                            1 − t 2   2t 
       let t = tan                     + 4          =2          0 ≤ ≤ 180
                         3                        
                             1+ t 2  1+ t 2 
                   2                                                 2
                                    
                                       3 − 3t 2 + 8t = 2 + 2t 2
                                        5t 2 − 8t − 1 = 0
                                              8 ± 84
                                          t=
                                                  10
        θ 4 − 21                         θ 4 + 21
    tan =                            tan =
                         or
                                                                Test : θ = 180
        2        5                        2        5
                  21 − 4                        4 + 21
 Q2 tan α =                   Q1 tan α =                    3cos180 + 4sin180
                    5                               5
                                                                  = −4 ≠ 2
           α = 639′                      α = 59 47′
                                           θ
           θ
                                              = 59 47′
                       ′
              = 173 21
                    

                                           2
            2                                              ∴θ = 11933′,346 42′
                                          θ = 11933′
           θ = 346 42′
Method 2: Auxiliary Angle Method
(i) Change into a sine function
eg (i) 3cos θ + 4sin θ = 2       0 ≤ θ ≤ 360
Method 2: Auxiliary Angle Method
(i) Change into a sine function
eg (i) 3cos θ + 4sin θ = 2       0 ≤ θ ≤ 360


          3cos θ + 4sin θ = 2
Method 2: Auxiliary Angle Method
(i) Change into a sine function
eg (i) 3cos θ + 4sin θ = 2       0 ≤ θ ≤ 360
                   sin α cosθ + cos α sin θ

          3cos θ + 4sin θ = 2
Method 2: Auxiliary Angle Method
(i) Change into a sine function
eg (i) 3cos θ + 4sin θ = 2       0 ≤ θ ≤ 360
                   sin α cosθ + cos α sin θ

          3cos θ + 4sin θ = 2
                                                α
Method 2: Auxiliary Angle Method
(i) Change into a sine function
eg (i) 3cos θ + 4sin θ = 2       0 ≤ θ ≤ 360
                   sin α cosθ + cos α sin θ
                                                                         3
          3cos θ + 4sin θ = 2
                                                        α


                                              sin corresponds to 3, so
                                               3 goes on the opposite
                                                        side
Method 2: Auxiliary Angle Method
(i) Change into a sine function
eg (i) 3cos θ + 4sin θ = 2       0 ≤ θ ≤ 360
                   sin α cosθ + cos α sin θ
                                                    3
          3cos θ + 4sin θ = 2
                                                α
Method 2: Auxiliary Angle Method
(i) Change into a sine function
eg (i) 3cos θ + 4sin θ = 2       0 ≤ θ ≤ 360
                   sin α cosθ + cos α sin θ
                                                                         3
          3cos θ + 4sin θ = 2
                                                        α
                                                             4

                                              cos corresponds to 4, so
                                               4 goes on the adjacent
                                                        side
Method 2: Auxiliary Angle Method
(i) Change into a sine function
eg (i) 3cos θ + 4sin θ = 2       0 ≤ θ ≤ 360
                   sin α cosθ + cos α sin θ
                                                        5
                                                                  3
          3cos θ + 4sin θ = 2
                                                    α
                                                         4

                                              by Pythagoras the
                                               hypotenuse is 5
Method 2: Auxiliary Angle Method
(i) Change into a sine function
eg (i) 3cos θ + 4sin θ = 2       0 ≤ θ ≤ 360
                      sin α cosθ + cos α sin θ
                                                           5
                                                                     3
            3cos θ + 4sin θ = 2
                                                       α
         3 cos θ + 4 sin θ  = 2
     5×                                                    4
                            
                           
          5         5
                                                 by Pythagoras the
                                                  hypotenuse is 5
Method 2: Auxiliary Angle Method
(i) Change into a sine function
eg (i) 3cos θ + 4sin θ = 2       0 ≤ θ ≤ 360
                      sin α cosθ + cos α sin θ
                                                           5
                                                                     3
            3cos θ + 4sin θ = 2
                                                       α
         3 cos θ + 4 sin θ  = 2
     5×                                                    4
                            
                           
          5         5
               5sin ( α + θ ) = 2                by Pythagoras the
                                                  hypotenuse is 5
Method 2: Auxiliary Angle Method
(i) Change into a sine function
eg (i) 3cos θ + 4sin θ = 2       0 ≤ θ ≤ 360
                      sin α cosθ + cos α sin θ
                                                           5
                                                                     3
            3cos θ + 4sin θ = 2
                                                       α
         3 cos θ + 4 sin θ  = 2
     5×                                                    4
                            
                           
          5         5
               5sin ( α + θ ) = 2                by Pythagoras the
                                                  hypotenuse is 5


   The hypotenuse becomes the
  coefficient of the trig function
Method 2: Auxiliary Angle Method
(i) Change into a sine function
eg (i) 3cos θ + 4sin θ = 2       0 ≤ θ ≤ 360

                                                    5
                                                            3
            3cos θ + 4sin θ = 2
                                                α
         3 cos θ + 4 sin θ  = 2
     5×                                            4
                            
                           
          5         5                                   3
                                                tan α =
               5sin ( α + θ ) = 2                       4
                                 2
                 sin ( α + θ ) =
                                 5
Method 2: Auxiliary Angle Method
(i) Change into a sine function
eg (i) 3cos θ + 4sin θ = 2       0 ≤ θ ≤ 360

                                                    5
                                                                 3
            3cos θ + 4sin θ = 2
                                                α
         3 cos θ + 4 sin θ  = 2
     5×                                            4
                            
                           
          5         5                                   3
                                                tan α =
               5sin ( α + θ ) = 2                       4
                                 2
                 sin ( α + θ ) =                    α = 3652′
                                 5
Method 2: Auxiliary Angle Method
(i) Change into a sine function
eg (i) 3cos θ + 4sin θ = 2       0 ≤ θ ≤ 360

                                                    5
                                                                 3
            3cos θ + 4sin θ = 2
                                                α
         3 cos θ + 4 sin θ  = 2
     5×                                            4
                            
                           
          5         5                                   3
                                                tan α =
               5sin ( α + θ ) = 2                       4
                                 2
                 sin ( α + θ ) =                    α = 3652′
                                 5
                        Q1, Q2
Method 2: Auxiliary Angle Method
(i) Change into a sine function
eg (i) 3cos θ + 4sin θ = 2       0 ≤ θ ≤ 360

                                                    5
                                                                 3
            3cos θ + 4sin θ = 2
                                                α
         3 cos θ + 4 sin θ  = 2
     5×                                            4
                            
                           
          5         5                                   3
                                                tan α =
               5sin ( α + θ ) = 2                       4
                                 2
                 sin ( α + θ ) =                    α = 3652′
                                 5
                        Q1, Q2
                                 2
                        sin β =
                                 5
Method 2: Auxiliary Angle Method
(i) Change into a sine function
eg (i) 3cos θ + 4sin θ = 2       0 ≤ θ ≤ 360

                                                    5
                                                                 3
            3cos θ + 4sin θ = 2
                                                α
         3 cos θ + 4 sin θ  = 2
     5×                                            4
                            
                           
          5         5                                   3
                                                tan α =
               5sin ( α + θ ) = 2                       4
                                 2
                 sin ( α + θ ) =                    α = 3652′
                                 5
                        Q1, Q2
                                 2
                        sin β =
                                 5
                            β = 2335′
Method 2: Auxiliary Angle Method
(i) Change into a sine function
eg (i) 3cos θ + 4sin θ = 2       0 ≤ θ ≤ 360

                                                    5
                                                                 3
            3cos θ + 4sin θ = 2
                                                α
         3 cos θ + 4 sin θ  = 2
     5×                                            4
                            
                           
          5         5                                   3
                                                tan α =
               5sin ( α + θ ) = 2                       4
                                 2
                 sin ( α + θ ) =                    α = 3652′
                                 5
                        Q1, Q2
                                 2
                        sin β =
                                 5
                            β = 2335′
                 3652′ + θ = 2335′,156 25′
Method 2: Auxiliary Angle Method
(i) Change into a sine function
eg (i) 3cos θ + 4sin θ = 2       0 ≤ θ ≤ 360

                                                    5
                                                                 3
            3cos θ + 4sin θ = 2
                                                α
         3 cos θ + 4 sin θ  = 2
     5×                                            4
                            
                           
          5         5                                   3
                                                tan α =
               5sin ( α + θ ) = 2                       4
                                 2
                 sin ( α + θ ) =                    α = 3652′
                                 5
                        Q1, Q2
                                 2
                        sin β =
                                 5
                            β = 2335′
                 3652′ + θ = 2335′,156 25′
                          θ = −1317′,11933′
Method 2: Auxiliary Angle Method
(i) Change into a sine function
eg (i) 3cos θ + 4sin θ = 2       0 ≤ θ ≤ 360

                                                         5
                                                                       3
            3cos θ + 4sin θ = 2
                                                     α
         3 cos θ + 4 sin θ  = 2
     5×                                                  4
                            
                           
          5         5                                         3
                                                      tan α =
               5sin ( α + θ ) = 2                             4
                                 2
                 sin ( α + θ ) =                          α = 3652′
                                 5
                        Q1, Q2
                                 2
                        sin β =
                                 5
                            β = 2335′
                                                ∴θ = 11933′,346 43′
                 36 52′ + θ = 23 35′,156 25′
                                       


                          θ = −1317′,11933′
Method 2: Auxiliary Angle Method
(ii) Change into a cosine function
eg (i) 3cos θ + 4sin θ = 2         0 ≤ θ ≤ 360
Method 2: Auxiliary Angle Method
(ii) Change into a cosine function
eg (i) 3cos θ + 4sin θ = 2         0 ≤ θ ≤ 360


           3cos θ + 4sin θ = 2
Method 2: Auxiliary Angle Method
(ii) Change into a cosine function
eg (i) 3cos θ + 4sin θ = 2         0 ≤ θ ≤ 360
                    cos α cos θ + sin α sin θ

           3cos θ + 4sin θ = 2
Method 2: Auxiliary Angle Method
(ii) Change into a cosine function
eg (i) 3cos θ + 4sin θ = 2         0 ≤ θ ≤ 360
                    cos α cos θ + sin α sin θ

           3cos θ + 4sin θ = 2
                                                  α
Method 2: Auxiliary Angle Method
(ii) Change into a cosine function
eg (i) 3cos θ + 4sin θ = 2         0 ≤ θ ≤ 360
                    cos α cos θ + sin α sin θ

           3cos θ + 4sin θ = 2
                                                          α
                                                               3

                                                cos corresponds to 3, so
                                                 3 goes on the adjacent
                                                          side
Method 2: Auxiliary Angle Method
(ii) Change into a cosine function
eg (i) 3cos θ + 4sin θ = 2         0 ≤ θ ≤ 360
                    cos α cos θ + sin α sin θ

           3cos θ + 4sin θ = 2
                                                  α
                                                      3
Method 2: Auxiliary Angle Method
(ii) Change into a cosine function
eg (i) 3cos θ + 4sin θ = 2         0 ≤ θ ≤ 360
                    cos α cos θ + sin α sin θ
                                                                           4
           3cos θ + 4sin θ = 2
                                                          α
                                                               3


                                                cos corresponds to 4, so
                                                 4 goes on the adjacent
                                                          side
Method 2: Auxiliary Angle Method
(ii) Change into a cosine function
eg (i) 3cos θ + 4sin θ = 2         0 ≤ θ ≤ 360
                    cos α cos θ + sin α sin θ
                                                          5
                                                                    4
           3cos θ + 4sin θ = 2
                                                      α
                                                              3

                                                by Pythagoras the
                                                 hypotenuse is 5
Method 2: Auxiliary Angle Method
(ii) Change into a cosine function
eg (i) 3cos θ + 4sin θ = 2         0 ≤ θ ≤ 360
                      cos α cos θ + sin α sin θ
                                                            5
                                                                      4
            3cos θ + 4sin θ = 2
                                                        α
         3 cos θ + 4 sin θ  = 2
     5×                                                        3
                            
                           
          5         5
                                                  by Pythagoras the
                                                   hypotenuse is 5
Method 2: Auxiliary Angle Method
(ii) Change into a cosine function
eg (i) 3cos θ + 4sin θ = 2         0 ≤ θ ≤ 360
                      cos α cos θ + sin α sin θ
                                                            5
                                                                      4
            3cos θ + 4sin θ = 2
                                                        α
         3 cos θ + 4 sin θ  = 2
     5×                                                        3
                            
                           
          5         5
               5cos ( θ − α ) = 2                 by Pythagoras the
                                                   hypotenuse is 5
Method 2: Auxiliary Angle Method
(ii) Change into a cosine function
eg (i) 3cos θ + 4sin θ = 2         0 ≤ θ ≤ 360
                      cos α cos θ + sin α sin θ
                                                            5
                                                                      4
            3cos θ + 4sin θ = 2
                                                        α
         3 cos θ + 4 sin θ  = 2
     5×                                                        3
                            
                           
          5         5
               5cos ( θ − α ) = 2                 by Pythagoras the
                                                   hypotenuse is 5


   The hypotenuse becomes the
  coefficient of the trig function
Method 2: Auxiliary Angle Method
(ii) Change into a cosine function
eg (i) 3cos θ + 4sin θ = 2         0 ≤ θ ≤ 360
                      cos α cos θ + sin α sin θ
                                                      5
                                                              4
            3cos θ + 4sin θ = 2
                                                  α
         3 cos θ + 4 sin θ  = 2
     5×                                                  3
                            
                           
          5         5                                     4
                                                  tan α =
               5cos ( θ − α ) = 2                         3
                                 2
                 cos ( θ − α ) =
                                 5
Method 2: Auxiliary Angle Method
(ii) Change into a cosine function
eg (i) 3cos θ + 4sin θ = 2         0 ≤ θ ≤ 360
                      cos α cos θ + sin α sin θ
                                                      5
                                                                  4
            3cos θ + 4sin θ = 2
                                                  α
         3 cos θ + 4 sin θ  = 2
     5×                                                  3
                            
                           
          5         5                                     4
                                                  tan α =
               5cos ( θ − α ) = 2                         3
                                 2
                 cos ( θ − α ) =                      α = 538′
                                 5
Method 2: Auxiliary Angle Method
(ii) Change into a cosine function
eg (i) 3cos θ + 4sin θ = 2         0 ≤ θ ≤ 360
                      cos α cos θ + sin α sin θ
                                                      5
                                                                  4
            3cos θ + 4sin θ = 2
                                                  α
         3 cos θ + 4 sin θ  = 2
     5×                                                  3
                            
                           
          5         5                                     4
                                                  tan α =
               5cos ( θ − α ) = 2                         3
                                 2
                 cos ( θ − α ) =                      α = 538′
                                 5
                        Q1, Q4
Method 2: Auxiliary Angle Method
(ii) Change into a cosine function
eg (i) 3cos θ + 4sin θ = 2         0 ≤ θ ≤ 360
                      cos α cos θ + sin α sin θ
                                                      5
                                                                  4
            3cos θ + 4sin θ = 2
                                                  α
         3 cos θ + 4 sin θ  = 2
     5×                                                  3
                            
                           
          5         5                                     4
                                                  tan α =
               5cos ( θ − α ) = 2                         3
                                 2
                 cos ( θ − α ) =                      α = 538′
                                 5
                        Q1, Q4
                                 2
                        cos β =
                                 5
Method 2: Auxiliary Angle Method
(ii) Change into a cosine function
eg (i) 3cos θ + 4sin θ = 2         0 ≤ θ ≤ 360
                      cos α cos θ + sin α sin θ
                                                      5
                                                                  4
            3cos θ + 4sin θ = 2
                                                  α
         3 cos θ + 4 sin θ  = 2
     5×                                                  3
                            
                           
          5         5                                     4
                                                  tan α =
               5cos ( θ − α ) = 2                         3
                                 2
                 cos ( θ − α ) =                      α = 538′
                                 5
                        Q1, Q4
                                 2
                        cos β =
                                 5
                            β = 66 25′
Method 2: Auxiliary Angle Method
(ii) Change into a cosine function
eg (i) 3cos θ + 4sin θ = 2         0 ≤ θ ≤ 360
                      cos α cos θ + sin α sin θ
                                                      5
                                                                  4
            3cos θ + 4sin θ = 2
                                                  α
         3 cos θ + 4 sin θ  = 2
     5×                                                  3
                            
                           
          5         5                                     4
                                                  tan α =
               5cos ( θ − α ) = 2                         3
                                 2
                 cos ( θ − α ) =                      α = 538′
                                 5
                        Q1, Q4
                                 2
                        cos β =
                                 5
                            β = 66 25′
                   θ − 538′ = 66 25′, 29335′
Method 2: Auxiliary Angle Method
(ii) Change into a cosine function
eg (i) 3cos θ + 4sin θ = 2         0 ≤ θ ≤ 360
                      cos α cos θ + sin α sin θ
                                                      5
                                                                  4
            3cos θ + 4sin θ = 2
                                                  α
         3 cos θ + 4 sin θ  = 2
     5×                                                  3
                            
                           
          5         5                                     4
                                                  tan α =
               5cos ( θ − α ) = 2                         3
                                 2
                 cos ( θ − α ) =                      α = 538′
                                 5
                        Q1, Q4
                                 2
                        cos β =
                                 5
                            β = 66 25′
                   θ − 538′ = 66 25′, 29335′
                        ∴θ = 11933′,346 43′
2005 Extension 1 HSC Q5c) (i)
(ii) Express 3sin 3t − cos3t in the form R sin ( 3t − α )
2005 Extension 1 HSC Q5c) (i)
(ii) Express 3sin 3t − cos3t in the form R sin ( 3t − α )

      3sin 3t − cos3t
2005 Extension 1 HSC Q5c) (i)
(ii) Express 3sin 3t − cos3t in the form R sin ( 3t − α )
         ( sin 3t cos α − cos3t sin α )
       3sin 3t − cos3t
2005 Extension 1 HSC Q5c) (i)
(ii) Express 3sin 3t − cos3t in the form R sin ( 3t − α )
         ( sin 3t cos α − cos3t sin α )                     2   1
       3sin 3t − cos3t
                                                          α
                                                              3
2005 Extension 1 HSC Q5c) (i)
(ii) Express 3sin 3t − cos3t in the form R sin ( 3t − α )
         ( sin 3t cos α − cos3t sin α )                     2   1
       3sin 3t − cos3t = 2sin ( 3t − α )
                                                          α
                                                              3
2005 Extension 1 HSC Q5c) (i)
(ii) Express 3sin 3t − cos3t in the form R sin ( 3t − α )
         ( sin 3t cos α − cos3t sin α )                       2         1
       3sin 3t − cos3t = 2sin ( 3t − α )
                                                          α
                                                                 3
                                                                     1
                                                            tan α =
                                                                      3
                                                                α = 30
2005 Extension 1 HSC Q5c) (i)
(ii) Express 3sin 3t − cos3t in the form R sin ( 3t − α )
         ( sin 3t cos α − cos3t sin α )                       2         1
       3sin 3t − cos3t = 2sin ( 3t − α )
                          = 2sin ( 3t − 30 )             α
                                                                 3
                                                                     1
                                                            tan α =
                                                                      3
                                                                α = 30
2005 Extension 1 HSC Q5c) (i)
(ii) Express 3sin 3t − cos3t in the form R sin ( 3t − α )
         ( sin 3t cos α − cos3t sin α )                       2         1
       3sin 3t − cos3t = 2sin ( 3t − α )
                          = 2sin ( 3t − 30 )             α
                                                                 3
                                                                     1
                                                            tan α =
                                                                      3
                                                                α = 30
                                           2003 Extension 1 HSC Q2e) (i)
(iii) Express sinx − cos x in the form R cos ( x + α )
2005 Extension 1 HSC Q5c) (i)
(ii) Express 3sin 3t − cos3t in the form R sin ( 3t − α )
         ( sin 3t cos α − cos3t sin α )                       2         1
       3sin 3t − cos3t = 2sin ( 3t − α )
                          = 2sin ( 3t − 30 )             α
                                                                 3
                                                                     1
                                                            tan α =
                                                                      3
                                                                α = 30
                                           2003 Extension 1 HSC Q2e) (i)
(iii) Express sinx − cos x in the form R cos ( x + α )

       sin x − cos x
2005 Extension 1 HSC Q5c) (i)
(ii) Express 3sin 3t − cos3t in the form R sin ( 3t − α )
         ( sin 3t cos α − cos3t sin α )                       2         1
       3sin 3t − cos3t = 2sin ( 3t − α )
                          = 2sin ( 3t − 30 )             α
                                                                 3
                                                                     1
                                                            tan α =
                                                                      3
                                                                α = 30
                                           2003 Extension 1 HSC Q2e) (i)
(iii) Express sinx − cos x in the form R cos ( x + α )
          ( cos x cos α − sin x sin α )
        sin x − cos x
2005 Extension 1 HSC Q5c) (i)
(ii) Express 3sin 3t − cos3t in the form R sin ( 3t − α )
         ( sin 3t cos α − cos3t sin α )                       2         1
       3sin 3t − cos3t = 2sin ( 3t − α )
                          = 2sin ( 3t − 30 )             α
                                                                 3
                                                                     1
                                                            tan α =
                                                                      3
                                                                α = 30
                                            2003 Extension 1 HSC Q2e) (i)
(iii) Express sinx − cos x in the form R cos ( x + α )
          ( cos x cos α − sin x sin α )
        sin x − cos x = − ( cos x − sin x )
2005 Extension 1 HSC Q5c) (i)
(ii) Express 3sin 3t − cos3t in the form R sin ( 3t − α )
         ( sin 3t cos α − cos3t sin α )                       2         1
       3sin 3t − cos3t = 2sin ( 3t − α )
                          = 2sin ( 3t − 30 )             α
                                                                 3
                                                                     1
                                                            tan α =
                                                                      3
                                                                α = 30
                                            2003 Extension 1 HSC Q2e) (i)
(iii) Express sinx − cos x in the form R cos ( x + α )
          ( cos x cos α − sin x sin α )                    2        1
        sin x − cos x = − ( cos x − sin x )
                                                        α
                                                             1
2005 Extension 1 HSC Q5c) (i)
(ii) Express 3sin 3t − cos3t in the form R sin ( 3t − α )
         ( sin 3t cos α − cos3t sin α )                       2         1
       3sin 3t − cos3t = 2sin ( 3t − α )
                          = 2sin ( 3t − 30 )             α
                                                                 3
                                                                     1
                                                            tan α =
                                                                      3
                                                                α = 30
                                             2003 Extension 1 HSC Q2e) (i)
(iii) Express sinx − cos x in the form R cos ( x + α )
          ( cos x cos α − sin x sin α )                     2        1
        sin x − cos x = − ( cos x − sin x )
                                                         α
                         = − 2 cos ( x − α )
                                                              1
2005 Extension 1 HSC Q5c) (i)
(ii) Express 3sin 3t − cos3t in the form R sin ( 3t − α )
         ( sin 3t cos α − cos3t sin α )                       2         1
       3sin 3t − cos3t = 2sin ( 3t − α )
                          = 2sin ( 3t − 30 )             α
                                                                 3
                                                                     1
                                                            tan α =
                                                                      3
                                                                α = 30
                                             2003 Extension 1 HSC Q2e) (i)
(iii) Express sinx − cos x in the form R cos ( x + α )
          ( cos x cos α − sin x sin α )                     2        1
        sin x − cos x = − ( cos x − sin x )
                                                         α
                         = − 2 cos ( x − α )
                                                               1
                                                           tan α = 1
                                                            α = 45
2005 Extension 1 HSC Q5c) (i)
(ii) Express 3sin 3t − cos3t in the form R sin ( 3t − α )
         ( sin 3t cos α − cos3t sin α )                       2         1
       3sin 3t − cos3t = 2sin ( 3t − α )
                          = 2sin ( 3t − 30 )             α
                                                                 3
                                                                     1
                                                            tan α =
                                                                      3
                                                                α = 30
                                             2003 Extension 1 HSC Q2e) (i)
(iii) Express sinx − cos x in the form R cos ( x + α )
          ( cos x cos α − sin x sin α )                     2        1
        sin x − cos x = − ( cos x − sin x )
                                                         α
                         = − 2 cos ( x − α )
                         = − 2 cos ( x − 45 )                 1
                                                           tan α = 1
                                                            α = 45
2005 Extension 1 HSC Q5c) (i)
(ii) Express 3sin 3t − cos3t in the form R sin ( 3t − α )
          ( sin 3t cos α − cos3t sin α )                      2         1
        3sin 3t − cos3t = 2sin ( 3t − α )
                           = 2sin ( 3t − 30 )            α
                                                                 3
                                                                     1
                                                            tan α =
                                                                      3
                 Exercise 2E;
                                                                α = 30
   6, 7, 10bd, 11, 13, 14, 16ac, 20a, 23
                                             2003 Extension 1 HSC Q2e) (i)
(iii) Express sinx − cos x in the form R cos ( x + α )
          ( cos x cos α − sin x sin α )                     2        1
        sin x − cos x = − ( cos x − sin x )
                                                         α
                         = − 2 cos ( x − α )
                         = − 2 cos ( x − 45 )                 1
                                                           tan α = 1
                                                             α = 45

More Related Content

More from Nigel Simmons

Goodbye slideshare UPDATE
Goodbye slideshare UPDATEGoodbye slideshare UPDATE
Goodbye slideshare UPDATE
Nigel Simmons
 
Goodbye slideshare
Goodbye slideshareGoodbye slideshare
Goodbye slideshare
Nigel Simmons
 
12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)Nigel Simmons
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)Nigel Simmons
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)Nigel Simmons
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)Nigel Simmons
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)Nigel Simmons
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)Nigel Simmons
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)Nigel Simmons
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)Nigel Simmons
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)Nigel Simmons
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)Nigel Simmons
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)Nigel Simmons
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)Nigel Simmons
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)Nigel Simmons
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)Nigel Simmons
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)Nigel Simmons
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)Nigel Simmons
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)Nigel Simmons
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)Nigel Simmons
 

More from Nigel Simmons (20)

Goodbye slideshare UPDATE
Goodbye slideshare UPDATEGoodbye slideshare UPDATE
Goodbye slideshare UPDATE
 
Goodbye slideshare
Goodbye slideshareGoodbye slideshare
Goodbye slideshare
 
12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)
 

Recently uploaded

The Art Pastor's Guide to Sabbath | Steve Thomason
The Art Pastor's Guide to Sabbath | Steve ThomasonThe Art Pastor's Guide to Sabbath | Steve Thomason
The Art Pastor's Guide to Sabbath | Steve Thomason
Steve Thomason
 
Additional Benefits for Employee Website.pdf
Additional Benefits for Employee Website.pdfAdditional Benefits for Employee Website.pdf
Additional Benefits for Employee Website.pdf
joachimlavalley1
 
The Roman Empire A Historical Colossus.pdf
The Roman Empire A Historical Colossus.pdfThe Roman Empire A Historical Colossus.pdf
The Roman Empire A Historical Colossus.pdf
kaushalkr1407
 
GIÁO ÁN DẠY THÊM (KẾ HOẠCH BÀI BUỔI 2) - TIẾNG ANH 8 GLOBAL SUCCESS (2 CỘT) N...
GIÁO ÁN DẠY THÊM (KẾ HOẠCH BÀI BUỔI 2) - TIẾNG ANH 8 GLOBAL SUCCESS (2 CỘT) N...GIÁO ÁN DẠY THÊM (KẾ HOẠCH BÀI BUỔI 2) - TIẾNG ANH 8 GLOBAL SUCCESS (2 CỘT) N...
GIÁO ÁN DẠY THÊM (KẾ HOẠCH BÀI BUỔI 2) - TIẾNG ANH 8 GLOBAL SUCCESS (2 CỘT) N...
Nguyen Thanh Tu Collection
 
How to Break the cycle of negative Thoughts
How to Break the cycle of negative ThoughtsHow to Break the cycle of negative Thoughts
How to Break the cycle of negative Thoughts
Col Mukteshwar Prasad
 
Basic phrases for greeting and assisting costumers
Basic phrases for greeting and assisting costumersBasic phrases for greeting and assisting costumers
Basic phrases for greeting and assisting costumers
PedroFerreira53928
 
Template Jadual Bertugas Kelas (Boleh Edit)
Template Jadual Bertugas Kelas (Boleh Edit)Template Jadual Bertugas Kelas (Boleh Edit)
Template Jadual Bertugas Kelas (Boleh Edit)
rosedainty
 
Students, digital devices and success - Andreas Schleicher - 27 May 2024..pptx
Students, digital devices and success - Andreas Schleicher - 27 May 2024..pptxStudents, digital devices and success - Andreas Schleicher - 27 May 2024..pptx
Students, digital devices and success - Andreas Schleicher - 27 May 2024..pptx
EduSkills OECD
 
Mule 4.6 & Java 17 Upgrade | MuleSoft Mysore Meetup #46
Mule 4.6 & Java 17 Upgrade | MuleSoft Mysore Meetup #46Mule 4.6 & Java 17 Upgrade | MuleSoft Mysore Meetup #46
Mule 4.6 & Java 17 Upgrade | MuleSoft Mysore Meetup #46
MysoreMuleSoftMeetup
 
TESDA TM1 REVIEWER FOR NATIONAL ASSESSMENT WRITTEN AND ORAL QUESTIONS WITH A...
TESDA TM1 REVIEWER  FOR NATIONAL ASSESSMENT WRITTEN AND ORAL QUESTIONS WITH A...TESDA TM1 REVIEWER  FOR NATIONAL ASSESSMENT WRITTEN AND ORAL QUESTIONS WITH A...
TESDA TM1 REVIEWER FOR NATIONAL ASSESSMENT WRITTEN AND ORAL QUESTIONS WITH A...
EugeneSaldivar
 
How to Make a Field invisible in Odoo 17
How to Make a Field invisible in Odoo 17How to Make a Field invisible in Odoo 17
How to Make a Field invisible in Odoo 17
Celine George
 
Polish students' mobility in the Czech Republic
Polish students' mobility in the Czech RepublicPolish students' mobility in the Czech Republic
Polish students' mobility in the Czech Republic
Anna Sz.
 
The French Revolution Class 9 Study Material pdf free download
The French Revolution Class 9 Study Material pdf free downloadThe French Revolution Class 9 Study Material pdf free download
The French Revolution Class 9 Study Material pdf free download
Vivekanand Anglo Vedic Academy
 
Language Across the Curriculm LAC B.Ed.
Language Across the  Curriculm LAC B.Ed.Language Across the  Curriculm LAC B.Ed.
Language Across the Curriculm LAC B.Ed.
Atul Kumar Singh
 
Instructions for Submissions thorugh G- Classroom.pptx
Instructions for Submissions thorugh G- Classroom.pptxInstructions for Submissions thorugh G- Classroom.pptx
Instructions for Submissions thorugh G- Classroom.pptx
Jheel Barad
 
Welcome to TechSoup New Member Orientation and Q&A (May 2024).pdf
Welcome to TechSoup   New Member Orientation and Q&A (May 2024).pdfWelcome to TechSoup   New Member Orientation and Q&A (May 2024).pdf
Welcome to TechSoup New Member Orientation and Q&A (May 2024).pdf
TechSoup
 
Synthetic Fiber Construction in lab .pptx
Synthetic Fiber Construction in lab .pptxSynthetic Fiber Construction in lab .pptx
Synthetic Fiber Construction in lab .pptx
Pavel ( NSTU)
 
Phrasal Verbs.XXXXXXXXXXXXXXXXXXXXXXXXXX
Phrasal Verbs.XXXXXXXXXXXXXXXXXXXXXXXXXXPhrasal Verbs.XXXXXXXXXXXXXXXXXXXXXXXXXX
Phrasal Verbs.XXXXXXXXXXXXXXXXXXXXXXXXXX
MIRIAMSALINAS13
 
Supporting (UKRI) OA monographs at Salford.pptx
Supporting (UKRI) OA monographs at Salford.pptxSupporting (UKRI) OA monographs at Salford.pptx
Supporting (UKRI) OA monographs at Salford.pptx
Jisc
 
Model Attribute Check Company Auto Property
Model Attribute  Check Company Auto PropertyModel Attribute  Check Company Auto Property
Model Attribute Check Company Auto Property
Celine George
 

Recently uploaded (20)

The Art Pastor's Guide to Sabbath | Steve Thomason
The Art Pastor's Guide to Sabbath | Steve ThomasonThe Art Pastor's Guide to Sabbath | Steve Thomason
The Art Pastor's Guide to Sabbath | Steve Thomason
 
Additional Benefits for Employee Website.pdf
Additional Benefits for Employee Website.pdfAdditional Benefits for Employee Website.pdf
Additional Benefits for Employee Website.pdf
 
The Roman Empire A Historical Colossus.pdf
The Roman Empire A Historical Colossus.pdfThe Roman Empire A Historical Colossus.pdf
The Roman Empire A Historical Colossus.pdf
 
GIÁO ÁN DẠY THÊM (KẾ HOẠCH BÀI BUỔI 2) - TIẾNG ANH 8 GLOBAL SUCCESS (2 CỘT) N...
GIÁO ÁN DẠY THÊM (KẾ HOẠCH BÀI BUỔI 2) - TIẾNG ANH 8 GLOBAL SUCCESS (2 CỘT) N...GIÁO ÁN DẠY THÊM (KẾ HOẠCH BÀI BUỔI 2) - TIẾNG ANH 8 GLOBAL SUCCESS (2 CỘT) N...
GIÁO ÁN DẠY THÊM (KẾ HOẠCH BÀI BUỔI 2) - TIẾNG ANH 8 GLOBAL SUCCESS (2 CỘT) N...
 
How to Break the cycle of negative Thoughts
How to Break the cycle of negative ThoughtsHow to Break the cycle of negative Thoughts
How to Break the cycle of negative Thoughts
 
Basic phrases for greeting and assisting costumers
Basic phrases for greeting and assisting costumersBasic phrases for greeting and assisting costumers
Basic phrases for greeting and assisting costumers
 
Template Jadual Bertugas Kelas (Boleh Edit)
Template Jadual Bertugas Kelas (Boleh Edit)Template Jadual Bertugas Kelas (Boleh Edit)
Template Jadual Bertugas Kelas (Boleh Edit)
 
Students, digital devices and success - Andreas Schleicher - 27 May 2024..pptx
Students, digital devices and success - Andreas Schleicher - 27 May 2024..pptxStudents, digital devices and success - Andreas Schleicher - 27 May 2024..pptx
Students, digital devices and success - Andreas Schleicher - 27 May 2024..pptx
 
Mule 4.6 & Java 17 Upgrade | MuleSoft Mysore Meetup #46
Mule 4.6 & Java 17 Upgrade | MuleSoft Mysore Meetup #46Mule 4.6 & Java 17 Upgrade | MuleSoft Mysore Meetup #46
Mule 4.6 & Java 17 Upgrade | MuleSoft Mysore Meetup #46
 
TESDA TM1 REVIEWER FOR NATIONAL ASSESSMENT WRITTEN AND ORAL QUESTIONS WITH A...
TESDA TM1 REVIEWER  FOR NATIONAL ASSESSMENT WRITTEN AND ORAL QUESTIONS WITH A...TESDA TM1 REVIEWER  FOR NATIONAL ASSESSMENT WRITTEN AND ORAL QUESTIONS WITH A...
TESDA TM1 REVIEWER FOR NATIONAL ASSESSMENT WRITTEN AND ORAL QUESTIONS WITH A...
 
How to Make a Field invisible in Odoo 17
How to Make a Field invisible in Odoo 17How to Make a Field invisible in Odoo 17
How to Make a Field invisible in Odoo 17
 
Polish students' mobility in the Czech Republic
Polish students' mobility in the Czech RepublicPolish students' mobility in the Czech Republic
Polish students' mobility in the Czech Republic
 
The French Revolution Class 9 Study Material pdf free download
The French Revolution Class 9 Study Material pdf free downloadThe French Revolution Class 9 Study Material pdf free download
The French Revolution Class 9 Study Material pdf free download
 
Language Across the Curriculm LAC B.Ed.
Language Across the  Curriculm LAC B.Ed.Language Across the  Curriculm LAC B.Ed.
Language Across the Curriculm LAC B.Ed.
 
Instructions for Submissions thorugh G- Classroom.pptx
Instructions for Submissions thorugh G- Classroom.pptxInstructions for Submissions thorugh G- Classroom.pptx
Instructions for Submissions thorugh G- Classroom.pptx
 
Welcome to TechSoup New Member Orientation and Q&A (May 2024).pdf
Welcome to TechSoup   New Member Orientation and Q&A (May 2024).pdfWelcome to TechSoup   New Member Orientation and Q&A (May 2024).pdf
Welcome to TechSoup New Member Orientation and Q&A (May 2024).pdf
 
Synthetic Fiber Construction in lab .pptx
Synthetic Fiber Construction in lab .pptxSynthetic Fiber Construction in lab .pptx
Synthetic Fiber Construction in lab .pptx
 
Phrasal Verbs.XXXXXXXXXXXXXXXXXXXXXXXXXX
Phrasal Verbs.XXXXXXXXXXXXXXXXXXXXXXXXXXPhrasal Verbs.XXXXXXXXXXXXXXXXXXXXXXXXXX
Phrasal Verbs.XXXXXXXXXXXXXXXXXXXXXXXXXX
 
Supporting (UKRI) OA monographs at Salford.pptx
Supporting (UKRI) OA monographs at Salford.pptxSupporting (UKRI) OA monographs at Salford.pptx
Supporting (UKRI) OA monographs at Salford.pptx
 
Model Attribute Check Company Auto Property
Model Attribute  Check Company Auto PropertyModel Attribute  Check Company Auto Property
Model Attribute Check Company Auto Property
 

11 X1 T04 13 Asinx + Bcosx = C

  • 1. Equations of the form asinx + bcosx = c Method 1: Using the t results
  • 2. Equations of the form asinx + bcosx = c Method 1: Using the t results eg (i) 3cos θ + 4sin θ = 2 0 ≤ θ ≤ 360
  • 3. Equations of the form asinx + bcosx = c Method 1: Using the t results eg (i) 3cos θ + 4sin θ = 2 0 ≤ θ ≤ 360 θ let t = tan 2
  • 4. Equations of the form asinx + bcosx = c Method 1: Using the t results eg (i) 3cos θ + 4sin θ = 2 0 ≤ θ ≤ 360 θ θ  1 − t 2   2t  let t = tan + 4 =2 0≤ ≤ 180 3 2 2 2 1+ t  1+ t  2
  • 5. Equations of the form asinx + bcosx = c Method 1: Using the t results eg (i) 3cos θ + 4sin θ = 2 0 ≤ θ ≤ 360 θ θ  1 − t 2   2t  let t = tan + 4 =2 0≤ ≤ 180 3 2 2 2 1+ t  1+ t  2 3 − 3t 2 + 8t = 2 + 2t 2
  • 6. Equations of the form asinx + bcosx = c Method 1: Using the t results eg (i) 3cos θ + 4sin θ = 2 0 ≤ θ ≤ 360 θ θ  1 − t 2   2t  let t = tan + 4 =2 0≤ ≤ 180 3 2 2 2 1+ t  1+ t  2 3 − 3t 2 + 8t = 2 + 2t 2 5t 2 − 8t − 1 = 0
  • 7. Equations of the form asinx + bcosx = c Method 1: Using the t results eg (i) 3cos θ + 4sin θ = 2 0 ≤ θ ≤ 360 θ θ  1 − t 2   2t  let t = tan + 4 =2 0≤ ≤ 180 3 2 2 2 1+ t  1+ t  2 3 − 3t 2 + 8t = 2 + 2t 2 5t 2 − 8t − 1 = 0 8 ± 84 t= 10
  • 8. Equations of the form asinx + bcosx = c Method 1: Using the t results eg (i) 3cos θ + 4sin θ = 2 0 ≤ θ ≤ 360 θ θ  1 − t 2   2t  let t = tan + 4 =2 0≤ ≤ 180 3 2 2 2 1+ t  1+ t  2 3 − 3t 2 + 8t = 2 + 2t 2 5t 2 − 8t − 1 = 0 8 ± 84 t= 10 θ 4 − 21 θ 4 + 21 tan = tan = or 2 5 2 5
  • 9. Equations of the form asinx + bcosx = c Method 1: Using the t results eg (i) 3cos θ + 4sin θ = 2 0 ≤ θ ≤ 360 θ θ  1 − t 2   2t  let t = tan + 4 =2 0≤ ≤ 180 3 2 2 2 1+ t  1+ t  2 3 − 3t 2 + 8t = 2 + 2t 2 5t 2 − 8t − 1 = 0 8 ± 84 t= 10 θ 4 − 21 θ 4 + 21 tan = tan = or 2 5 2 5 Q2
  • 10. Equations of the form asinx + bcosx = c Method 1: Using the t results eg (i) 3cos θ + 4sin θ = 2 0 ≤ θ ≤ 360 θ θ  1 − t 2   2t  let t = tan + 4 =2 0≤ ≤ 180 3 2 2 2 1+ t  1+ t  2 3 − 3t 2 + 8t = 2 + 2t 2 5t 2 − 8t − 1 = 0 8 ± 84 t= 10 θ 4 − 21 θ 4 + 21 tan = tan = or 2 5 2 5 21 − 4 Q2 tan α = 5 α = 639′
  • 11. Equations of the form asinx + bcosx = c Method 1: Using the t results eg (i) 3cos θ + 4sin θ = 2 0 ≤ θ ≤ 360 θ θ  1 − t 2   2t  let t = tan + 4 =2 0≤ ≤ 180 3 2 2 2 1+ t  1+ t  2 3 − 3t 2 + 8t = 2 + 2t 2 5t 2 − 8t − 1 = 0 8 ± 84 t= 10 θ 4 − 21 θ 4 + 21 tan = tan = or 2 5 2 5 21 − 4 Q2 tan α = 5 α = 639′ θ = 173 21′ 2 θ = 346 42′
  • 12. Equations of the form asinx + bcosx = c Method 1: Using the t results eg (i) 3cos θ + 4sin θ = 2 0 ≤ θ ≤ 360 θ θ  1 − t 2   2t  let t = tan + 4 =2 0≤ ≤ 180 3 2 2 2 1+ t  1+ t  2 3 − 3t 2 + 8t = 2 + 2t 2 5t 2 − 8t − 1 = 0 8 ± 84 t= 10 θ 4 − 21 θ 4 + 21 tan = tan = or 2 5 2 5 21 − 4 Q2 tan α = Q1 5 α = 639′ θ = 173 21′ 2 θ = 346 42′
  • 13. Equations of the form asinx + bcosx = c Method 1: Using the t results eg (i) 3cos θ + 4sin θ = 2 0 ≤ θ ≤ 360 θ θ  1 − t 2   2t  let t = tan + 4 =2 0≤ ≤ 180 3 2 2 2 1+ t  1+ t  2 3 − 3t 2 + 8t = 2 + 2t 2 5t 2 − 8t − 1 = 0 8 ± 84 t= 10 θ 4 − 21 θ 4 + 21 tan = tan = or 2 5 2 5 21 − 4 4 + 21 Q2 tan α = Q1 tan α = 5 5 α = 639′ α = 59 47′ θ = 173 21′ 2 θ = 346 42′
  • 14. Equations of the form asinx + bcosx = c Method 1: Using the t results eg (i) 3cos θ + 4sin θ = 2 0 ≤ θ ≤ 360 θ θ  1 − t 2   2t  let t = tan + 4 =2 0≤ ≤ 180 3 2 2 2 1+ t  1+ t  2 3 − 3t 2 + 8t = 2 + 2t 2 5t 2 − 8t − 1 = 0 8 ± 84 t= 10 θ 4 − 21 θ 4 + 21 tan = tan = or 2 5 2 5 21 − 4 4 + 21 Q2 tan α = Q1 tan α = 5 5 α = 639′ α = 59 47′ θ θ = 59 47′ ′ = 173 21  2 2 θ = 11933′ θ = 346 42′
  • 15. Equations of the form asinx + bcosx = c Method 1: Using the t results eg (i) 3cos θ + 4sin θ = 2 0 ≤ θ ≤ 360 θ θ  1 − t 2   2t  let t = tan + 4 =2 0 ≤ ≤ 180 3  1+ t 2  1+ t 2  2 2   3 − 3t 2 + 8t = 2 + 2t 2 5t 2 − 8t − 1 = 0 8 ± 84 t= 10 θ 4 − 21 θ 4 + 21 tan = tan = or Test : θ = 180 2 5 2 5 21 − 4 4 + 21 Q2 tan α = Q1 tan α = 5 5 α = 639′ α = 59 47′ θ θ = 59 47′ ′ = 173 21  2 2 θ = 11933′ θ = 346 42′
  • 16. Equations of the form asinx + bcosx = c Method 1: Using the t results eg (i) 3cos θ + 4sin θ = 2 0 ≤ θ ≤ 360 θ θ  1 − t 2   2t  let t = tan + 4 =2 0 ≤ ≤ 180 3  1+ t 2  1+ t 2  2 2   3 − 3t 2 + 8t = 2 + 2t 2 5t 2 − 8t − 1 = 0 8 ± 84 t= 10 θ 4 − 21 θ 4 + 21 tan = tan = or Test : θ = 180 2 5 2 5 21 − 4 4 + 21 Q2 tan α = Q1 tan α = 3cos180 + 4sin180 5 5 = −4 ≠ 2 α = 639′ α = 59 47′ θ θ = 59 47′ ′ = 173 21  2 2 θ = 11933′ θ = 346 42′
  • 17. Equations of the form asinx + bcosx = c Method 1: Using the t results eg (i) 3cos θ + 4sin θ = 2 0 ≤ θ ≤ 360 θ θ  1 − t 2   2t  let t = tan + 4 =2 0 ≤ ≤ 180 3  1+ t 2  1+ t 2  2 2   3 − 3t 2 + 8t = 2 + 2t 2 5t 2 − 8t − 1 = 0 8 ± 84 t= 10 θ 4 − 21 θ 4 + 21 tan = tan = or Test : θ = 180 2 5 2 5 21 − 4 4 + 21 Q2 tan α = Q1 tan α = 3cos180 + 4sin180 5 5 = −4 ≠ 2 α = 639′ α = 59 47′ θ θ = 59 47′ ′ = 173 21  2 2 ∴θ = 11933′,346 42′ θ = 11933′ θ = 346 42′
  • 18. Method 2: Auxiliary Angle Method (i) Change into a sine function eg (i) 3cos θ + 4sin θ = 2 0 ≤ θ ≤ 360
  • 19. Method 2: Auxiliary Angle Method (i) Change into a sine function eg (i) 3cos θ + 4sin θ = 2 0 ≤ θ ≤ 360 3cos θ + 4sin θ = 2
  • 20. Method 2: Auxiliary Angle Method (i) Change into a sine function eg (i) 3cos θ + 4sin θ = 2 0 ≤ θ ≤ 360 sin α cosθ + cos α sin θ 3cos θ + 4sin θ = 2
  • 21. Method 2: Auxiliary Angle Method (i) Change into a sine function eg (i) 3cos θ + 4sin θ = 2 0 ≤ θ ≤ 360 sin α cosθ + cos α sin θ 3cos θ + 4sin θ = 2 α
  • 22. Method 2: Auxiliary Angle Method (i) Change into a sine function eg (i) 3cos θ + 4sin θ = 2 0 ≤ θ ≤ 360 sin α cosθ + cos α sin θ 3 3cos θ + 4sin θ = 2 α sin corresponds to 3, so 3 goes on the opposite side
  • 23. Method 2: Auxiliary Angle Method (i) Change into a sine function eg (i) 3cos θ + 4sin θ = 2 0 ≤ θ ≤ 360 sin α cosθ + cos α sin θ 3 3cos θ + 4sin θ = 2 α
  • 24. Method 2: Auxiliary Angle Method (i) Change into a sine function eg (i) 3cos θ + 4sin θ = 2 0 ≤ θ ≤ 360 sin α cosθ + cos α sin θ 3 3cos θ + 4sin θ = 2 α 4 cos corresponds to 4, so 4 goes on the adjacent side
  • 25. Method 2: Auxiliary Angle Method (i) Change into a sine function eg (i) 3cos θ + 4sin θ = 2 0 ≤ θ ≤ 360 sin α cosθ + cos α sin θ 5 3 3cos θ + 4sin θ = 2 α 4 by Pythagoras the hypotenuse is 5
  • 26. Method 2: Auxiliary Angle Method (i) Change into a sine function eg (i) 3cos θ + 4sin θ = 2 0 ≤ θ ≤ 360 sin α cosθ + cos α sin θ 5 3 3cos θ + 4sin θ = 2 α  3 cos θ + 4 sin θ  = 2 5×  4    5 5 by Pythagoras the hypotenuse is 5
  • 27. Method 2: Auxiliary Angle Method (i) Change into a sine function eg (i) 3cos θ + 4sin θ = 2 0 ≤ θ ≤ 360 sin α cosθ + cos α sin θ 5 3 3cos θ + 4sin θ = 2 α  3 cos θ + 4 sin θ  = 2 5×  4    5 5 5sin ( α + θ ) = 2 by Pythagoras the hypotenuse is 5
  • 28. Method 2: Auxiliary Angle Method (i) Change into a sine function eg (i) 3cos θ + 4sin θ = 2 0 ≤ θ ≤ 360 sin α cosθ + cos α sin θ 5 3 3cos θ + 4sin θ = 2 α  3 cos θ + 4 sin θ  = 2 5×  4    5 5 5sin ( α + θ ) = 2 by Pythagoras the hypotenuse is 5 The hypotenuse becomes the coefficient of the trig function
  • 29. Method 2: Auxiliary Angle Method (i) Change into a sine function eg (i) 3cos θ + 4sin θ = 2 0 ≤ θ ≤ 360 5 3 3cos θ + 4sin θ = 2 α  3 cos θ + 4 sin θ  = 2 5×  4    5 5 3 tan α = 5sin ( α + θ ) = 2 4 2 sin ( α + θ ) = 5
  • 30. Method 2: Auxiliary Angle Method (i) Change into a sine function eg (i) 3cos θ + 4sin θ = 2 0 ≤ θ ≤ 360 5 3 3cos θ + 4sin θ = 2 α  3 cos θ + 4 sin θ  = 2 5×  4    5 5 3 tan α = 5sin ( α + θ ) = 2 4 2 sin ( α + θ ) = α = 3652′ 5
  • 31. Method 2: Auxiliary Angle Method (i) Change into a sine function eg (i) 3cos θ + 4sin θ = 2 0 ≤ θ ≤ 360 5 3 3cos θ + 4sin θ = 2 α  3 cos θ + 4 sin θ  = 2 5×  4    5 5 3 tan α = 5sin ( α + θ ) = 2 4 2 sin ( α + θ ) = α = 3652′ 5 Q1, Q2
  • 32. Method 2: Auxiliary Angle Method (i) Change into a sine function eg (i) 3cos θ + 4sin θ = 2 0 ≤ θ ≤ 360 5 3 3cos θ + 4sin θ = 2 α  3 cos θ + 4 sin θ  = 2 5×  4    5 5 3 tan α = 5sin ( α + θ ) = 2 4 2 sin ( α + θ ) = α = 3652′ 5 Q1, Q2 2 sin β = 5
  • 33. Method 2: Auxiliary Angle Method (i) Change into a sine function eg (i) 3cos θ + 4sin θ = 2 0 ≤ θ ≤ 360 5 3 3cos θ + 4sin θ = 2 α  3 cos θ + 4 sin θ  = 2 5×  4    5 5 3 tan α = 5sin ( α + θ ) = 2 4 2 sin ( α + θ ) = α = 3652′ 5 Q1, Q2 2 sin β = 5 β = 2335′
  • 34. Method 2: Auxiliary Angle Method (i) Change into a sine function eg (i) 3cos θ + 4sin θ = 2 0 ≤ θ ≤ 360 5 3 3cos θ + 4sin θ = 2 α  3 cos θ + 4 sin θ  = 2 5×  4    5 5 3 tan α = 5sin ( α + θ ) = 2 4 2 sin ( α + θ ) = α = 3652′ 5 Q1, Q2 2 sin β = 5 β = 2335′ 3652′ + θ = 2335′,156 25′
  • 35. Method 2: Auxiliary Angle Method (i) Change into a sine function eg (i) 3cos θ + 4sin θ = 2 0 ≤ θ ≤ 360 5 3 3cos θ + 4sin θ = 2 α  3 cos θ + 4 sin θ  = 2 5×  4    5 5 3 tan α = 5sin ( α + θ ) = 2 4 2 sin ( α + θ ) = α = 3652′ 5 Q1, Q2 2 sin β = 5 β = 2335′ 3652′ + θ = 2335′,156 25′ θ = −1317′,11933′
  • 36. Method 2: Auxiliary Angle Method (i) Change into a sine function eg (i) 3cos θ + 4sin θ = 2 0 ≤ θ ≤ 360 5 3 3cos θ + 4sin θ = 2 α  3 cos θ + 4 sin θ  = 2 5×  4    5 5 3 tan α = 5sin ( α + θ ) = 2 4 2 sin ( α + θ ) = α = 3652′ 5 Q1, Q2 2 sin β = 5 β = 2335′ ∴θ = 11933′,346 43′ 36 52′ + θ = 23 35′,156 25′    θ = −1317′,11933′
  • 37. Method 2: Auxiliary Angle Method (ii) Change into a cosine function eg (i) 3cos θ + 4sin θ = 2 0 ≤ θ ≤ 360
  • 38. Method 2: Auxiliary Angle Method (ii) Change into a cosine function eg (i) 3cos θ + 4sin θ = 2 0 ≤ θ ≤ 360 3cos θ + 4sin θ = 2
  • 39. Method 2: Auxiliary Angle Method (ii) Change into a cosine function eg (i) 3cos θ + 4sin θ = 2 0 ≤ θ ≤ 360 cos α cos θ + sin α sin θ 3cos θ + 4sin θ = 2
  • 40. Method 2: Auxiliary Angle Method (ii) Change into a cosine function eg (i) 3cos θ + 4sin θ = 2 0 ≤ θ ≤ 360 cos α cos θ + sin α sin θ 3cos θ + 4sin θ = 2 α
  • 41. Method 2: Auxiliary Angle Method (ii) Change into a cosine function eg (i) 3cos θ + 4sin θ = 2 0 ≤ θ ≤ 360 cos α cos θ + sin α sin θ 3cos θ + 4sin θ = 2 α 3 cos corresponds to 3, so 3 goes on the adjacent side
  • 42. Method 2: Auxiliary Angle Method (ii) Change into a cosine function eg (i) 3cos θ + 4sin θ = 2 0 ≤ θ ≤ 360 cos α cos θ + sin α sin θ 3cos θ + 4sin θ = 2 α 3
  • 43. Method 2: Auxiliary Angle Method (ii) Change into a cosine function eg (i) 3cos θ + 4sin θ = 2 0 ≤ θ ≤ 360 cos α cos θ + sin α sin θ 4 3cos θ + 4sin θ = 2 α 3 cos corresponds to 4, so 4 goes on the adjacent side
  • 44. Method 2: Auxiliary Angle Method (ii) Change into a cosine function eg (i) 3cos θ + 4sin θ = 2 0 ≤ θ ≤ 360 cos α cos θ + sin α sin θ 5 4 3cos θ + 4sin θ = 2 α 3 by Pythagoras the hypotenuse is 5
  • 45. Method 2: Auxiliary Angle Method (ii) Change into a cosine function eg (i) 3cos θ + 4sin θ = 2 0 ≤ θ ≤ 360 cos α cos θ + sin α sin θ 5 4 3cos θ + 4sin θ = 2 α  3 cos θ + 4 sin θ  = 2 5×  3    5 5 by Pythagoras the hypotenuse is 5
  • 46. Method 2: Auxiliary Angle Method (ii) Change into a cosine function eg (i) 3cos θ + 4sin θ = 2 0 ≤ θ ≤ 360 cos α cos θ + sin α sin θ 5 4 3cos θ + 4sin θ = 2 α  3 cos θ + 4 sin θ  = 2 5×  3    5 5 5cos ( θ − α ) = 2 by Pythagoras the hypotenuse is 5
  • 47. Method 2: Auxiliary Angle Method (ii) Change into a cosine function eg (i) 3cos θ + 4sin θ = 2 0 ≤ θ ≤ 360 cos α cos θ + sin α sin θ 5 4 3cos θ + 4sin θ = 2 α  3 cos θ + 4 sin θ  = 2 5×  3    5 5 5cos ( θ − α ) = 2 by Pythagoras the hypotenuse is 5 The hypotenuse becomes the coefficient of the trig function
  • 48. Method 2: Auxiliary Angle Method (ii) Change into a cosine function eg (i) 3cos θ + 4sin θ = 2 0 ≤ θ ≤ 360 cos α cos θ + sin α sin θ 5 4 3cos θ + 4sin θ = 2 α  3 cos θ + 4 sin θ  = 2 5×  3    5 5 4 tan α = 5cos ( θ − α ) = 2 3 2 cos ( θ − α ) = 5
  • 49. Method 2: Auxiliary Angle Method (ii) Change into a cosine function eg (i) 3cos θ + 4sin θ = 2 0 ≤ θ ≤ 360 cos α cos θ + sin α sin θ 5 4 3cos θ + 4sin θ = 2 α  3 cos θ + 4 sin θ  = 2 5×  3    5 5 4 tan α = 5cos ( θ − α ) = 2 3 2 cos ( θ − α ) = α = 538′ 5
  • 50. Method 2: Auxiliary Angle Method (ii) Change into a cosine function eg (i) 3cos θ + 4sin θ = 2 0 ≤ θ ≤ 360 cos α cos θ + sin α sin θ 5 4 3cos θ + 4sin θ = 2 α  3 cos θ + 4 sin θ  = 2 5×  3    5 5 4 tan α = 5cos ( θ − α ) = 2 3 2 cos ( θ − α ) = α = 538′ 5 Q1, Q4
  • 51. Method 2: Auxiliary Angle Method (ii) Change into a cosine function eg (i) 3cos θ + 4sin θ = 2 0 ≤ θ ≤ 360 cos α cos θ + sin α sin θ 5 4 3cos θ + 4sin θ = 2 α  3 cos θ + 4 sin θ  = 2 5×  3    5 5 4 tan α = 5cos ( θ − α ) = 2 3 2 cos ( θ − α ) = α = 538′ 5 Q1, Q4 2 cos β = 5
  • 52. Method 2: Auxiliary Angle Method (ii) Change into a cosine function eg (i) 3cos θ + 4sin θ = 2 0 ≤ θ ≤ 360 cos α cos θ + sin α sin θ 5 4 3cos θ + 4sin θ = 2 α  3 cos θ + 4 sin θ  = 2 5×  3    5 5 4 tan α = 5cos ( θ − α ) = 2 3 2 cos ( θ − α ) = α = 538′ 5 Q1, Q4 2 cos β = 5 β = 66 25′
  • 53. Method 2: Auxiliary Angle Method (ii) Change into a cosine function eg (i) 3cos θ + 4sin θ = 2 0 ≤ θ ≤ 360 cos α cos θ + sin α sin θ 5 4 3cos θ + 4sin θ = 2 α  3 cos θ + 4 sin θ  = 2 5×  3    5 5 4 tan α = 5cos ( θ − α ) = 2 3 2 cos ( θ − α ) = α = 538′ 5 Q1, Q4 2 cos β = 5 β = 66 25′ θ − 538′ = 66 25′, 29335′
  • 54. Method 2: Auxiliary Angle Method (ii) Change into a cosine function eg (i) 3cos θ + 4sin θ = 2 0 ≤ θ ≤ 360 cos α cos θ + sin α sin θ 5 4 3cos θ + 4sin θ = 2 α  3 cos θ + 4 sin θ  = 2 5×  3    5 5 4 tan α = 5cos ( θ − α ) = 2 3 2 cos ( θ − α ) = α = 538′ 5 Q1, Q4 2 cos β = 5 β = 66 25′ θ − 538′ = 66 25′, 29335′ ∴θ = 11933′,346 43′
  • 55. 2005 Extension 1 HSC Q5c) (i) (ii) Express 3sin 3t − cos3t in the form R sin ( 3t − α )
  • 56. 2005 Extension 1 HSC Q5c) (i) (ii) Express 3sin 3t − cos3t in the form R sin ( 3t − α ) 3sin 3t − cos3t
  • 57. 2005 Extension 1 HSC Q5c) (i) (ii) Express 3sin 3t − cos3t in the form R sin ( 3t − α ) ( sin 3t cos α − cos3t sin α ) 3sin 3t − cos3t
  • 58. 2005 Extension 1 HSC Q5c) (i) (ii) Express 3sin 3t − cos3t in the form R sin ( 3t − α ) ( sin 3t cos α − cos3t sin α ) 2 1 3sin 3t − cos3t α 3
  • 59. 2005 Extension 1 HSC Q5c) (i) (ii) Express 3sin 3t − cos3t in the form R sin ( 3t − α ) ( sin 3t cos α − cos3t sin α ) 2 1 3sin 3t − cos3t = 2sin ( 3t − α ) α 3
  • 60. 2005 Extension 1 HSC Q5c) (i) (ii) Express 3sin 3t − cos3t in the form R sin ( 3t − α ) ( sin 3t cos α − cos3t sin α ) 2 1 3sin 3t − cos3t = 2sin ( 3t − α ) α 3 1 tan α = 3 α = 30
  • 61. 2005 Extension 1 HSC Q5c) (i) (ii) Express 3sin 3t − cos3t in the form R sin ( 3t − α ) ( sin 3t cos α − cos3t sin α ) 2 1 3sin 3t − cos3t = 2sin ( 3t − α ) = 2sin ( 3t − 30 ) α 3 1 tan α = 3 α = 30
  • 62. 2005 Extension 1 HSC Q5c) (i) (ii) Express 3sin 3t − cos3t in the form R sin ( 3t − α ) ( sin 3t cos α − cos3t sin α ) 2 1 3sin 3t − cos3t = 2sin ( 3t − α ) = 2sin ( 3t − 30 ) α 3 1 tan α = 3 α = 30 2003 Extension 1 HSC Q2e) (i) (iii) Express sinx − cos x in the form R cos ( x + α )
  • 63. 2005 Extension 1 HSC Q5c) (i) (ii) Express 3sin 3t − cos3t in the form R sin ( 3t − α ) ( sin 3t cos α − cos3t sin α ) 2 1 3sin 3t − cos3t = 2sin ( 3t − α ) = 2sin ( 3t − 30 ) α 3 1 tan α = 3 α = 30 2003 Extension 1 HSC Q2e) (i) (iii) Express sinx − cos x in the form R cos ( x + α ) sin x − cos x
  • 64. 2005 Extension 1 HSC Q5c) (i) (ii) Express 3sin 3t − cos3t in the form R sin ( 3t − α ) ( sin 3t cos α − cos3t sin α ) 2 1 3sin 3t − cos3t = 2sin ( 3t − α ) = 2sin ( 3t − 30 ) α 3 1 tan α = 3 α = 30 2003 Extension 1 HSC Q2e) (i) (iii) Express sinx − cos x in the form R cos ( x + α ) ( cos x cos α − sin x sin α ) sin x − cos x
  • 65. 2005 Extension 1 HSC Q5c) (i) (ii) Express 3sin 3t − cos3t in the form R sin ( 3t − α ) ( sin 3t cos α − cos3t sin α ) 2 1 3sin 3t − cos3t = 2sin ( 3t − α ) = 2sin ( 3t − 30 ) α 3 1 tan α = 3 α = 30 2003 Extension 1 HSC Q2e) (i) (iii) Express sinx − cos x in the form R cos ( x + α ) ( cos x cos α − sin x sin α ) sin x − cos x = − ( cos x − sin x )
  • 66. 2005 Extension 1 HSC Q5c) (i) (ii) Express 3sin 3t − cos3t in the form R sin ( 3t − α ) ( sin 3t cos α − cos3t sin α ) 2 1 3sin 3t − cos3t = 2sin ( 3t − α ) = 2sin ( 3t − 30 ) α 3 1 tan α = 3 α = 30 2003 Extension 1 HSC Q2e) (i) (iii) Express sinx − cos x in the form R cos ( x + α ) ( cos x cos α − sin x sin α ) 2 1 sin x − cos x = − ( cos x − sin x ) α 1
  • 67. 2005 Extension 1 HSC Q5c) (i) (ii) Express 3sin 3t − cos3t in the form R sin ( 3t − α ) ( sin 3t cos α − cos3t sin α ) 2 1 3sin 3t − cos3t = 2sin ( 3t − α ) = 2sin ( 3t − 30 ) α 3 1 tan α = 3 α = 30 2003 Extension 1 HSC Q2e) (i) (iii) Express sinx − cos x in the form R cos ( x + α ) ( cos x cos α − sin x sin α ) 2 1 sin x − cos x = − ( cos x − sin x ) α = − 2 cos ( x − α ) 1
  • 68. 2005 Extension 1 HSC Q5c) (i) (ii) Express 3sin 3t − cos3t in the form R sin ( 3t − α ) ( sin 3t cos α − cos3t sin α ) 2 1 3sin 3t − cos3t = 2sin ( 3t − α ) = 2sin ( 3t − 30 ) α 3 1 tan α = 3 α = 30 2003 Extension 1 HSC Q2e) (i) (iii) Express sinx − cos x in the form R cos ( x + α ) ( cos x cos α − sin x sin α ) 2 1 sin x − cos x = − ( cos x − sin x ) α = − 2 cos ( x − α ) 1 tan α = 1 α = 45
  • 69. 2005 Extension 1 HSC Q5c) (i) (ii) Express 3sin 3t − cos3t in the form R sin ( 3t − α ) ( sin 3t cos α − cos3t sin α ) 2 1 3sin 3t − cos3t = 2sin ( 3t − α ) = 2sin ( 3t − 30 ) α 3 1 tan α = 3 α = 30 2003 Extension 1 HSC Q2e) (i) (iii) Express sinx − cos x in the form R cos ( x + α ) ( cos x cos α − sin x sin α ) 2 1 sin x − cos x = − ( cos x − sin x ) α = − 2 cos ( x − α ) = − 2 cos ( x − 45 ) 1 tan α = 1 α = 45
  • 70. 2005 Extension 1 HSC Q5c) (i) (ii) Express 3sin 3t − cos3t in the form R sin ( 3t − α ) ( sin 3t cos α − cos3t sin α ) 2 1 3sin 3t − cos3t = 2sin ( 3t − α ) = 2sin ( 3t − 30 ) α 3 1 tan α = 3 Exercise 2E; α = 30 6, 7, 10bd, 11, 13, 14, 16ac, 20a, 23 2003 Extension 1 HSC Q2e) (i) (iii) Express sinx − cos x in the form R cos ( x + α ) ( cos x cos α − sin x sin α ) 2 1 sin x − cos x = − ( cos x − sin x ) α = − 2 cos ( x − α ) = − 2 cos ( x − 45 ) 1 tan α = 1 α = 45