VisCom TR Series - Copyright c Jonathan Richard Shewchuk and VisCom Commune.
LLLsss¦¦¦LLL   {{{™™™ŠŠŠªªªEEEPPPêê꟟ŸªªªÁÁÁ(11
4XXX)
–––{{{†
, ‡‡‡ôôô‘‘‘‡
, îîî–––|||††
, êêêõõõ‡‡
bbb
†
ôôô¡¡¡ppp, ‡
ûûûÙÙÙ¡¡¡ppp, ††
ÙÙÙSSS½½½vvvqqq¡¡¡ppp, ‡‡
ÙÙÙSSS¡¡¡ppp
ÅÅÅccc
ŠªiPê(conjugate gradient) Ÿªù ™±µ¿vÇü™xÍèßð¦©õu ™Ú‚ 6lq
 ŠÄª°. ” # ݱ Qê ¨ù þ  sgõ ”¡# ”‘X z`ê { °Øv !°. ¢
þ¦ f%ù“šê6“ #™êt‘uu‚t¦y{™úžq4v!°.  ¢î
¿Ÿª‚¢îê!™Ÿ X©™Ÿ(¡%¦Í“6¡úv ß¥Q©ë¢Ù`u¢…ý
3¦Yî“}°.  “§ŠªiPꓪ†™Dù¢³ Vt€u#©£½!™ÍI¢Pv
¿Øqu!°. Š Û
¤[[¢ë%†V¾Iˆ¢v ê{•н!™D°.
2òÍé¦]ú™¢, õÌ Š/ (steepest descent), Šª“³(conjugate directions),
Šª iPê(conjugate gradient) Ÿªú îê£ D°. vî¯â™ b‘ü(Jacobi) Ÿª, / , Šª i
P꟪#¦½¶úz` ™ÚPÌþD°. ”ývY
ý(preconditioning)‰üxÍŠªiPê“
ª#j¥üq!°. ›%™Š Û˜úÖQQ ²v¨ùd³ú •°. 66¦”¡úg‡
üT, ¢S‘Íצz`ù˜°°. ]ùa “t¿°ô“ª÷¿z`üv!÷TÂÙÛ¦“
eéù”‘Xz`‰¥Ùg‡ý°.1
1ÙW%- Jonathan Richard Shewchuk. Ù[g@- An Introduction to the Conjugate Gradient Method without the Agonizing Pain. Ùf
[¦u™j#°WuÊç(Natrual Science and Engineering Research Council of Canada)¦1967[W6¡PzYyY¡8
³(National Science Foundation)¦“Ù(Grant ASC-9318163)ú‹IØq€°. [t¦[bY@ÁùW%¦©6j#°W
uÊç(NSERC), yY¡8³(NSF), ÓùyveÙ¦©¿‹IŠut™Ký°.
1
VCTR-2006-F-002 vs¦v {™ŠªiP꟪Á(11
4
X)- –{†
, ‡ô‘‡
, î–|††
, êõ‡‡
b
‘‘‘ttt‚‚‚©©©
c 1994 by Jonathan Richard Shewchuk. W„™î%: ƒ5³ý
Ù
. ‘t™W„v蠔¿
Cs!v, ‘t¦Â ¿sˆ¢Ã’{™¢%îÄQÄ€üq•jþ½!°.
 ‘t™ Šª i€ê Ÿªú   ¢ ÖQ ‡Ù v òù ¡f0ú òŸ æ Š §0q€°. 5‚Q
“X€¨, ½e©˜£ RÌ, ”ýv R  §rÿ qi ‘ê¦ ”‘X z`†ê ”÷¦ x² sŸ †ˆ°
(jrs@cs.cmu.edu); 0 ÏÚÙ™£¥«X‚j¥þD°. 5™48‘tõ½z袂ßÌ
¢€»‚‘.
ŠÄŸª‚©̨ùDú‡Ù v% ™€Š0‚Q5™éýyõþß(William L. Briggs)¦“A
multigrid Tutorial” [2]ú8¢°. þù“š«“R ù½¡tX ÏÚ 60SŠ•þ°.
½X Ÿª‚ ‘© R  xv !™ D¦ ’¾ÙÛú  òsv  ‘t¦ #v‚ ª !™ üeú g‡
© s}Ï ¡¥ò  Íß(Omar Ghattas)‚Q 4»¢ §€õ ÿ°. üeú © s}Ï gß ‚xá(James
Epperson), Úü¡¬ ¢(David O’Hallaron), gßßGXdß(James Stichnoth), §3ª‡î(Nick Tre-
fethen), ”ýv°¦…ƒŽ(Daniel Tunkelang)‚Qê§€¢°.
›Å¢ÙÛ§úú½!êÀ¡`¦’Ò¦…”’’õð:
copyright c Jonathan Richard Shewchuk and VisCom Commune
2
VCTR-2006-F-002 vs¦v {™ŠªiP꟪Á(11
4
X)- –{†
, ‡ô‘‡
, î–|††
, êõ‡‡
b
1 qqq   ŸŸŸ
›% Šªi€ê(conjugate gradient method)ú•Ͳv°úX, 4–¦t¿°ô‘¶ú}™Ú, þ
0qiþ0“™š¦’8“wW°. ›%™þ0ú 5ê© “q°°. þ0ùÂÙÛ¢
³ QŠªi€êõŸÁ°÷T, qg¢”‘Xz`ê{}vqxQŠªi€êŸª
ü‚vuü}
™“‚¢@3(hint)ê{”Ÿª¦4úz` v!}°. ˜ù¢›%¦•`ÍÛ‚Ïf Q
ü}÷T, 6òŠªi€êŸªú•Ͳ™¡f0Ԉߠϓeé×qý s¦†„Ù vÍs¢
xvýú•ÍŸõ††VtSŠ€°.
Šªi€êŸªùxÍ“eé¦6¢èßðúŸæ© 6¨€Ìü™ŠÄª°. Šªi€
꟪ù°üÍצèßð‚ssî‰X°.
Ax = b (1)
Xx™cò™¯âv, b™xv!™¯âTA™xv!™e“(square), Âa(symmetric), j¦e
ÙÒ(positive-define) ±µ°- Óùj¦ÙeÙÒ(positive-indefinite) ±µ½ê!°. “j¦eÙÒ” ˆ
|ú¦y ™“#q£¹°v£“†ê5|‚°è…•ÇD¦7e£›Å™{°. èßðù–yÛ
“eé, uƒÛu, ç¿Ûu, ½¡¾g5ú©d£X‘‘5Í5™î¢òÛª(finite difference)‰î¢Å
™ª(finite element method) 5‰ù|Å¢ª‚t%s5Í8°.
Šªi€êŸª‰ùŠÄ“ªù2™±µú€Ì£X‚X¦ °. A ƒ}¢iÍ‚ 6”ù“
ªùAõÛ© v‹XÞ(backsubstitution)‚¦©“eéú™D°. ƒ}¢AúÛ© ™Ú@ý™è
¢ù Â? èßðú ŠÄ©t ©d ™Ú @ý™ 袉 üæ °. ”ýv ¢¥ A  Û©üV èßðù b¦
Š ©0úæ©t§òQÃô¿½!°. ƒ}¢±µúùEcý¾Ÿõ “™ÌÀ¾Ÿ¦2™
±µ‰ üp©Ã%. 2™±µ A¦ ˆ¡Å™(triangular factors)‚™ 0 s¨ Ù™  ŠX÷¿ Ù’¦ AÃ
°ýg̨°. Û©% Ecý¦¢qX‘‚Ý  £½ê!÷T袨@ ½ê!°. î“
q‹XÞú‰eŠÄŸªÃ°Ì— ½ê!°. ŠV‚ÂÙÛ¦ŠÄX“ªùEcýîñmv2
™±µ‚©§òQô¢°.
›%™Š Ûxͽ¡ú½°°v e T, vî¯â¦vùD‚©t™0cô°
v£“†ê±µ…‡‰xÍë¢5‚©t™0xv!°v e¢°. ¢ŸÆX eú†Ö÷¿
›%™Šªi€êŸª¦qõ  ¢¢`Ÿ Qu9©5¤D°.
2 vvvŸŸŸªªª
a “e¦®vŸ‚©…•ÃVtè %.
copyright c Jonathan Richard Shewchuk and VisCom Commune
3
VCTR-2006-F-002 vs¦v {™ŠªiP꟪Á(11
4
X)- –{†
, ‡ô‘‡
, î–|††
, êõ‡‡
b
±µú vè Ÿ æ© Â‘%õ €Ì£ DT, ™‘%™ ¯âõ 5ÍR™Ú €Ìý°. ße†™ ”ýß
‘%¿v袰. A™n × n ±µvx®b™¯â, Œ, n × 1 ±µ°. ½é1ù°ü‰vÇ¢°.









A11 A12 · · · A1n
A21 A22 A2n
...
...
...
An1 An1 · · · Ann


















x1
x2
...
xn









=









b1
b2
...
bn









.
£ ¯â¦ 4X(inner product)ù xT
yv ße† ¦ n
i=1 xiyiú 5ÍT°. xT
y = yT
x°. x® y  ”
p VxT
y = 0°. ŠX÷¿xT
y®yT
Ax®1 × 1 ±µü™vÇéùße†©÷¿D›ý°.
§™c(0s¨¯âx‚©°üÙ5éú§„£X, ±µA j¦eÙÒ(positive-definite)°.
xT
Ax  0 (2)
ŠŸtsˆ¢¦yõ—'“q¢°vì “†. “ù”°“”‘X“s¦qtj¦
eÙÒ±µ”©“wùD‰qxQ°òQÙ“© ™DÑÏs¨°. õ© Ÿ
æ©t™j¦eÙÒ(positive-definite)†™D2òÍé‚qxQ–³úyX™“…•ǛŠ!°.
¥“¦÷¿(AB)T
= BT
AT
‰(AB)−1 = B−1
A−1
†™|Å¢ŸÆ¨5éú#“vŸr †.
3 2òòòÍÍÍééé
2òÍé(quadratic form)ù¢³8©°ü‰ùÍצße†©ú™2ò¥½°.
f(x) =
1
2
xT
Ax − bT
x + c (3)
A™±µvx®b™¯â°. ”ývc™ße†’½°. ›%™ŠŸtA ÂaXv(symmetric)
j¦eÙÒiÍ, Ax = b¦©õÌ Šf(x)õ/™Ü£½!üú¢³8ò¢°.
˜¦Y‚t›%™°ü‰¢³¢ìgšg‘gõ “v°j¢“úz`£D°.
A =


3 2
2 6

 , b =


3
−8

 , c = 0. (4)
copyright c Jonathan Richard Shewchuk and VisCom Commune
4
VCTR-2006-F-002 vs¦v {™ŠªiP꟪Á(11
4
X)- –{†
, ‡ô‘‡
, î–|††
, êõ‡‡
b
èßðAx = b ”¡1‚5Í5!°. ŠX÷¿©x™n ¦#eV(Ú¤)¦pòb°(X¡
¡¦ #eVù ¡¡ n − 1 òÙú  •°).  ‘g¦ ©™ x = [2, −2]T
°. Âÿü™ òé f(x)™ ”¡
2‚5Í8°. f(x)¦5vx¦cjù”¡3‰°. A j¦eÙÒŸX‘‚f(x)‚¦©e¦ü™v
Vùj“xÍצ€Œ‰ùcj°. (‚©2è‚Ì%ƒ8z` W°)
[”¡1] 2òÙxÍèßðš. ©™xÛ0¦pòb°
2ò馟П(gradient)™°ü‰e¦ý°.
f (x) =









∂
∂x1
f(x)
∂
∂x2
f(x)
...
∂
∂xn
f(x)









. (5)
ŸÐŸ™sq•bx‚©, f(x)¦ 6À’ “³ú òÅ™¯â›°. ”¡4ù½é4 ‰
ù’½õ½é3‚ Šuq•ŸÐŸ¯âõz` v!°. €Œcj¦j“V†±‚t™ŸÐŸ 
0°. f (x)‚0üêÀ¥÷¿¦f(x)ù/™Ü£½!°.
°™“Ø¢zú ©½é5õ½é3‚Â Š°üúîꣽ!°.
f (x) =
1
2
AT
x +
1
2
Ax − b. (6)
copyright c Jonathan Richard Shewchuk and VisCom Commune
5
VCTR-2006-F-002 vs¦v {™ŠªiP꟪Á(11
4
X)- –{†
, ‡ô‘‡
, î–|††
, êõ‡‡
b
[”¡2] 2òÍéf(x)¦”’’. vV¦/WbùAx = b¦©°.
[”¡3] 2òÍé¦5vx. ¡ÍÙwxùô¢f(x) ©ú™°.
copyright c Jonathan Richard Shewchuk and VisCom Commune
6
VCTR-2006-F-002 vs¦v {™ŠªiP꟪Á(11
4
X)- –{†
, ‡ô‘‡
, î–|††
, êõ‡‡
b
[”¡ 4] 2òÍé¦ ŸÐŸ f (x). c( x‚  Š, ŸÐŸ ¯â™ f(x)   6 ¾Q ’ç ™ “³ú  ýÅT 5vx‚
”p¢°.
A ÂaV“eéù°ü‰¢œÜý°.
f (x) = Ax − b. (7)
ŸÐŸõ0÷¿ VÍý uv% ™xÍèßð½é1úu™°. ” t¿Ax = b¦©™f(x)¦
qb(critical point)°. A Âa`§s¦†j¦eÙÒ(positive-definite)†V©™f(x)¦/™©°.
H†tAx = b¦©™f(x)ú/™Ü ™xúüü÷¿¦u£½!°. (A ÂaX“w÷V½é6™Š
ªi€êŸªèßð 1
2 (AT
+ A)x = b¦©õüQý°™DúÊsv!°. X 1
2 (AT
+ A)™Âa
±µ°.)
Âaj¦eÙÒ±µù·©Q”ù—úv!ú«? qi¦¦bp‚t¦f®xÍèßð¦
©x = A−1
b €¦‘qõ…•Ã%. ½é3ú†Ö÷¿A ÂaiÍ(±µj¦eÙÒ(positivie-
definite)“‚‘q{) °ü¢¥úý!°. (ÙÀC1).
f(p) = f(x) +
1
2
(p − x)T
A(p − x). (8)
A j¦eÙÒ(positive-definite)†v V, Ù5é2‚¦©ó%¦¨c(p = x‚©j½°. 
™x f¦Y‹/™©úy¢°.
copyright c Jonathan Richard Shewchuk and VisCom Commune
7
VCTR-2006-F-002 vs¦v {™ŠªiP꟪Á(11
4
X)- –{†
, ‡ô‘‡
, î–|††
, êõ‡‡
b
j¦eÙÒ(positive-definite) ±µ‚‘¢ 6”‘X©™±µ¦2òÍéf(x) j“Vý°
™D°. A §™j¦eÙÒ s¦†V°ô  !°. A™ü¦eÙÒ þ½!™Ú™j¦
eÙÒ±µ‚©ÙÒõ†öd‰, Œ”¡2¦s’æõšqnùcjý°. A 4±µiÍ
‚™î¢© {™iͰ; ©¦š¦ù 5¦”x, Óùe¢f ©ú “™#eV(hyperplane)
ý°. A  æ‚t z`¢ qi iÍê s¦†V, x™ u6b(saddle point) üT / 5 Šª i€ê
Ÿª5ìg£D°. ”¡5™ ¢  0úÊsv!°. b®c¦©ùj“ͦ/™bq7
“õde¢°. ” 5j“Ícj‚™–³úyX“w™°.
xÍèßðú · Ì q²× Ù ‘g¿ ºÍ£«? / ‰ Šª i€ê Ÿª 5¦ “ª0ù ”¡
1®  #eV¦ pòõ  ©t  s¦† ”¡ 2®  ¥½¦ /™Üõ  © ”‘X ©     Ÿ
X‘°.
4 ///   “““ªªª
/ “ª‚t™, qi¦bx(0)‚tè Šj“x¦…†±÷¿y uR²¢°. ©x‚?Û
8 «Qü™ƒ8ú§„£X«“¡³qx(0), x(1) · · · úD¢°.
 5¦³q‚tf  6§òQ§™ ™“³úxØ¢°. “³ùf (x(i))¦ŠÂ“³°. ½é7‚
HòV, “³ù−f (x(i)) = b − Ax(i)°.
ŠŸtë%0Ÿr©˜£a “e¦õ™¢°. ¡ò(error) e(i) = x(i) − x™©¿Ùâv¥57
ýpqu!5õ5ÍR™¯â°. 54“(residual) r(i) = b−Ax(i)ùeÝ¢b ©÷¿Ùâv¥5ò 
!5õ 5ÍT°. r(i) = −Ae(i)ù ÖQ x ½ !v,  54“™ dv ¡òõ ±µ Aõ Ì Š b® ù
‡¢÷¿ ºÞ¢ D÷¿ Ç ½ !°. Ì |Å¢ Dù r(i) = −f (x(i))†™ DT, 54“(residula)õ /Â
 Ÿª¦•±“³‰ùD÷¿f¡ Š˜¢°. üxÍ‘g‚t™³“ó%¦e¦úXÌ Š14`
‚t f¦¢°. ” t¿ “54“(residual)”†™ Ìqõ Q üV “/   “³”†™ ¦yõ g¤ý
êÀŸr©£†.
x(0) = [−2, −2]T
‚t ;Œ¢°v  e %.
ü ½± ™ zù / (steepest descent) “³ú H
†t”¡6 (a)‚!™ìx’¦q7‚pq—D°. Œ, °ü‰”¿ÏqibúD£D°.
x(1) = x(0) + αr(0). (9)
‘g™  “³ú H† v¥5 •±¢ †ú xØ£ D °. (Œ, qi αõ xØ£ D õ de ™
D°.)
copyright c Jonathan Richard Shewchuk and VisCom Commune
8
VCTR-2006-F-002 vs¦v {™ŠªiP꟪Á(11
4
X)- –{†
, ‡ô‘‡
, î–|††
, êõ‡‡
b
[”¡ 5] (a) j¦ eÙÒ ±µú æ¢ 2òé. (b) ü¦ eÙÒ ±µú æ¢ 2òé. (c) ±µ(”ýv j¦ ÙeÙÒ).
qw¦ †±ú “#™ xÛ ©¦ š¦°. (d) ÙeÙÒ ±µ X. ©  K6 bŸ X‘‚ / ‰ Šª i€ê
ŸªXÌü“M™°. 3òÙ#”’‚t™±µ‹èK6cjú —½!°.
copyright c Jonathan Richard Shewchuk and VisCom Commune
9
VCTR-2006-F-002 vs¦v {™ŠªiP꟪Á(11
4
X)- –{†
, ‡ô‘‡
, î–|††
, êõ‡‡
b
[”¡6] / “ª. (a)x(0) = [−2, −2]T
‚t;Œ©tf¦/ ¦“³÷¿¢³qõD¢°. (b) £V¦pòx
’‚ !™ b0 |‚t fõ /™Ü ™ bú ü™°. (c)  j“xù £ V(2òÍé j“V‰ Ò•x “³¦ ½” eV)
pò ™x°. (d) /Wb‚t¦ŸÐŸ™Y³q¦ŸÐŸ®”p¢°.
copyright c Jonathan Richard Shewchuk and VisCom Commune
10
VCTR-2006-F-002 vs¦v {™ŠªiP꟪Á(11
4
X)- –{†
, ‡ô‘‡
, î–|††
, êõ‡‡
b
[”¡ 7] Ò• ”x(ìx Ü…v)ú H† Š †‚t ŸÐŸ f õ Êsv !°. xÛæ¿ ¡ ŸÐŸ¦ 
– ‹è Ãv
!°(bx Ü…v). ŸÐŸ ¯â™ f¦ ŸÐŸ¦ ’  “³ú #Í4v 
–ù Ò•xú H† ¤ X¦ ’ ñú #Í6°.
Ò•x’‚tŸÐŸ Ò•x‰”p ™†‚tf /™©ú™°.
[”¡8] ŠŸ, / ¦“ªù[−2, −2]T
‚t;Œ v[2, −2]T
‚t½¶¢°.
copyright c Jonathan Richard Shewchuk and VisCom Commune
11
VCTR-2006-F-002 vs¦v {™ŠªiP꟪Á(11
4
X)- –{†
, ‡ô‘‡
, î–|††
, êõ‡‡
b
”xÒ_(line search)ù”xúH†fú/™Ü ™αõxØ ™‰e°. ”¡6 (b)™‰eúz`
¢°. ½”eV‰j“V§5™pòx榢búxØ êÀg™¢°. ”¡6 (c)™£eV¦pò
‚¦©e¦ýj“x°. j“x¦/Wb‚tα©ùv¥ ?
ŸÆX yXÛú  ©, α™ “³ ꥽(directional derivative) d
dα f(x(1))  0X fõ /™Ü¢°. 
©ñ(chain rule)‚ ¦©, d
dα f(x(1)) = f (x(1))T d
dα x(1) = f (x(1))T
r(0) °.  ½éú 0÷¿  v, r(0)®
f (x(1))0”püQ ™α xØüq˜¢°(”¡6 (d)õÆ).
 £ ¯â  /™b‚t t¿ ”p  üq˜  ™ ”‘X î  !°. ”¡ 7 ™ Ò•xú H†t °
j¢ b0‚t ŸÐŸ ¯âõ Êsv !°. j“x(”¡ 6 (c)) æ¦ ¦¦ b‚t  “™ j“x ŸÐŸ
©(slope)™”b‚t¦2òÍé “™ŸÐŸ(gradient)õÒ•”xæ‚–°úX(”¡7, bxÜ…
v) fŸ™¯â¦£®°. –ý¯â0ùÒ•xúH†¤Xf¦’ íúvÇ¢°. f™–ý
ŸÐŸ¯â¦£ 0†-ŸÐŸ Ò•x‚”p ™†-‚t/™©ú™°.
αúde Ÿæ©, f (x(1)) = −r(1)‚V°üúuú½!°.
rT
(1)r(0) = 0
(b − Ax(1))T
r(0) = 0
(b − A(x(0) + αr(0)))T
r(0) = 0
(b − A(x(0))T
r(0) − α(Ar(0))T
r(0) = 0
(b − Ax(0))T
r(0) = α(Ar(0))T
r(0)
rT
(0)r(0) = αrT
(0)(Ar(0))
α =
rT
(0)r(0)
rT
(0)Ar(0)
õc£Â©ÃV, / (Steepest Descent) Ÿªù°ü‰°.
r(i) = b − Ax(i), (10)
α(i) =
rT
(i)r(i)
rT
(i)Ar(i)
, (11)
x(i+1) = x(i) + α(i)r(i). (12)
copyright c Jonathan Richard Shewchuk and VisCom Commune
12
VCTR-2006-F-002 vs¦v {™ŠªiP꟪Á(11
4
X)- –{†
, ‡ô‘‡
, î–|††
, êõ‡‡
b
šg™”¡8‚t®½¶£X«“½±ý°. “”8”i¿‚%. ™¡¡¦ŸÐŸ
 Y¦ŸÐŸ‚©”p ŸX‘‚5Í5™Ç’°.
æ‚s›¢xvýù¢¥¦ŠÄX¥°£¦±µ-¯â…‡úÅu¢°. / (Steepest De-
scent) Ÿª¦qƒüÌù±µ-¯â…‚¦©•Íü™Ú, °±8ê ÏÚ 5™{’½ !°.
½é12¦jº¦ˆ‚−Aú… vbúÌ V°üúu™°.
r(i+1) = r(i) − αAr(i). (13)
r(0)úqƒ Ÿæ©½é10ú¢¥qƒ ™DùŠè›Å “§, ”ó¦ŠÄ‚t™½é13õ
qš©t €Ì£ ½ !°. ½é 11‰ ½é 13 c£‚t 5Í5™ ±µ-¯â … Arù ¢ ¥§ qƒ V ý°.
é§úÌ ŠŠÄú£XfŸ™‘gbù½é13ú ©e¦ü™½Žx(i) ©÷¿Ùâqiü
5(feedback)ê{fý°™b°. H†tÙô™½bФ¡¡ê¦€X÷¿¢eÝ¢x s¦
†”–
¦qib‚½¶£½!°™D°.  ¢³bù½é10úÌ ŠsŸX÷¿eÝ¢54
“(residual)õ°èqƒ¥÷¿¦©d£½!°.
/ (Steepest Descent) Ÿª¦½¶‚¢ÛuY‚, Š Û0vî¯â‚¢Ý좩õ
£½!êÀ2®˜£¿§“²v¢°.
5 vvvîî¯âââ(eigenvector)®®®vvvîîî©©©(eigenvalue)‚‚‚¢¢¢vvvööö
›% xͽ¡¢‰dú½¢ó‚, vî¯â(eigenvector)®vî©(eigenvalue)ˆ|“ꈓx
½ {}°. Š Û0ú òZ€ ›%õ òZ€®üæ °V, vî©“g“ ™Dú “v
‘gõ{™“ªùg¡òW“§d‘”D0êˆ|““•e÷¿” © v!•wúD°. Ý
± Qêvî¯â®v¢”‘X© {°V, Šªi€êŸª‹è© “q£D
°. Š Û§™vî¯â¦v ™D0‚©Ív88 ú “v!°V`ú8glq
êý°.
vî¯â0ùŸÆX÷¿Ûuêu¿t€Ìý°; / (Steepest Descent) Ÿª5Šªi€êŸ
ªùxvýú½± Ÿæ©vî¯âõqƒ£›Å™{°.
5.1 vvvîîî©©©gggvvvîîî?
±µ B¦ vî¯â v™ Bõ XÌ Š ºÞú  Šê “ͦ ºÜ  q5“ w™ 0 s¨ ¯â°(eÝ
 QŠÂ“³÷¿ºÞü™Dùg½). v™£ º 65”“³ŠÂ þ½™!“§, ˜÷¿î“
copyright c Jonathan Richard Shewchuk and VisCom Commune
13
VCTR-2006-F-002 vs¦v {™ŠªiP꟪Á(11
4
X)- –{†
, ‡ô‘‡
, î–|††
, êõ‡‡
b
™wúD°. °è©, Bv = λvqiße†’½λ …8¢°. Xλ ©B¦vî©°. ¦¦
’½α‚©, ¯âαvê‹èô¢vî©λõ™vî¯â°. ™B(αv) = αBv = λαvŸX‘
°. °è©, vî¯âõ¾Ÿõš65vŠêŠY8vî¯â°.
@·êi¦˜£«? ŠÄªù‘‘Bõqi¯â‚qš©tŠÄXÌ Š©õu¢°. B  5
¦ vî¯â‚ ŠÄX÷¿ XÌþ X, °ü £  “  ÏÚ  5¦ ’á Œf£ ½ !°. |λ|  1 i͆
V, i ˆ¢Â¿¤XBi
v = λi
v™0 ¯â¿½¶£D°(”¡9). |λ|  1 V, Bi
v™ˆ¢Â¿v—D
°(10). ¥B XÌþX¥°, ¯â™|λ|¦©‚H†v“65s“Qý°.
[”¡9] v™−0.5¦vî©‚Âÿü™B¦vî¯â. i ’  V, Bi
v™0‚½¶¢°.
[”¡10] š‚tv™vî©2õ “™vî¯â°. i ’  V, Bi
v™ˆ¢Â¿Œƒ¢°.
B  Âa±µ iÍ(‘‘ ”©“ wù iÍ‚ê    °), B™ xÍX ë¢ n ¦ vî¯âõ  
•°. õ v1, v2, · · · , vn† vŸ %.  š¦ù î “ w°. ™ ¡ vî¯â  0 s¨ X¾¢ ’
½§Â ¾Ÿ  ºiþ ½ !Ÿ X‘°. ¡¡¦ vî¯â™ %ê‚Q Âÿü™ vî©ú  “™Ú, õ
λ1, λ2, · · · , λn¿ vè %.  vî©0ù sq• ±µ‚ © î Q e¦ý°. vî©ù t¿ ù ©ú
 —½ê!vt¿°õ½ê!°. šõ0q, ¨5±µI¦vî©ùc£1v, 0 ¯â s¨¦¦¯
â I¦vî¯â°.
B  vî¯â  s¨ ¯â‚ XÌüV qi  q@«? xͽú ©¥‚ !q Í |Å¢ Ÿ
Á-`‚t òXv% ™”ŸÁ-ù 5¦¯âõ±ôx²•°ô¯â¦¦÷¿¢s ™D°.
vî¯â0¦š¦{vi} Rn
¦ŸWõØ™’áúv²©Ã%(Âa±µB™xÍë¢n¦vî¯
copyright c Jonathan Richard Shewchuk and VisCom Commune
14
VCTR-2006-F-002 vs¦v {™ŠªiP꟪Á(11
4
X)- –{†
, ‡ô‘‡
, î–|††
, êõ‡‡
b
â0ú •°). ¦¦n-òÙ¯â™0vî¯â0¦x̓¦÷¿vÇþ½!°. ¢±µ‰¯â¦
…ùÛ•ªYXÌüt¿¡¡¦vî¯â‚…©“™B¦î‰™ë¢X÷¿ƒ€£½!°.
”¡11‚t¯âx™£vî¯âv1‰v2¦¦÷¿5Í5!°. Bõx‚… ™DùBõvî¯â0
‚ ¡¡ … Š ¦ú u ™ D‰ °. Bõ ŠÄ©t …© 5 V, Bi
x = Bi
v1 + Bi
v2 = λi
2v2  ý°. c
(v¾Ÿ 1ð÷V, Bi
x™0‚½¶ú£D°. (™xúu v!™vî¯â0c£ 
BõŠÄX÷¿…£iÍ0‚½¶ ŸX‘°). vî©0| 5†ê1ðÀ©ú™°V, x™ˆ¢
‚ Œƒ£ D°. D †¿ ½X©u ¡%0 ±µ¦ ߈3¤ Ši(spectral radius)‚ |Łú ÙŠ
 ™î°. ±µ¦ßˆ3¤Šiù°ü‰°.
ρ(B) = max |λi|, λi ùB¦vî¯â
x 0‚§òQ½¶ ŸõÙ Vρ(B)ù1ðs˜ v,    VùD”°.
[”¡ 11] ¯â v(ìx Ü…v)™ vî¯â0(bx Ü…v)¦ xÍ ƒ¦÷¿ vÇþ ½ !°. ® ‘ý vî© λ1 =
0.7‰ λ2 = −2 °. B  ŠÄX÷¿ XÌüV ¢ vî¯â™ 0‚ ½¶ v °ô  #™ Œƒ¢°. H†t Bi
x ‹è
Œƒ¢°.
xÍ ë¢ n ¦ vî¯âõ °  ““ q ™ üÂa ±µw(
) …8¢°™ €ìú s›£ ›Å
  !°. ù ±µ0ú Ù„ ±µ(defective matrix)†v ¢°.  öù •`¢ xÍ Â½¡%0  ±
µ‚ © Ù ¾¢ Xîú 0 5ÍRv !°. ’ƒ¢ z`ù  ‘t‚t °ØŸ‚ gˆ Ä3 “
§, Ù„ ±µ(defective matrix)¦ ±ô 4ù ŠÜý vî¯â(generalized eigenvectors)® ŠÜý vî
©(generalized eigenvalue)õÌ ŠÛu£½!°. Bi
x™0‚½¶ Ÿæ¢›Å?Ûƒ8÷¿c(Š
Üývî©(generalized eigenvalues)01ðù©ú u˜¢°™ªYùŠY8îî “§, õ’
` ™DùÌÎq²×•°.
ŠŸt îÌ¢ €ìù °ü‰ °: j¦ eÙÒ ±µ¦ vî©ù c£ j°.  €ìù v e
¦õÌ Š°ü‰’`£½!°.
copyright c Jonathan Richard Shewchuk and VisCom Commune
15
VCTR-2006-F-002 vs¦v {™ŠªiP꟪Á(11
4
X)- –{†
, ‡ô‘‡
, î–|††
, êõ‡‡
b
Bv = λv
vT
Bv = λvT
v.
j¦eÙÒ(positive-definite) e¦‚¦ Š, vT
Bv™j°(–s¨v‚ Š). H†tλ ‹èj
½ˆ‚{°.
5.2 bbb‘‘‘üüü(Jacobi) ŠŠŠÄÄĪªª
0‚š’½¶ ™‰eús™DZu0€‚tŸõ™Ú‚êÓü™Dù“Ás¨°. ˆÌ
îÌ¢ ‰eú …•Ã%: Ax = bú Ÿ æ¢ ˜‘ü(Jacobi) “ª°. ±µ A™ £ ÙÛ÷¿ Ûý(split)ý
°: A¦Â¡Ûú”¿v°ôÛ0ùc£0D®Â¡xÛùc£0v°ôÛ0ùA®
ùE. H†tA = D + E°. %‘ü“ªù°ü‰°:
Ax = b
Dx = −Ex + b
x = −D−1
Ex + D−1
b
x = Bx + x, where B = −D−1
E, z = D−1
b. (14)
D Â¡±µt¿ÖQ‹±µúu£½!°. ¨5éù°ü‰ùbÜéú ©ÖQŠÄŸª
÷¿ºÞ£½!°.
x(i+1) = Bx(i) + z. (15)
sq• è ¯â x0‚ ©,  ½éù ´¦ ¯â0ú f¢°. Íý™  ŠÄŸªú  © šX÷
¿5Í5™¯â0 5 5 ”Y¦©‰üp°úX©x‚Ì «×“Ÿõ†ˆ°. x™½é15¦v
eb†vÙò™Ú, ™x(i) = xXx(i+1)ê‹èx®ù©üŸX‘°.
ŠŸt¦½éîê‰e Í%¦X÷¿ÃD°. €ìîê™%¦XD°. ½é14 Âê
‚x‚¢¨5éúv¥(“§0qU½!°. €ìAõŠ  “¿Ûý Ÿ§ V- Œ, 榚®°ô
D® Eú xØ Ÿ§  V -  Íß-%Ý(Gauss-Seidel) “ª, 9ò š°Üª(Successive Over-Relaxation,
SOR) 5ú îê£ ½ !°. X ††™ †™ Íý  xØ¢ Ûý “ª‚ ©¾ ™ B  ù ©¦ ߈3¤
Ši(spectral radius)õ™D°. ŠŸt›%™–¦’˜‘˜Ûý“ªúxØ •°.
copyright c Jonathan Richard Shewchuk and VisCom Commune
16
VCTR-2006-F-002 vs¦v {™ŠªiP꟪Á(11
4
X)- –{†
, ‡ô‘‡
, î–|††
, êõ‡‡
b
¦¦qi¯âx(0)‚t袰v %. ¡ŠÄ‚©, Bú¯â‚XÌ¢‚zú”d‰‚Ì
¢°. ¡ŠÄ³q‚tqi§q“™ ?
 5¦ ¯âõ Íý  y 0 © v !™ °ô ¯â0¦ ¦÷¿ ŠŸ™ ÙYú °è ¢ ¥ XÌ© Ã
%. ŠÄú ©5Í5™x(i)úeÝ¢©x®¡ò¨e(i)¦¦÷¿vÇ©Ã%. ” V½é15™°ü‰
ý°.
x(i+1) = Bx(i) + z
= B(x + e(i)) + z
= Bx + z + Be(i)
= x + Be(i) ½é14‚¦©,
∴ e(i+1) = Be(i). (16)
¡ŠÄùx(i)¦“eÝ¢ÙÛ”‚–³ús“w“§(x vebŸX‘°); ¥ŠÄX¥°¡ê
³ù–³ú‹™°. ½é16õ ©`–8x½!™bùρ(B)  1iÍ‚i ˆ¢Â¿c– V¡ò
¨e(i) 0‚½¶¢°™D°. H†t#Ÿ¯âx(0)õqxQxØ —a /‘X©‚–³úyX“
q¢°.
“Áx(0)õqxQxØ —a‚H†sq•´Ì¡òR‚tx‚½¶ ™Ú‚›Å¢ŠÄ콂™
–³úyXQý°.  “§”–³ù߈3¤Šiρ(B)¦–³‚ü©ýgÑ|Å T, ߈3¤Šiù
½¶¦šêõde¢°. vj B¦vî¯â0 ÏÚ 6Àvî©ú “™(Œ, ρ(B) = λj ) vî¯â†
v %. vî¯â0¦x̓¦÷¿vÇý#Ÿ¡òe(0) vj¦“³÷¿Ûú •°V, Û 
6—ýQ½¶£D°.
B™ŠX÷¿Âaês¦v(üÀA Âa“†ê) ݰY£“êcô°.  “§˜‘ü(Jacobi) “
ª¦ ½¶šê™ ρ(B)‚ ¾Q •ÍüT,  ©ù ¢ ¢ A‚ µ²!°. ݱ Qê ˜‘ü Ÿªù c(
A‚©½¶ ™Dùs¦T, î“qj¦eÙÒ(positivie-definite)A‚©tê½¶ “wú½!
°.
5.3 uuuXXXššš
¢“0úuX÷¿ÃŸæ©, ›%™½é4‚5Í8šõqòv¢°. 6W, vvî
¯âõü™“ª›Å °. e¦‚¦©vî©λõ “™¦¦vî¯âv‚©°ü¢¢°.
copyright c Jonathan Richard Shewchuk and VisCom Commune
17
VCTR-2006-F-002 vs¦v {™ŠªiP꟪Á(11
4
X)- –{†
, ‡ô‘‡
, î–|††
, êõ‡‡
b
[”¡12] A¦vî¯â™2òÍéf(x)‚¦©e¦ýj“V¦9“³‰X¢°. ¡¡¦vî¯â™‘ývî©
XÅ!°. ¡¡¦vî©ù©¾ü™i€¦ 7ôeê‚ü»¢°.
Av = λv = λIv
(λI − A)v = 0.
vî¯â™0 ¯â s¦°. H†tλI − A™4±µq˜¢°. H†t°ü¢¢°.
det(λI − A) = 0.
λI − A¦±µéú°¨é(characteristic polynomial)†Ùô°. Dùλ‚¢nò°¨é÷¿,
°¨é¦–(Y)±µA¦vî©ý°. ½é4‚!™A¦4°¨éù°ü‰°.
det


λ − 3 −2
−2 λ − 6

 = λ2
− 9λ + 14 = (λ − 7)(λ − 2),
°¨é¦–vî©t¿±µ¦vî©ù7‰2°. λ = 7Xvî¯â™°ü‰u£½!
°.
copyright c Jonathan Richard Shewchuk and VisCom Commune
18
VCTR-2006-F-002 vs¦v {™ŠªiP꟪Á(11
4
X)- –{†
, ‡ô‘‡
, î–|††
, êõ‡‡
b
(λI − A)v =


4 −2
−2 1




v1
v2

 = 0
∴ 4v1 − 2v2 = 0.
“eéú§„ ™¦¦© †¿vî¯â°. šõ0q, v = [1, 2]T
 vî¯â°. ù“ª
÷¿vî©2‚©¾ ™vî¯â¿[−2, 1]T
õu£½!°. ”¡12‚tǽ!™†®, vî¯
â0¾¢ÍÙ¦9‰X¢°™Dúǽ!°. ¢vVÌ›¢i€õ •°™DêÝ
£½!°. (ü½vî©ù”¡5(b)®5(d)‚ÙD‰9úH†ô£Xf¦©§™¥ú¦
y¢°.)
g˜‘ü(Jacobi) “ªô ™cåúÃ%. ½é4‚!™’½0úÌ Š°ü‰ùŠÄé
úu™°.
x(i+1) = −


1
3 0
0 1
6




0 2
2 0

 x(i) +


1
3 0
0 1
6




2
−8


=


0 −2
3
−1
3 0

 x(i) +


2
3
−4
3


B¦vî¯âõu Vvî©−
√
2/3X[
√
2, 1]T
v, vî©√
2/3X[−
√
2, 1]T
°. 0ù
”¡ 13(a)‚t ”¡÷¿ 5Í5 !°. 0ù A¦ vî¯â® X “ w÷T, j“V¦ 9‰ê ’‘ {
°.
”¡13(b)™˜‘ü(Jacobi) “ª¦½¶úÊsv!°. xvý½±üVtH† ™êŸ¢
i¿™ŠÄŸªú ©šX÷¿5Í5™¡ò¨¡¡ “™vî¯âÛ0qxQºÜ ™“
…•È÷¿¦©£½!°.(”¡13(c), (d), (e)). ”¡13(f)™Ü…$vèõ ©vî¯âÛ0ú”ý
v!°. 0Ûù”¡11‚tÙ†®¡¡¦vî©‚¦©deýšê¿½¶¢°.
›%™`ú ©Š Û0“vî¯â”†™D¾ê0¦v úÃTŽŸŸæ©p½0§0q
Th’¢v‘êu s¦†, ÍîÌ¢êu†™€ìúÝì8x…÷V”W°.
6 ///   (Steepest Descent) ŸŸŸªªª¦¦¦½½½¶¶¶ÛÛÛuuu
6.1 ¢¢¢¥¥¥§§§‚‚‚©©©üüüŸŸŸ
/   Ÿª¦ ½¶ú © Ÿ æ© Íx e(i)  vî© λeõ  “™ vî¯â†v  %. ” V 54
copyright c Jonathan Richard Shewchuk and VisCom Commune
19
VCTR-2006-F-002 vs¦v {™ŠªiP꟪Á(11
4
X)- –{†
, ‡ô‘‡
, î–|††
, êõ‡‡
b
[”¡ 13] b‘ü “ª¦ ½¶. (a) B¦ vî¯â0 ¡¡¦ v ¥Í #Í#!°. A¦ vî¯â® µý 0
vî¯â™ ÓV¦ 9 I¦°. (b) b‘ü Ÿª [−2, −2]T
‚t è Š [2, −2]T
‚t ½¶¢°. (c,d,e) ¡ò ¯â
e(0), e(1), e(2)(ìx Ü…v)® 0¦ vî¯â Û(bx Ü…v). (f) Ü…$ù
ü 4  ¡ò ¯â¦ vî¯â Ûú
vÇ¢°. ¡òõvÇ ™¡¡¦vî¯âÛù0¦vî©‚H†š’£½!™šê¿0‚½¶¢°.
copyright c Jonathan Richard Shewchuk and VisCom Commune
20
VCTR-2006-F-002 vs¦v {™ŠªiP꟪Á(11
4
X)- –{†
, ‡ô‘‡
, î–|††
, êõ‡‡
b
“(residual) r(i) = −Ae(i) = −λee(i)ê‹èvî¯â°. é12õÌ Š°üúuú½!°.
e(i+1) = e(i) +
rT
(i)r(i)
rT
(i)Ar(i)
r(i)
= e(i) +
rT
(i)r(i)
λerT
(i)Ar(i)
(−λee(i))
= 0.
”¡ 14™  “ª · ¢ ¥§‚ ©‚ êµ ™“õ Êu°. b x(i)™ ÍÙ¦ 9  ÏÚ  5‚ nŠ
!°. H†t54“™ÍÙ¦|îú†¿ ýÅQý°. α(i) = λ−1
e õxØ¥÷¿¦Œ¡X½¶úuú
½!°.
[”¡ 14] /  (Steepest Descent) Ÿªù ¡ò¨  #¦ vî¯â¿ vÇþ iÍ ¢¥¦ ŠÄ§÷¿ eÝ¢ ©‚
½¶¢°.
ÌΊXÛuúæ©, e(i)õvî¯â¦x̓¦÷¿vÇ©˜ T, ¢vî¯â0e‘
”p(orthonormal)q˜¢°. ÙÀC2‚t±µA ÂaiÍn ¦”pvî¯â …8¥ú’`¢
°. vî¯â™¦¦¾Ÿ¿ºi£½!ŸX‘‚¡¡¦vî¯âõe‘Ü£½!°. ©Qvî¯â
õxØ V°ü‰ùîÌ¢4ú™°.
copyright c Jonathan Richard Shewchuk and VisCom Commune
21
VCTR-2006-F-002 vs¦v {™ŠªiP꟪Á(11
4
X)- –{†
, ‡ô‘‡
, î–|††
, êõ‡‡
b
vT
j vk =



1, j = k,
0, j = k.
(17)
¡ò¨úvî¯â¦x̓¦÷¿vÇ %.
e(i) =
n
j=1
ξjvj, (18)
Xξj™e(i)¦Û»£°. é17‰é18¿Ùâ°ü¦¨5éúu™°:
r(i) = −Ae(i) = −
j
ξjvj, (19)
||e(i)||2
= eT
(i)e(i) =
j
ξ2
j , (20)
eT
(i)Ae(i) = (
j
ξjvT
j )(
j
ξjλjvj)
=
j
ξ2
j λj, (21)
||r(i)||2
= rT
(i)r(i) =
j
ξ2
j λ2
j , (22)
rT
(i)Ar(i) =
j
ξ2
j λ3
j , (23)
é19™r(i) ‹èvî¯âÛ¦¦÷¿vÇþ½!üúÊsT, 0Û¦£™−ξjλj°. é
20‰22™†¿˜Ív†ß(Pythagoras)¦ªY°.
gÛuú©Ã%. é12‚t°üúuú½!°.
e(i+1) = e(i) +
rT
(i)r(i)
rT
(i)Ar(i)
r(i)
= e(i) +
j ξ2
j λ2
j
j ξ2
j λ3
j
r(i) (24)
¥“¦š‚tÍý™e(i)  5¦vî¯âÛ§ú —iÍα(i) = λ−1
e õxØ¥÷¿¦¢¥§‚
©‚½¶¥úÃ…°. ge(i) ¦¦©“§c(vî¯â ô¢vîXλõ “™iÍõ…•
Ã%. é24õÌ Š°üúu™°.
copyright c Jonathan Richard Shewchuk and VisCom Commune
22
VCTR-2006-F-002 vs¦v {™ŠªiP꟪Á(11
4
X)- –{†
, ‡ô‘‡
, î–|††
, êõ‡‡
b
[”¡15] / ùvî©c£°V¥«ŠÄ‚teÝ¢©‚½¶¢°.
e(i+1) = e(i) +
λ2
j ξ2
j
λ3
j ξ2
j
(−λe(i))
= 0
”¡15™“ª‹èŒ¡X÷¿©‚½¶¥úÃv!°. c(vî©0ô ŸX‘‚ÍÙù
uÍ(spherical)üqqiæX‚tè (‘q{54“(residual) u¦|îú ýÅQý°. αõ
xØ ™Dùˆ‚t®¥ô “¿α(i) = λ−1
¿xØ¢°.
” 5, a¦t¿°ôvî©…8£iÍqié÷¿α(i)õxؠ̆êvî¯âÛ0úc
£g6£½™{°. H†tXxØ£½!™“ªù‘¦ÍÊý°. €ì, é24‚5Í5!™Û½
™λ−1
j ©‚© |Xe’÷¿Ç½!°.  |Xξ2
j ™e(i)¦Û0 ÏÚÀÛ‚Íx¿æõ£Q
¢°. d‰X÷¿ ŠÄX¥°e(i)¦¥ùÛ0 ÏÚÙ™ìg¿£ šq5Ÿê¢°(üÀ–
Ù8™s¦“§). ¢î¿/ Ÿª‰Šªi€êŸªù x(rougher)†vÙô°. ŠÂ¿%‘
üŸªù߈Ì(smoother)Ú, ”î™c(vî¯âÛ0 ŠÄX¥°vq0ŸX‘°. /Â
 ‰Šªi€ê™½¡‘¶¦Ù‚t‘‘߈â¿0qéüv!“§ìg¿™ßˆÌ s¦°.
copyright c Jonathan Richard Shewchuk and VisCom Commune
23
VCTR-2006-F-002 vs¦v {™ŠªiP꟪Á(11
4
X)- –{†
, ‡ô‘‡
, î–|††
, êõ‡‡
b
[”¡16] ”¡¦£¯â™ô¢‚C“i(norm)ú™°.
6.2 ŠŠŠ½½½¶¶¶
ŠXi͂©/ Ÿª¦½¶ú˜Ÿ ²V‚C“i(energy norm) ||e||A = (eT
Ae)1/2
ú
e¦©˜¢°(”¡16úÆ). i(norm)ùîÁýi(Euclidean norm)ð°ØŸ ÑÍTqiV‚
t™ÌÎ%ß Ïi(norm)°; é8ú…•ÃV||e||Aõ/™Ü ™Ddvf(x(i))õ/™ ™D
úx½!°. i(norm)úÌ Š°üúuú½!°.
copyright c Jonathan Richard Shewchuk and VisCom Commune
24
VCTR-2006-F-002 vs¦v {™ŠªiP꟪Á(11
4
X)- –{†
, ‡ô‘‡
, î–|††
, êõ‡‡
b
||e(i+1)||2
A = eT
(i+1)Aei+1
= (eT
(i) + α(i)rT
(i))A(e(i) + α(i)r(i)) (½é12‚¦©)
= eT
(i)Ae(i) + 2α(i)rT
(i)Ae(i) + α2
(i)rT
(i)Ar(i) (½é14‚¦©)
= ||e(i)||2
A + 2
rT
(i)r(i)
rT
(i)Ar(i)
−rT
(i)r(i) +
rT
(i)r(i)
rT
(i)Ar(i)
2
rT
(i)Ar(i)
= ||e(i)||2
A −
(rT
(i)r(i))2
rT
(i)Ar(i)
= ||e(i)||2
A 1 −
(rT
(i)r(i))2
(rT
(i)Ar(i))(eT
(i)Ae(i))
= ||e(i)||2
A 1 −
( j ξ2
j λ2
j )2
( j ξ2
j λ3
j )( j ξ2
j λj)
(¨5é21, 22, 23‚¦©)
= ||e(i)||2
Aω2
, ω2
= 1 −
( j ξ2
j λ2
j )2
( j ξ2
j λ3
j )( j ξ2
j λj) (25)
Ûuùω¦’¢úü™D‚µ²!°.  |X®vî©qxQ½¶‚–³úyX™“õßæ©
n = 2i͂©d‰õîê£D°. λ1 ≥ λ2†v %. ±µA¦ßˆ3¤ƒ8½(spectral condition
number)™κ = λ1/λ2 ≥ 1¿e¦ý°. e(i)¦ŸÐŸ(vî¯â‚¦©e¦ü™•vq‚©)™èb‚
¦…XTµ = ξ2/ξ1ý°. g°üéúu™°.
ω2
= 1 −
(ξ2
1λ2
1 + ξ2
2λ2
2)2
(ξ2
1λ1 + ξ2
2λ2)(ξ2
1λ3
1 + ξ2
2λ3
2)
= 1 −
(κ2
+ µ2
)2
(κ + µ2)(κ3 + µ2) (26)
ω¦©ù/ Ÿª¦½¶šêõde Tµ®κ‚¢¥½¿”¡17‰”²•°. ”’
’¿ˆtã “šõÝ£½!°. §™e(0) vî¯â†VŸÐŸµ 0üT(Óùˆ¢), X
”’’‚tω 0ÿúǽ!°. H†t½¶ùŒ¡X÷¿Øq•°. ¢vî©c£ô °V
ƒ8½κ 1üT, X‹èω 0ý°.
”¡ 18ù ”¡ 17¦ € Š ¡¡¦ –
‚ ©¾ ™ šõ Ãv !°. 0 ò Íé0ù vî¯â
‚¦©e¦ü™•vq‚t”²€°. ”¡18(a)®18(b)™Àƒ8½õ •š°. / ùèb
Ï ”Q xØü}°V §òQ ½¶¢° (”¡ 18(a)). ” 5 ŠX÷¿ κ  À ©ú  “V Í 5h 
 úð(”¡18(b)). £¥«”¡ùÀƒ8½ ·5h“õ 6”‘X÷¿Ãv!°: f(x)™u
îÍ×õ§0T/ Ÿªùuî¦jÅúµ°° T6¦•± “q ™’× ý°. ”¡
copyright c Jonathan Richard Shewchuk and VisCom Commune
25
VCTR-2006-F-002 vs¦v {™ŠªiP꟪Á(11
4
X)- –{†
, ‡ô‘‡
, î–|††
, êõ‡‡
b
18(c)® 18(d)‚t ƒ8 ½™ ù ©t¿ ò Íéù 6¦ uÍ ý°. X ½¶ù èb‚ ‘q {
§òQØq•°.
[”¡ 17] /  (Steepest Descent) Ÿª¦ ½¶ê ω. ½¶ê ω™ µ (¡ò¨ e(i)¦ ŸÐŸ©)‰ κ (A¦ ƒ8 ½)¦
¥½°. ½¶ùµ®κ ù©X§ò°. veý±µ‚tµ = ±κX/J¦½¶úð.
κõ’½¿£X(A veüq!÷t¿), ¢³¢yXÛú ©é26µ = ±κX/ ÿúx½
!°. ”¡17‚tx‚¦©§0q“™2y¢õŸxúǽ!°. ”¡19™Íý €Ì©µÏ±µ
A‚©/t¦èbú”ýv!°. èb0ùξ2/ξ1 = ±κ¿e¦ü™xæ‚n°. ω¦’¢(/
t¦èb‚©¾)ùµ2
= κ2
¿ze¥÷¿¦üú½!°.
ω2
≤ 1 −
4κ4
κ5 + 2κ4 + κ3
=
κ5
− 2κ4
+ κ3
κ5 + 2κ4 + κ3
=
(κ − 1)2
(κ + 1)2
ω ≤
κ − 1
κ + 1
.
(27)
é27¦Ù5锡20‚”²u!°. ±µ5h’ׂ!ú½À(Œ, ƒ8½κ Á½À), / 
¦½¶šê™ÌΗ²•°. `9.2‚tÂaTj¦eÙÒ±µ°ü‰ùƒ8½õ •°V
é27n  2iÍ‚êŠY8¢¢°™Dú’`¢°.
copyright c Jonathan Richard Shewchuk and VisCom Commune
26
VCTR-2006-F-002 vs¦v {™ŠªiP꟪Á(11
4
X)- –{†
, ‡ô‘‡
, î–|††
, êõ‡‡
b
[”¡ 18]  P šg™ ”¡ 17¦ P  Š‚ ©¾ ™ “b –
õ vÇ¢°. (a)™ À κ, ù µ. (b) #h ½¶¦ š.
κ®µ c£¾°. (c) ùκ®µ. (d) ùκ®Àµ.
copyright c Jonathan Richard Shewchuk and VisCom Commune
27
VCTR-2006-F-002 vs¦v {™ŠªiP꟪Á(11
4
X)- –{†
, ‡ô‘‡
, î–|††
, êõ‡‡
b
[”¡ 19] ìx0ù /   Ÿª‚t /J¦ ½¶ú Ù èbú vÇ v !°. bxù ½¶ ‰e‚t 6X™
³q0úÃv!°. è/J¦“b‚tØq—iÍ, ”°ü³q‹è/J¦“y‚tØq•°. ¡¡¦
³q‚tj“V9(ç•Ü…v)õeÝ45ê¿pò Qý°. ŠŸtκ™3.5°.
κ = λmax/λmin,
™y/Âv/™vü(ratio)°. / Ÿª¦½¶d‰™°ü‰°.
||e(i)||2 ≤
κ − 1
κ + 1
i
||e(0)||A, ”ýv (28)
f(x(i)) − f(x)
f(x(0)) − f(x)
=
1
2 eT
(i)Ae(i)
1
2 eT
(0)Ae(0)
(½é8‚¦©)
=
κ − 1
κ + 1
2i
.
7 ŠŠŠªªª“““³³³ŸŸŸªªª
7.1 ŠŠŠªªª
/  (Steepest Descent) Ÿªù ‘‘ ”¡ 8‰  Y‚ y Ò•°Ï “³ú °è Ò•¢°. ”¢
copyright c Jonathan Richard Shewchuk and VisCom Commune
28
VCTR-2006-F-002 vs¦v {™ŠªiP꟪Á(11
4
X)- –{†
, ‡ô‘‡
, î–|††
, êõ‡‡
b
[”¡20] / ¦½¶ù±µ¦ƒ8½(condition number) ’ ¥‚H†JÜý°.
Ú ©Q ù “³¦ Ò•ú 5€qt Š  ¥ ½±£ D s¦†  5¦ Ò• “³‚ ©  ˜£ 6
ýõ ¢ ¥‚ †¿ ¤ ½ !°V Ì E“ wú«? s7q™ °ü‰ °: Íx t¿ ”p ™ Ò_ “³
d(0), d(1), · · · , d(n−1)¦š¦ú€†Ã%. ¡Ò•“³‚©tÍý™¢¥¦³q¿y6x® 6 «Ï
³q«“ êÀ ™D°. X›Å¢•±6ýõx½!°V, c(Ò•“³‚©1 ¥¦Ò•§½
± Vüv, dvn ³qó‚©‚êµ£D°.
”¡21ù•v9úÒ•“³÷¿€Ì Šz` v!°. (½e) ³q‚t™eÝ¢x1-•v®X
£X«“Ò•ú•± T, £¥«(½”) ³q‚t™Ù ™©úuQý°. e(1)d(0)®½”úsd©
Æ. õŠÜ V, ³q‚t°ü‰æXõxØ ™D°.
x(i+1) = x(i) + α(i)d(i) (29)
¢¥Ò•¢d(i) “³÷¿™ˆ÷¿Ì’Ò•›Å{êÀ Ÿæ©, e(e+1) d(i) t¿”p©˜
¢°™€ìúÌ Šα(i) ©úu¢°. ¢ƒ8úÌ Š°üéúuú½!°.
copyright c Jonathan Richard Shewchuk and VisCom Commune
29
VCTR-2006-F-002 vs¦v {™ŠªiP꟪Á(11
4
X)- –{†
, ‡ô‘‡
, î–|††
, êõ‡‡
b
[”¡21] ”p“³Ÿª. IÖQꓪùÍý y»úNv!úiÍ‚§Ì£½!°
dT
(i)e(i+1) = 0
dT
(i)(e(i) + α(i)d(i)) = 0 (½é29‚¦ Š)
α(i) = −
dT
(i)e(i)
dT
(i)d(i)
(30)
ݱ Qꓪù€ìVc{™“ª°. “ªú€Ì Šα(i)õqƒ ²Ve(i)õxs˜§ 
™Ú, e(i)õu°™Dùy©õxv!°™Dt¿‘g% y²!™’×D°.
¢‘gbú©d ²V, ”p ™Ò•“³s¦†A-”pÒ•“³ú€Ì Š˜¢°. £¯â
d(i) ®d(j) t¿A-”p™Šª(conjugate) ü²V°üƒ8ú§„©˜¢°.
dT
(i)Ad(i) = 0
”¡22 (a)™A-”p¯â qxQÙ õÊsv!°. ˜„xÈæ‚;³üq!°v’
’©Ã%. § Š Û ”¡ 22 (a)¦ jú ä3st ÍÙ Ù
¤ ÃX«“ 3s¾h°v f¡© Ã
%. ” V¯â0”¡22 (b)
¤”p ™D
¤ÃD°
”¿ÏÅu€¨ùe(i+1)®d(i) t¿A-”p(”¡23 (b))õØq˜¢°™D°. ”pƒ8ù/
copyright c Jonathan Richard Shewchuk and VisCom Commune
30
VCTR-2006-F-002 vs¦v {™ŠªiP꟪Á(11
4
X)- –{†
, ‡ô‘‡
, î–|††
, êõ‡‡
b
[”¡22] ”¡(b) ¯â¦û0”p t¿”¡(a) ¯â¦ûùA-”p°.
 Ÿª‰¥ô “¿B•“³d(i)úH†t/™búü™D‰ô °. õÝ  æ©, “³
꥽õ0÷¿£vs’®qÃ%.
d
dα
f(x(i+1)) = 0
f (x(i+1))T d
dα
x(i+1) = 0
−rT
(i+1)d(i) = 0
dT
(i)Ae(i) = 0
é30¦îꓪúÌ Š, B•“³0t¿A-”p üêÀ ™α(i)™°ü‰vÇý°.
α(i) = −
dT
(i)Ae(i)
dT
(i)Ad(i)
(31)
=
dT
(i)r(i)
dT
(i)Ad(i)
(32)
½é30‰™µýéùqƒ   °. é‚tB•¯â 54“(residual) ¯â®ô °V, 
éùdv/ Ÿª¦é‰ùDý°™b‚sd †(½é11ú÷v è¡).
“ªn ¦³qR‚xõqƒ£½!°™Dú’` Ÿæ©, ¡ò¨(error term)úB•“³0
¦x̓¦÷¿°ü‰vÇ©Ã%.
copyright c Jonathan Richard Shewchuk and VisCom Commune
31
VCTR-2006-F-002 vs¦v {™ŠªiP꟪Á(11
4
X)- –{†
, ‡ô‘‡
, î–|††
, êõ‡‡
b
[”¡ 23] Šª “³ Ÿªù n ¦ ŠÄ 4‚ ½¶¢°. (a)  ¥« ³q‚t™ qi “³ d(0)õ H† ½± ý°. e(1)
Šèd(0)‚A-”p©b¢°™g¢ƒ8úÌ Š/™bx(i)xØý°. (b) #Ÿ¡òe(0)™ç•Ü…v¿vèý
A-”p Û¦ ¦÷¿ vÇ£ ½ !°. Šª “³ Ÿª¦ ŠÄ ³q  ¢ ¥ ½±þ X¥° 0 Û |‚t  #¦
Ûò»¿g6ý°.
e(0) =
n−1
j=0
δjd(j) (33)
 X δj ©ù ¢³¢ ½¡X Ÿpõ  © uú ½ !°. B• “³0ù ’Ò A-”pt¿, dT
(k)Aõ ½é
33¦jº‚¡¡¦ˆ‚… V 5¦Ò•“³úg½¢°ôc(Ò•“³‚Âÿ ™δj ©0úg6
£½!°:
dT
(k)Ae(0) =
j
δjdT
(k)Ad(j)
dT
(k)Ae(0) = δ(k)dT
(k)Ad(k) (d ¯â¦A-”p‚¦ Šuq™)
δ(k) =
dT
(k)Ae(0)
dT
(k)Ad(k)
=
dT
(k)A(e(0) +
k−1
i=0 α(i)d(i))
dT
(k)Ad(k)
(d ¯â¦A ”p‚¦ Šuq™)
=
dT
(k)Ae(k)
dT
(k)Ad(k)
( ½é29‚¦ Šîê) (34)
copyright c Jonathan Richard Shewchuk and VisCom Commune
32
VCTR-2006-F-002 vs¦v {™ŠªiP꟪Á(11
4
X)- –{†
, ‡ô‘‡
, î–|††
, êõ‡‡
b
½é31‰34‚¦ Š, Íý™α(i) = −δ(i)úx½!°. €ìù¡ò¨‚¢”¿Ï‘búg‡
¢°. °ü½é‚tÙ†®, xõu ™Û 5 5õüs5 ™‰eùdv¡ò¨úÛ
»¿ 5fg6©5 ™D÷¿Ç½!°.(”¡23(b)õÆ)
e(i) = e(0) +
i−1
j=0
α(j)d(j)
=
n−1
j=0
δ(j)d(j) −
i−1
j=0
δ(j)d(j)
=
n−1
j=i
δ(j)d(j) (35)
n ¥¦ŠÄ5V, c(Ûg6üqe(n) = 0ý°; ’`.
7.2 ”””ŠŠŠ-ÙÙÙyyy!!!(Gram-Schmidt) ŠŠŠªªª
gA-”pB•“³÷¿Øq•š¦{d(j)}úu Ÿ§ Vý°. °±ß¥Qêõ¢³ Qf 
™“ª!™Ú“ª†¿Šª”Š-Ùy!‰e(conjugate Gram-Schmidt process)°.
n¦xÍ뢯âu0, u1, · · · , un−1õ “v!°v %. üÀð“ XxØ   Ÿ™ 
“§ •v 9ú  n ¦ xÍ ë¢ ¯â¿ V ½ !ú D°. Ò• “³ d(i)õ §0q RŸ æ© Íx uiõ
 “v£, ŠŸtY¦c(Ò•“³¯â(”¡24õÇD)®A-”p “w™c(Ûú °. °
v5tCs!™¯â †¿Y¦c(Ò•“³‰A-”pÒ•“³d(i) ý°. °ô¿ %V
d(0) = u0¿£v, i  0c(i͂©°ü‰Ò•“³¯âõu£½!°.
d(i) = ui +
i−1
k=0
βikd(k) (36)
Xβik™i  ki͂ Še¦ý°. ©0úu Ÿæ Š, δjõu£X€Ì¢D‰ô¢“ª
ú€Ì£½!°.
dT
(i)Ad(j) = uT
i Ad(j) +
i−1
k=0
βikdT
(k)Ad(j)
0 = uT
i Ad(j) + βijdT
(j)Ad(j), i  j (d ¯â0€¦A-”p‚¦ Š)
βij = −
uT
i Ad(j)
dT
(j)Ad(j)
(37)
copyright c Jonathan Richard Shewchuk and VisCom Commune
33
VCTR-2006-F-002 vs¦v {™ŠªiP꟪Á(11
4
X)- –{†
, ‡ô‘‡
, î–|††
, êõ‡‡
b
Šª“³(conjugate direction) Ÿª‚”Š-Ùy3ŠªÜ(Gram-Schmidt conjugation)ú€Ì£X¦‘
gbù ”¿Ï Ò• “³ú de Ÿ æ© Y¦ c( Ò• “³ ¯â0ú Ecý‚  “v !q˜ ¢°™
DT, Ìu5YÒ•“³úde Ÿæ©t™c£O(n3
)¦ƒ›Å °™D°. €ì³æ£
¦9¯âõ†Ö÷¿ŠªÜ(conjugation)õ½± ŠÒ•“³0úde •°V, Šª“³Ÿªùd
v Íß™6ª(”¡25)‰ô¢Dý°. d‰X÷¿Šª“³ŸªùŠªi€êŸª-Šªi€
꟪‹èŠª“³Ÿª¦¢‘ê°- 5Í5¢¢‘gõ©d£X«“6¦€Ìü“w…°.
Šª“³Ÿªú© ™Ú‚ªîXÅ™™(Šªi€êŸªê¥ô “°) ”¡25 ”¡21õ
š D‚ ݉ °™ Dú xsòý™ D°. Šª “³ Ÿªú ½±£ X(Šª i€ê Ÿªú j¥ Š),
”“ª€ìšq8(Óù¾Ÿ ºÍý) ‡¢‚tÇX”p“³(orthogonal direction) Ÿª÷¿‘gõ
v!™D‰°™DúŸr †.
[”¡ 24] £ ¯â¦ ”Š-Ùy! ŠªÜ(Gram-Schmidt conjugate). £ ¦ xÍ ë¢ ¯â u0® u1 ¯â‚t 袰.
d(0) = u(0)¿ ze¢°. ¯â u1ù d0‚ A-”p(™ conjugate) u∗
® d0‚ e± u+
£ Û÷¿ Û©þ ½ !°.
ŠªÜóA-”pÙÛ§+Qüqd1 = u∗
 ý°
7.3 ¡¡¡òòò¨¨¨¦¦¦///XXX
Šª“³Ÿªù°ü‰ù8y!™4œ!°: “ªù ¥¦³q‚tÒ• Ìý©æR‚t
/x¦©õu¢°. Ò•´Ìý–‹q7«? span{d(0), d(1), · · · , d(i−1)}™Ò•¯âd(0), d(1), · · · ,
d(i−1)‚¦©fü™i-òÙÙÛ‡¢TõDi†vvÇ %. e(i) ©ùe(0) + Di¿ÙâxØþ½!
°. ŠŸ‚t ™“/x¦©”†™Qˆáy«? Šª“³Ÿª/x¦©õü™°™DùŸª
e(0) + Di¦ÙÛ‡¢R‚t©úxØ£X||e(i)||A©/™ ü™©úxØ¢°™D°(”¡26ú
Æ). €ì qi ¡%0ù ÙÛ ‡¢ e(0) + Di R‚t ||e(i)||A ©ú /™Ü¥÷¿¦ Šª i€ê (conjugate
gradient) îꠟꢰ.
ô¢ “ª÷¿ ¡ò¨ ‹è B• “³¦ xÍ ƒ¦÷¿ vÇþ ½ !÷T(½é 35), ¡ò¨¦ ‚g“
i(norm)ù°ü‰ù¦ƒvÇ÷¿5ÍU½!°.
copyright c Jonathan Richard Shewchuk and VisCom Commune
34
VCTR-2006-F-002 vs¦v {™ŠªiP꟪Á(11
4
X)- –{†
, ‡ô‘‡
, î–|††
, êõ‡‡
b
[”¡25] 9“³³æ¯âõ€Ì¢Šª“³Ÿªù Íß™6ª(Gauss Elimination)÷¿êN²u!°.
||e(i)||A =
n−1
j=i
n−1
k=i
δ(j)δ(k)dT
(j)Ad(k) (½é35‚¦©îê)
=
n−1
j=i
δ2
(j)dT
(j)Ad(j) (d ¯â¦A-”p‚¦ Šîê)
¦ƒ(summation) vÇé‚!™c(¨ùs”€Ìü“wùÒ•“³‚§‘üq!°. e(0) + Di
ÙÛ‡¢‚txØý¦¦°ô¯âe™¦ƒvÇéúÝ6°úX5Í5™D‰ô¢¨0ú u
˜ T, ™dve(i) Šè/™‚g“i(norm)ú •°™Dú’`¢°.
½éú  © /Xú ’` •÷¦, i ”‘X÷¿ õ ©£ ½ !êÀ ©Ã%. Šª “³ Ÿª
¦ z ‰eú è¡X÷¿ vÇ£ ½ !™ /x¦ “ªù ”¡ 22®  Íý  z ™ ‡¢‰ “šq
8(stretched)” ‡¢út¿üp ™D°. ”¡27 (a)®27 (c)™Šª“³ŸªR2
‡¢‰R3
‡¢‚t
qxQ ô ™“õ Êsv !°;  ”¡‚t t¿ ½”÷¿ Ù x0ù t¿ ”p(orthogonal)¢°.
ŠV‚, ”¡27(b)®27(d)‚t™ô¢”¡úvî¯â9úH†š²ÍÙÍ5vxuÍ(spherical)
üêÀ¢D°. ”¡‚t½”÷¿Ã™x0ùt¿A-”p°.
”¡27(a)úÃVŠª“³Ÿª#Ÿ8eXx(0)‚tè T, Ò•“³d(0)õÌ Š¢³q
ô Š°ü8eXx(1) b‚t98v!°. X”¿Ï¡ò¯âe(1)™Ò•“³d(0)‰A-”p°. 
copyright c Jonathan Richard Shewchuk and VisCom Commune
35
VCTR-2006-F-002 vs¦v {™ŠªiP꟪Á(11
4
X)- –{†
, ‡ô‘‡
, î–|††
, êõ‡‡
b
[”¡26] ”¡‚tq¨Q©•–‹e(0) + D2 = e(0) + span{d(0), d(1)}°. ÍÙù‚C“i(norm)e¢
©ú™5vx°. £³q ½±ý, Šª“³Ÿªùe(0) + D2 ’‚t||e(i)||A ©/™ ü™be(2)õüQ
ý°.
©Qüùx(1)qxQÙÛ‡¢x(0) + D1‚t/™b†™DúÃ6£½!ú«? »ù”¡27(b)‚5
Í5!°: e(1)®d(0) t¿A-”pŸX‘‚ŠŸÃ™šq8‡¢(stretched space)‚t£¯â ½
”úØv!°. ‚ ¯âe(1)ùô¢‚g“i(norm)¦¡òõ™(Œ, ô¢||e||Aõ “™) 5v
x0úvÇ ™ôîÙ0¦Š“ö°. H†tÙÛ‡¢x(0) +D1†¿x1nŠ!™ôîÙ-Œ, x(1)‰
ô¢ ‚g“ i(norm)¦ ¡òõ ™ 5vx-‚ c ™ ceV üT X  ceV‰ 5vx c ™
“b†¿x(1)°.
Dù €ì ”ý g‰§¢ ù s¦°; y 7.1 `‚t …•Æ †® , Ò• “³‰ ¡ò¨ t¿
A-Šª†™€ìdvÒ•“³úH†fõ/™ÜèÅ™D(H†t||e||Aõ/™ÜèÅ™D)‰ô 
°. ” 5Šª“³Ÿª£¥«³qõ½± Š£¥«Ò•“³d(1) “³÷¿||e||Aú½±¢‚
êŠY8||e||A Y‚€Ì°ÏÒ•“³d(0) “³‚t/™î“ý°™DúqxQÃ6£½!
ú«? i ¥¦ŠÄú½± v5V, qxQf(x(i)) ÙÛ‡¢x(0) + Di Y‚t/™Üþ½!™D«?
d(0)®d(1)™t¿A-”pŸX‘‚”¡27(b)‚t½”÷¿§8°. ŠŸtÒ•“³d(1)©xõ³
¢°Dù`–¢Ú, ”î™d(0) ¯â xõ|î÷¿ vx(1)õ“5™Ù‚©x(1)‚tc ŸX‘
°. ˆòÙšg™õÌÎ0Êu°. ”¡27(c)®27(d) ¡¡‚™|îù£¦ÍÙý ”²
u !°. x(1)™ ½Ù ÍÙ æ‚ nŠ !v, x2)™ RÙ ÍÙ‚ nŠ !°. 0 ”¡ú ƒî8 …• Æ:
eVx(0) + D2™ÀÍÙú ‰ T%òv!÷T, eVùRÙÍÙ‰x(2)‚tc ™eVý°. ©
x™eVs’¦ÍÙ¦|î‚!°.
”¡27(c)õÃVˆt¦—‘ú°èv½!°. §Š Û‰R x(1) æX‚t!™ÚÙÛ‡¢
copyright c Jonathan Richard Shewchuk and VisCom Commune
36
VCTR-2006-F-002 vs¦v {™ŠªiP꟪Á(11
4
X)- –{†
, ‡ô‘‡
, î–|††
, êõ‡‡
b
[”¡ 27] Šª “³ Ÿª¦ /X. (a) òÙ ‘g. ½”÷¿ §#™ x0ù t¿ ”p(orthogonal)¢°. (b)
“šq(stretched)” ‡¢‚t vÇý ô¢ ‘g. ŠŸt ½”÷¿ §#™ x0ù t¿ A-”p°. (c) ˆòÙ ‘g,
xõ |î÷¿  ™ £ ¦ ôî ÍÙ  Ãv !°. ”x x(0) + D1ù ½Ù ÍÙ‚ © x(1)b‚t c¢°. eV
x(0) + D2™4ÙÍق©x(2)b‚tc¢°. (d) ˆòÙ‘gõšq‡¢(stretched space)÷¿¦húXcå.
copyright c Jonathan Richard Shewchuk and VisCom Commune
37
VCTR-2006-F-002 vs¦v {™ŠªiP꟪Á(11
4
X)- –{†
, ‡ô‘‡
, î–|††
, êõ‡‡
b
x(0) + D2 ’ú@q°¦Vt¡ò¦i(norm) ||e||õ/™¿£½!™†÷¿ô ²v¢°v e %;
”¢ÚÍý °©½!™†ùÒ•†³d(1)‚t«q@½ {°. §™Ò•“³d(1)/™bú†
¿ ýÅv!°VÍý¦dvõµ£½!°. Ò•¯âd(1)/™búy6 ýÅv!°vÃ6
£½!™î !™ ?
”¡27(d) ”»úÊu°. d(1)d(0)‚ ŠA-”pt¿, ”¡‚tt¿½”÷¿§5v!
°. gŠ ÛeVx(0) + D2‚eV¢6¦‘D
¤f¡ vs’õ°Ã%; XÃQ
ü™6Vù”¡27(b)®ô£D°. bx(2)ù‘¦|îþDv, bx™‘¦s’Å‚!Qü
™Ú, ”æX™x(2)‚t½”÷¿y6s’¿R²¢æX þD°. d(1)‰d(0)½”÷¿§5v!÷
t¿, Ò•“³d(1)™eÝ8x(2)õ³ QüT, x(2)™eVx(0) + D2 ’‚!™b0 ÏÚ©x‚ 
6 «ÏbþD°. eVx(0) + D2™x(2) nŠ!™u‚c ™eV°. ŠŸtƒ¥«³qõ½
± QüV, D2®A-”p ™“³÷¿Ó”Šx(2)‚t©x¿y6R² QþD°.
”¡ 27(d)‚t ˆá  §q“™“õ © ™  °ô “ªù Š Û %ê © x‚ tt ÙÛ ‡¢
x(0) + Di‚t§Ó”êÀg¢üq!™uâú÷¿3s¾Ÿv!°v’’ ™D°. ³q¥°
Ý6 ™ÙÛ‡¢(expanding subspace) D¦òÙ 5fšq5v, X¥°uâùƒšfÌŠ Û 
«° ¤½!êÀ%î¿×—D°. g‡¢úé” r²”¡27(b)
¤ÃQ§0V”D†
¿Šª“³Ÿªý°.
Šª “³ Ÿª¦ °ô |Å¢ 4 0 ”¡‚ 5Í5 !°. Íý™ ¥¦ ½± ³q‚t #e
V(hyperplane) x(0) + Di x(i) nŠ!™ÍÙ‚c Qý°™Dú…•Ã…°. 4 `‚z`¢†®
¦¦b‚t “™54“(residual)™“bú“5™ÍÙvV‰”p¢°™€ìúŸr †. D
ùdvr(i) Di®”p¢°™Dú¦y¢°. õ½¡X÷¿ÃŸæ©é35‚−dT
(i)Aõ¡¡¦jº
ˆ‚…©Ã%.
−dT
(i)Ae(i) = −
n−1
j=i
δ(j)dT
(i)Ad(j) (38)
dT
(i)r(j) = 0, i  j (d-¯â¦A-”p‚¦ Š.) (39)
¨5éù°ô“ª÷¿îꣽê!°. Ò•“³‚©¢¥¦³qõ½± v5Vˆ÷¿Ì
’ù”“³÷¿Ò•£›Å {°™€ìú’Ÿ %; ¡ò¨ùY¦c(Ò•“³‚©¨’A-”
pT, r(i) = −Ae(i)t¿54“(residual)™Y¦Ò•“³‰sg5”p ý°.
Ò•“³u ¯â0úÌ Š§0q€÷t¿, u0, · · · , ui−1 f ™ÙÛ‡¢†¿DiT, 5
4“(residual) r(i)™ ¢Yu¯â®”p¢°(”¡28úÆ). Dù½é36‰r(j)¦RXúD Š
’`£½!°.
copyright c Jonathan Richard Shewchuk and VisCom Commune
38
VCTR-2006-F-002 vs¦v {™ŠªiP꟪Á(11
4
X)- –{†
, ‡ô‘‡
, î–|††
, êõ‡‡
b
dT
(i)r(j) = uT
i r(j) +
i−1
k=0
βijdT
(k)r(j) (40)
0 = uT
i r(j), i  j (½é39‚¦ Š) (41)
ˆ÷¿ €Ìþ ¨5é  5 Ì !™Ú.  ¨5éù ½é 40(”ýv ”¡ 28)÷¿ Ùâ uú ½ !™ °
ü‰ùé°.
dT
(i)r(i) = uT
i r(i). (42)
[”¡ 28] Ò• “³ d(0)® d(1) ¯â u0, u1õ Ì Š §0q€÷t¿, 0ù ô¢ ÙÛ‡¢ D2(ç• –‹)õ
f¢°. ¡ò¨ e(2)™ D2‚ A-”pT, #4“(residual) r(2)™ D2® ”p°. °ü ŠÄú æ« ”¿Ï Ò• “³
d(2)ù“š«“¦Ò•“³¯â0¿fü™ÙÛ‡¢D2‚A-”p êÀ(u2õÌ Š) §0q•°. d(2)õf£
Xu2õ “v”Š-Ùy!ŠªÜõXÌ Šf ŸX‘‚, d(2)®u2¦b0ùD2‚e±¢eV‚nŠ!°.
 `ú )÷Vt ¢  “ Ì s›£ Dù /   Ÿªú €Ì£ X® ¥ô “¿ Šª “³ Ÿª
‹è ±µ-¯â … Ÿ ƒú ŠÄ 蟥° ¢ ¥§  êÀ £ ½ !°™ b°. õ æ©t™ 54
“(residual)úqƒ£X°ü‰ùbÜéú€Ì Š˜¢°.
r(i+1) = −Ae(i+1)
= −A(e(i) + α(i)d(i)
= r(i) − α(i)Ad(i) (43)
8 ŠŠŠªªªiiiPPPêêê(conjugate gradient) ŸŸŸªªª
Šª i€ê Ÿªú °Ø™ ˜‚t Šª i€ê Ÿª‚ ¢ RÌ “š«“ê s›ü“ w™ D ’£
D“§, ›Å¢c(6X g@€°. €ìŠªi€êŸª†™DùŠª“³Ÿª‰ô¢Ú,
³“Ò•“³ú§0X54“(residual)õŠªÜ Š§(°™D°(Œ, ui = r(i)¿ze¢°).
copyright c Jonathan Richard Shewchuk and VisCom Commune
39
VCTR-2006-F-002 vs¦v {™ŠªiP꟪Á(11
4
X)- –{†
, ‡ô‘‡
, î–|††
, êõ‡‡
b
 ¢ xØ “ªù в  “ î¿ ¦ýX°. Íx /   Ÿª‚t 54“(residual)ú €Ì ™
D 0 ô°÷¦ Šª i€ê Ÿª‚t™ €Ì “ q£ î  {°. ¦«, 54“(residual)ù Y¦ Ò
• ¯â® ”p¢°™ ”ù 4ú  “v !°(½é 39). H†t 54“(residual) ¯â  0¯â  s¦†V
¨’Y¦Ò•“³‚xÍ뢔ҕ“³úf£½ !°. 54“¯â 0 ¯âiÍ™”%
¿© uq•iÍt¿‘g ü“w™°. 5|‚ÃQüW“§, 54“(residual)ú€Ì ™Ú‚™
ÌΦýXî …8¢°.
54“ ¯âõ €Ì ™ D qi ¦yõ  “™“ f¡© Ã%. Ò• ¯â0 54“(residual)ú Ì
 Š§0q“ŸX‘‚, 54“¯â0f ™ÙÛ‡¢, Œspan{r(0), r(1), · · · , r(i−1)}ùDi®ô 
°. ¢ ¡¡¦ 54“(residual)™ Y B• “³‰ ”pt¿ Y¦ 54“ ¯â c£®ê ‹è ”p¢
°((”¡29 ÷ƒ). H†t½é41ù°ü‰°èvÇý°.
rT
(i)r(j) = 0, i = j (44)
43‚t0y¿Ï€ìù¡¡¦”54“(residual) r(i) Y54“(residual)®Ad(i−1)¦x̓¦
†™D°. d(i−1) ∈ Diú’Ÿ V, €ìùdv¡¡¦”¿ÏÙÛ‡¢Di+1YÙÛ‡¢Di®
ÙÛ‡¢ADi¦¦÷¿Ùấý°™D°.
D(i) = span{d(0), Ad(0), A2
d(0), · · · , Ai−1
d(0)}
= span{r(0), Ar(0), A2
r(0), · · · , Ai−1
r(0)}.
ÙÛ‡¢ú¾ ¿’ÙÛ‡¢(Krylov subspace)†v ™Ú, Dù 5¦¯â‚qi±µúŠ
ÄX÷¿XÌ Šf£½!°. ‡¢ù Í”ù4ú “v!°: ADi Di+1‚j¥üq!v,
°ü54“ri+1‰Di+1‰”p t¿(½é39), ri+1Di‰A-”põÚ°™€ìúx½!°. ri+1
d(i)õg½¢Y¦c(Ò•“³‰yA-”põØv!ŸX‘‚”Š-Ùy3dªÜz¢³©
“™D°!
½é37‚5Í5™”Š-Ùy3’½ βij = −uT
i Ad(j)/dT
(j)Ad(j)ú’Ÿ %; éú¢œ Q§0
qÃ%. Íx½é43‰riúRX V°ü‰ùd‰õu™°.
copyright c Jonathan Richard Shewchuk and VisCom Commune
40
VCTR-2006-F-002 vs¦v {™ŠªiP꟪Á(11
4
X)- –{†
, ‡ô‘‡
, î–|††
, êõ‡‡
b
[”¡29] Šªi€êŸª‚t, ³q‚t”¿u©“™#4“(residual)™Y¦³q‚t#Í.Ï#4“(residual)
ˆ£‚Â Š”pT, ”ÄQxØü™Ò•“³ùY¦c(#4“®Ò•“³‚©A-”p üêÀ§0q•°.
(Ò• “³ù #4“ ¯âõ Ì Š §(°). r(2)® d(2)¦ bù D(2)(q¨Q ”²• ÙÛ‡¢)® e±¢ eV‚ nŠ
!°. Šªi€êŸª‚td(2)™r(2)®d(1)¦x̓¦°.
rT
(i)r(j+1) = rT
(i)r(j) − α(j)rT
(i)Ad(j)
α(j)rT
(i)Ad(j) = rT
(i)r(j) − rT
(i)r(j+1)
rT
(i)Ad(j) =



1
α(i)
rT
(i)r(i), i = j,
−1
α(i−1)
rT
(i)r(i), i = j + 1, (é44‚¦ Š)
0, ”½¦iÍ.
∴ βij =



1
α(i−1)
rT
(i)r(i)
dT
(i−1)
Ad(i−1)
, i = j + 1
0, i  j + 1, (é37‚¦ Š.)
¥Á
¤ÂÙÛ¦βij ¨ù€†u£¹°. g”¿Ï¯â A-”p üêÀ Ÿæ©Ì’Y
‚€Ì°ÏÒ•¯âúc£õW6£›Å {°.  ¢|Å¢6bŠªi€êŸª¦|Å¢b
T, ŠÄ臢Ä3ê®è¢Ä3êV‚tO(n2
)‚tO(m)¿§™ý°. XmùA¦0s¨Û¦
½°. gÙâ5™β(i) = βi,i−1¦9™Í÷¿vŸ£D°. ˆÌ¢œ8§0V°ü‰°.
β(i) =
rT
(i)r(i)
dT
(i−1)r(i−1)
(½é32‚¦ Š)
=
rT
(i)r(i)
rT
(i−1)r(i−1)
(½é42‚¦ Š)
g“š«“z`¢RÌc£cs 5¿eý©Ã%. Šªi€êŸªˆ°ü‰°.
copyright c Jonathan Richard Shewchuk and VisCom Commune
41
VCTR-2006-F-002 vs¦v {™ŠªiP꟪Á(11
4
X)- –{†
, ‡ô‘‡
, î–|††
, êõ‡‡
b
[”¡30] Šªi€êŸª
d(0) = r(0) = b − Ax(0), (45)
α(i) =
rT
(i)r(i)
dT
(i)Ad(i)
(½é32®42‚¦ Š) (46)
x(i+1) = x(i) + α(i)d(i), (47)
r(i+1) = r(i) − α(i)d(i),
β(i+1) =
rT
(i+1)r(i+1)
rT
(i)r(i)
(48)
d(i+1) = r(i+1) + β(i+1)d(i) (49)
”¡ 30ù Šª i€ê Ÿªú Íý  €Ì v !™ šg‚ X̰ú X¦ uQ ü™  ú Ês
v !°. €ì  Ÿª‚t 5Í5™ ŸÐŸ(gradient)™ t¿ Šª  s¦Ÿ X‘‚ “Šª i€ê(conjugate
gradient)”†™Ìq™°™0qýD†v£½!°. ŸªùŸÐŸõŠªÜ ŠÒ•“³úuŸX
‘‚“ŠªÜýŸÐŸ(conjugated gradient)” Ÿª†v ™DÌeÝ¢vǰ.
9 ŠŠŠªªªiiiPPPêêꦦ¦½½½¶¶¶ÛÛÛuuu
Šª i€ê™ n ¥¦ ŠÄ ó‚ °Òý°. ”©°V Šª i€ê Ÿª¦ ½¶ Ûu‚ · ‘îú £q˜ £
copyright c Jonathan Richard Shewchuk and VisCom Commune
42
VCTR-2006-F-002 vs¦v {™ŠªiP꟪Á(11
4
X)- –{†
, ‡ô‘‡
, î–|††
, êõ‡‡
b
«? ìg¿  Ÿªú XÌ V Ùô™½b Ф¡ ¡ò X‘‚ 54“(residual) bb ÙeÝ©“T, £¡
¡ò(cancellation error) X‘‚Ò•¯â0€¦A-”pbb’ìý°. Ф¡¡ò‚¦¢‘g™/
 Ÿª‚t©d¢†®°Û½!“§, £¡¡ò‚¦¢‘g™ÖQ©d£½!™‘g s
¦°.
¤¡ò‚¦©Ò•¯â0€¦Šª·q“™‘gX‘‚1960‘ @X«“½¡
q™Šªi€êŸª‚‘îú£“w…÷T, 1970‘‚0qtŠÄú ©©õu ™“ª÷¿¦
Šªi€êŸªî‰X†™d‰ Œvýó‚˜ü¿t°è‘îú‹Qý°.
è¢% Šªi€ê‚¢b©êº°°. ¡š@Šªi€ê ìg¿XÌü™‘g™”¾Ÿ 
gˆ5vtn ¥¦ŠÄ½±Ý  ¢iÍ ÂÙÛŸX‘‚, ½¶Ûu|Å¢¦yõ •°. ½
¶ÛuùÙô™½b¡òõ¦Ÿæ¢Ds5†, eÝ¢xvý÷¿©d£½{™‘g0‚©Š
ªi€êŸªîÌ °™bú’` Ÿæ¢D°.
Šªi€êŸª¦¥«ŠÄ³q™/ Ÿª¦¥«ŠÄ³q®ô °. H†t6.1 `
¦RÌú”Â¿Ì ŠŠªi€êŸª³¢¥¦ŠÄ§‚½¶ ™ƒ8úz`£½!°.
9.1 °°°¹¹¹¢¢¢°°°¨¨¨ééévvvòòòŸŸŸ
Šªi€êŸª¦¡³q‚t, ©e(i)™e(0) + Di¿ÙâxØüv, XDi™°ü‰ùÙÛ‡¢ú
y…•Ã…°.
Di = span{r(0), Ar(0), A2
r(0), · · · , Ai−1
r(0)}
= span{Ae(0), A2
e(0), A3
e(0), · · · , Ai
e(0)}.
®ù¾ ¿’(Krylov) ÙÛ‡¢ù¢ “ŸÛ”ù4ú •°. veýi‚©, ¡ò¨ù°
ü‰vÇý°.
e(0) =

I +
i
j=1
ψjAj

 e(0)
q½ ψj™ © α(i), β(i)® ‘qüT, eÝ¢ ‘qù ŠŸt |Å “ w°. |Å¢ Dù 7.3‚ 5® !™
’`, Œ, Šªi€êŸª||e(i)||Aõ/™Ü ™q½ψjõxØ¢°™€ì°.
æ é‚t ’Òu¦ vÇù °¨é÷¿ vÇþ ½ !°. Pi(λ)õ ò½ i¦ °¨é†  %. Più %
¿ ©5 ±µ ¤ ½ !÷T, 0ù ô Q qƒý°. šõ 0q, § P2(λ) = 2λ2
+ 1†v  V,
P2(A) = 2A2
+ I ý°.  ¢õ !™vŸªùPi(A)v = Pi(λ)v(Av = λv, A2
v = λ2
v, · · · .)®
vî¯â‚tîÌ °.
§Pi(0) = 1üêÀ ²v V, ¡ò¨ù°ü‰vÇþ½!°.
e(i) = Pi(A)e(0),
copyright c Jonathan Richard Shewchuk and VisCom Commune
43
VCTR-2006-F-002 vs¦v {™ŠªiP꟪Á(11
4
X)- –{†
, ‡ô‘‡
, î–|††
, êõ‡‡
b
Šªi€êŸªùψj q½õxØ£X, °¨éúxØ¢°. °¨éúe(0)‚XÌ£X¦î‰‚©
ƒ€ %. / Ÿª¦Ûu‚t®¥ô “¿, e(0)õ”p³ævî¯â0¦x̓¦÷¿vÇ¢°.
e(0) =
n
j=1
ξjvj,
”ýv°ü¦é0úqU½!°.
e(i) =
j
ξjPi(λj)vj
Ae(i) =
j
ξjPi(λj)λjvj
e(i)
2
A =
j
ξ2
j [Pi(λj)]2
λj.
Šª i€ê Ÿªù  vÇéú /™Ü ™ °¨éú ü÷T,  “ª¦ ½¶ šê™ sˆý ”sê /t
¦ vî¯â  ½¶ ™ eêð ”ú ½  {°. Λ(A)  A¦ vî©0¦ 𦆠 V ¡ò¦ ‚g“
i(norm)ù°ü‰°.
e(i)
2
A ≤ min
Pi
max
λ∈Λ(A)
[Pi(λ)]2
j
ξ2
j λj
= min
Pi
max
λ∈Λ(A)
[Pi(λ)]2
e(0)
2
A (50)
”¡31ù vî© 2® 7ú  “™ šg‚ © æ¦ vÇéú /™Ü ™ °¨éú a  “ ‘ê¦ ò
½‚ © Êsv !°. P0(0) = 1ú §„ ™ ò½ 0¦ °¨éù  5 ˆ‚ {÷T, ™ 31(a)‚t Ã
™ †®  P0(λ) = 1°. ò½ 1¦ /X °¨éù P1(λ) = 1 − 2x/9v, ”¡31(b)‚t Ç ½ !°.
P1(2) = 5/9, P1(7) = −5/9v, Šª i€ê¦ ¥« ŠÄ ó ¡ò¨¦ ‚g“i #ŸX 5/9ð ¾
“wüúx½!°. ”¡31(c)™£¥¦ŠÄóé50¦d‰ 0ÿúÊu°. Dù2ò°¨éƒ
b(P2(0) = 1, P2(2) = 0, P2(7) = 0)ú“5êÀ£½!ŸX‘°. ŠX÷¿ò½n¦°¨éùn +1¦
b0ú“5¿À§0½!÷t¿n¦t¿°ôvî©0ú½Ì£½!°.
“𫓦 f¦õ  © Šªi€êŸª n¥¦ ŠÄó‚ eÝ¢ d‰õ u™°™ Dú Ì 0 x ½ !
°: ÌÍŸ ù vî©0 …8¢°V Šªi€êŸª Ì §òQ ½¶¢°™ D‚ ¢ ’`°. ˆ¢
½u¦Ùô™½be}êõ •°v£X, eÝ¢©õqƒ Ÿæ©Åuü™ŠÄì½™ŸÊ©˜t¿
°ôvî©0¦½ ý°. (ô‘҂¢¢ “°ô  !°: x(0) A¦Ùvî¯â0‰
yA−”põØv!™iͰ. §™x(0)õY£X5Í5“w™vî¯â0ù”‚©¾ ™vî
©0‹èé50‚5Í5“wúD°. ” 5ˆtiv¢†®,  ¢vî¯â0‹èÙô™½
bФ¡¡ò‚¦©°è5Í5QþD°.)
copyright c Jonathan Richard Shewchuk and VisCom Commune
44
VCTR-2006-F-002 vs¦v {™ŠªiP꟪Á(11
4
X)- –{†
, ‡ô‘‡
, î–|††
, êõ‡‡
b
[”¡ 31] i¥¦ ŠÄú ½±¢ ó Šª i€ê Ÿª v¥# ½¶°™“™ Pi(0) = 1†™ sq• g¢ ƒ8‚t i ò
°¨éPi ¡¡vî©‚tv¥#0‚ «Ï“‚µ²!°.
vî©0 λmin‰ λmax €‚ Ý‘Y Q Ûjüq !™ Dð, ”¡31(d)®  –
‚ cŠ !™
iÍŠªi€êŸªÌÎý½·£½!üúx½!°. DùŠªi€êŸª‚té50¦©ú
Q§™°¨éúxØ ™DÌÎÑq“ŸX‘°.
§±µA¦vî©0¦4úxv!°V§ô½¶úqR™°¨éúgu£½ê!“§, Š
Ÿt™ 6ŠXiÍ, Œvî©0λmin‰λmax €‚vòQÛj v, |Äü™v½ X
q¨ù½¦t¿°ôvî©5Í5T, Ùô™½bФ¡¡ò Œf ™iÍõ e¢°.
9.2 üüüËËË’’’(Chebyshev) °°°¨¨¨ééé
¢  “ îÌ¢ c–“ªù î¢ ¦ b‚ ©t  s¦† ©æ[λmin, λmax]‚t é50ú /™Ü ™ D
°. õ½±£½!™°¨é0ùüË’(Chebyshev) °¨éúŸŠ÷¿¢°.
ò½i¦üË’(Chebyshev) °¨éù°ü‰°.
Ti(ω) =
1
2
[(ω + ω2 − 1)i
+ (ω − ω2 − 1)i
].
(é°¨é
¤Ã“w™°V, i 152i͂©qÆ.) a “üË’(Chebyshev) °
¨é0 ”¡32‚ ”²u !°. üË’(Chebyshev) °¨é0ù e¦‹ ω ∈ [−1, 1]‚t |Ti(ω) ≤ 1| 4
ú “T(€ì-1‰1¦€‚t•ô¢°), c(°¨é‚!qt|Ti(ω)|¦©ùω /∈ [−1, 1]e¦‹‚
copyright c Jonathan Richard Shewchuk and VisCom Commune
45
VCTR-2006-F-002 vs¦v {™ŠªiP꟪Á(11
4
X)- –{†
, ‡ô‘‡
, î–|††
, êõ‡‡
b
[”¡32] ò½2, 5, 10, 49¦üË’(Chebyshev) °¨é0
t/ÂXõQý°. y} “wùvÇ÷¿˜Ÿ V, |Ti(ω)|¦©”¡‚5Í5!™’%¦ˆ‚
t  ¢¢ 6§òQ’ ¢°.
½é50°ü‰ùPi(λ)õxØ¥‚¦©/™Üü™DùÙÀC3‚tz`ý°.
Pi(λ) =
Ti(λmax+λmin−2λ
λmax−λmin
)
Ti(λmax+λmin
λmax−λmin )
 °¨éù –‹ λmin ≤ λ ≤ λmax‚t üË’(Chebyshev) °¨é¦ •ô 4ú  •°(”¡33 ÷ƒ).
Ûc™ Pi(0) = 1†™ Åu€¨ú ?„ Q  T, Û%™ λmin‰ λmax €¦ u¢‚t /© 1ú  •
°. H†té50÷¿Ùâ°ü¦é¢¢°.
e(i) A ≤ Ti
λmax + λmin
λmax − λmin
−1
e(0) A
= Ti
κ + 1
κ − 1
−1
e(0) A
= 2
√
κ + 1
√
κ − 1
i
+
√
κ − 1
√
κ + 1
i −1
e(0) A. (51)
€¡Í’Òu¦£¥« ½(¤Õ, addend)™i ’ ¥‚H†0÷¿½¶¢°. H†tŠªi€ê¦½¶
ùˆÌ™¢Ù5é÷¿°ü‰vÇ ™DŠX°.
e(i) A ≤ 2
√
κ − 1
√
κ + 1
i
e(0) A (52)
copyright c Jonathan Richard Shewchuk and VisCom Commune
46
VCTR-2006-F-002 vs¦v {™ŠªiP꟪Á(11
4
X)- –{†
, ‡ô‘‡
, î–|††
, êõ‡‡
b
[”¡ 33] ŠX iÍ‚t –‹ λmin = 2® λmax = 7‚t é 50ú /™Ü ™ °¨é P2(λ).  wxù ò½ 2¦
Chebyshev °¨é¦ ¾Ÿõ ºÍ¢ D°. £ ¥¦ ŠÄ ó¦ ¡ò¨¦ ‚C“ i(norm)ù #Ÿ©¦ 0.183•õ J“
M™°. 2¦vî©§…8 ™D÷¿yN²u!Ï”¡31(c)®üp †.
Šªi€ê¦¥«³q™/ ¦¥«³q®ô °. é51‚ti = 1¿£V, / ‚‘
¢½¶d‰é28úu™°. Dù”¡31(b)‚”²•xͰ¨é¦iͰ.
”¡34™Šªi€ê¦ŠÄ¥°¦½¶‚¢êv°. ìg¿X̰úX, Šªi€ê™”ùvî
©Ûj5”ùèæX5¦îX‘‚¦iÍé52 è€ ™½¶šêð̧òQ½¶¢°.
é52®é28úüp V, Šªi€ê(conjugate gradient) Ÿª/ (steepest descent) ŸªÃ°Ì§
òQ½¶ ™°™D`Ý °(”¡35 ÷ƒ). ” 5Šªi€ê¦c(ŠÄ³q / ŸªÃ°
Ì §òQ ½¶ ™ Dù s¦°; šõ 0V, Šª i€ê Ÿª¦ ¥« ³q™ /   Ÿª¦ ¥« ³
q®ô °. é52‚t…©u!™½2‚¦©tŠªi€êŸªÙŠÄ³q‚t™¢¦šêW
 õý!Qý°.
10 ÄÄÄ333êêê
/ 5Šªi€êŸª¦¡³q‚t 6¨ùqƒè¢ú›Å¿ ™ƒù±µ-¯â…‡°.
ŠX÷¿, ±µ-¯â…‡ù±µ¦0s¨Ù™¦½õm†£iÍO(m)¦qƒè¢ú›Å¿¢°.
‘t¦1 `‚t5Žý°j¢‘g0‚tàA™2™±µvm ∈ O(n)°.
妕½¿¡ò¦¾ŸõvŸæ©?Û¢ŠÄú½± ŸõÙ¢°v e %: Œ, e(i) ≤ ε e(0) .
copyright c Jonathan Richard Shewchuk and VisCom Commune
47
VCTR-2006-F-002 vs¦v {™ŠªiP꟪Á(11
4
X)- –{†
, ‡ô‘‡
, î–|††
, êõ‡‡
b
[”¡34] ’×½¦¥½¿t¦Šªi€ê(ŠÄ¥°)¦½¶. ”¡20‰üp †.
é28ù/ Ÿªú€Ì Š¢qõ§„ Ÿæ©Åuü™/¦ŠÄì½ °ü‰üúÃ
Šu°.
i ≤
1
2
κ ln
1
,
¢–, é52‚¦ VŠªi€êŸªÅu ™/¦ŠÄì½ °ü‰°.
i ≤
1
2
√
κ ln
2
.
/ ùO(mκ)¦è¢Ä3êõ “T, Šªi€ê™O(m
√
κ)¦è¢Ä3êõ •°™dÁ°. £
xvýc£‡¢Ä3ê™O(m)°.
d−òÙ e¦‹‚t ò ÍÙ iq© ‘g0ú î¢òÛ‰ î¢Å™ª÷¿ –€£ X¦ Ä3ê™ ‘‘
κ ∈ O(n2/d
) ý°. H†t, /   Ÿªù òÙ ‘g0‚ © O(n2
)¦ è¢Ä3êõ  ““§ Š
ªi€ê™O(n3/2
)°. ¢ˆòÙ‘g0‚©/ ùO(n5/3
)¦Ä3ê“§Šªi€êŸªù
O(n4/3
)¦è¢Ä3êõ •°.
11 èè艉‰‘‘‘ÒÒÒ
ˆtz`¢/ ‰Šªi€êxvý‚t, a “ƒÙXD0fœü}°; 48, èbúqx
QxØ vsg‘Ò —a¦‘g°.
copyright c Jonathan Richard Shewchuk and VisCom Commune
48
VCTR-2006-F-002 vs¦v {™ŠªiP꟪Á(11
4
X)- –{†
, ‡ô‘‡
, î–|††
, êõ‡‡
b
[”¡35] Šªi€ê¦¢¥¦ŠÄ‚X Ÿæ©Åuü™/ ¦ŠÄì½.
11.1 èèè
è‚‘ Šz`£Dù¨“w°. §x¦©‚©œX8eX !°V, ”Dúè©x(0)¿
€Ì †. ”©“w°V, x(0) = 0÷¿£q†; xÍèßðú{™iÍ/ 5Šªi€êŸªùd
v ½¶ Q üq !°. üxÍ /™Ü(14 `‚t z`)™ Š ¦ “‹/™  …8£ ½ !v è æX¦
xØ‚H†q—/™b‚½¶£“ deüT, qiiÍ‚™½¶Øq—“”©“wú“õde 
ŸX‘‚«°¿Ï‘g ý°.
11.2 ‘‘‘ÒÒÒ
/ 5Šªi€ê /™b‚êµ£X54“(residual)™0üv, §é11548ó¦¢
¥¦ŠÄúÌ Q¢°V, Ûc 0ý°. H†t54“(residual)0üVŒèqƒ‘Òüq˜¢
°. 54“(residual)¦ bÜé Í×(47) qƒ‚t Ф¡ ¡ò  €Xü™ iÍ‚™ 54“  0 s¨Úê
0÷¿qƒþ½ !°; ‘g™é45õÌ Šqƒú”¿è¥÷¿t©dþ½!°.
à¦iͽ¶°Y8Øq“ŸY‚xvý‘ÒüŸõÙ¢°. ¡ò¨úÌ£½{ŸX
‘‚ 54“(residual)¦ ¾Ÿ  €Y‚ `èý ©  ¿ R² V ‘Ò ™ D à°; ‘‘  ©÷¿
#Ÿ54“(residual) ©‚0ðù©εú…©uùù©ú€Ì¢°. ( r(i)  ε r(0) ). šg‘™
ÙÀB‚tǽ!°.
copyright c Jonathan Richard Shewchuk and VisCom Commune
49
VCTR-2006-F-002 vs¦v {™ŠªiP꟪Á(11
4
X)- –{†
, ‡ô‘‡
, î–|††
, êõ‡‡
b
12 YYY
ýýý
Y
ý™±µ¦ƒ8½(condition number)õx Ÿæ¢Ÿª°. ±µM±µAõ–€ ™Âa
Vtj¦eÙÒ±µv, ‹±µúÖQqƒ£½!°v %. ”©°V°üéúqt¢cX÷¿
Ax = bõ½!°.
M−1
Ax = M−1
b. (53)
§κ(M−1
A) κ(A)65M−1
A¦vî©0A¦vî©0ðÌ0cŠ!°V, Ù’¦‘gð
é53¦‘g ŠÄªú ©Ì0½¶¢°. ‘g™±µM5A Âavj¦eÙÒ±µ† 
̆걵M−1
AùŠX÷¿”©“w°™D°.
ÂaTj¦eÙÒc(±µM‚©EET
= M4ú “™±µE (î¢Dùs¦“
§) …8 ŸX‘‚, q²Óù˜£½!°. (”¢±µE™ªßÅ(Cholesky) Û©®ù“ª÷¿u
£½!°.) ±µM−1
A®E−1
AE−T
™ô¢vî©0ú •°. D¢ ™î™v vî©λõ
 “™±µM−1
A¦vî¯âX, ET
v™°ü‰vî©λõ “™±µE−1
AE−T
¦vî¯â
ŸX‘°.
(E−1
AE−T
)(ET
v) = (ET
E−T
)E−1
Av = ET
M−1
Av = λET
v.
xÍèßðAx = b™°ü¦‘g¿ºÍþ½!°.
E−1
AE−T
x = E−1
b, x = ET
x,
‘g‚tÍý™Íxx‚©v5tx‚©}°. ±µE−1
AE−T
 ÂaVtj¦eÙÒŸ
X‘‚, x™ / 5 Šªi€ê‚ ¦© u£ ½ !°. Šª i€ê Ÿªú €Ì Š  ‘gõ ©d 
™‰eú“ºÞýY
ýŠªi€êŸª(Transformed preconditioned conjugate gradient method)”†Ùô
°.
d(0) = r(0) = E−1
b − E−1
AET
x(0),
α(i) =
rT
(i)r(i)
dT
(i)E−1AE−T d(i)
,
x(i+1) = x(i) + α(i)d(i),
r(i+1) = r(i) − α(i)E−1
AE−T
d(i),
β(i+1) =
rT
(i+1)r(i+1)
rT
(i)r(i)
,
d(i+1) = r(i+1) + β(i+1)d(i).
copyright c Jonathan Richard Shewchuk and VisCom Commune
50

고뇌의 고통이 없는 켤레 경사도 기법 개론(1과 1/4판)

  • 1.
    VisCom TR Series- Copyright c Jonathan Richard Shewchuk and VisCom Commune. LLLsss¦¦¦LLL   {{{™™™ŠŠŠªªªEEEPPPêê꟟ŸªªªÁÁÁ(11 4XXX) –––{{{† , ‡‡‡ôôô‘‘‘‡ , îîî–––|||†† , êêêõõõ‡‡ bbb † ôôô¡¡¡ppp, ‡ ûûûÙÙÙ¡¡¡ppp, †† ÙÙÙSSS½½½vvvqqq¡¡¡ppp, ‡‡ ÙÙÙSSS¡¡¡ppp ÅÅÅccc ŠªiPê(conjugate gradient) Ÿªù ™±µ¿vÇü™xÍèßð¦©õu ™Ú‚ 6lq ŠÄª°. ” # ݱ Qê ¨ù þ sgõ ”¡# ”‘X z`ê { °Øv !°. ¢ þ¦ f%ù“šê6“ #™êt‘uu‚t¦y{™úžq4v!°.  ¢î ¿Ÿª‚¢îê!™Ÿ X©™Ÿ(¡%¦Í“6¡úv ß¥Q©ë¢Ù`u¢…ý 3¦Yî“}°.  “§ŠªiPꓪ†™Dù¢³ Vt€u#©£½!™ÍI¢Pv ¿Øqu!°. Š Û
  • 2.
    ¤[[¢ë%†V¾Iˆ¢v ê{•н!™D°. 2òÍé¦]ú™¢, õÌ Š/ (steepest descent),Šª“³(conjugate directions), Šª iPê(conjugate gradient) Ÿªú îê£ D°. vî¯â™ b‘ü(Jacobi) Ÿª, / , Šª i P꟪#¦½¶úz` ™ÚPÌþD°. ”ývY
  • 3.
    ý(preconditioning)‰üxÍŠªiPê“ ª#j¥üq!°. ›%™Š Û˜úÖQQ ²v¨ùd³ú •°. 66¦”¡úg‡ üT,¢S‘Íצz`ù˜°°. ]ùa “t¿°ô“ª÷¿z`üv!÷TÂÙÛ¦“ eéù”‘Xz`‰¥Ùg‡ý°.1 1ÙW%- Jonathan Richard Shewchuk. Ù[g@- An Introduction to the Conjugate Gradient Method without the Agonizing Pain. Ùf [¦u™j#°WuÊç(Natrual Science and Engineering Research Council of Canada)¦1967[W6¡PzYyY¡8 ³(National Science Foundation)¦“Ù(Grant ASC-9318163)ú‹IØq€°. [t¦[bY@ÁùW%¦©6j#°W uÊç(NSERC), yY¡8³(NSF), ÓùyveÙ¦©¿‹IŠut™Ký°. 1
  • 4.
    VCTR-2006-F-002 vs¦v {™ŠªiP꟪Á(11 4 X)- –{† ,‡ô‘‡ , î–|†† , êõ‡‡ b ‘‘‘ttt‚‚‚©©© c 1994 by Jonathan Richard Shewchuk. W„™î%: ƒ5³ý
  • 5.
    Ù . ‘t™W„v蠔¿ Cs!v, ‘t¦Â ¿sˆ¢Ã’{™¢%îÄQÄ€üq•jþ½!°. ‘t™ Šª i€ê Ÿªú   ¢ ÖQ ‡Ù v òù ¡f0ú òŸ æ Š §0q€°. 5‚Q “X€¨, ½e©˜£ RÌ, ”ýv R  §rÿ qi ‘ê¦ ”‘X z`†ê ”÷¦ x² sŸ †ˆ° (jrs@cs.cmu.edu); 0 ÏÚÙ™£¥«X‚j¥þD°. 5™48‘tõ½z袂ßÌ ¢€»‚‘. ŠÄŸª‚©̨ùDú‡Ù v% ™€Š0‚Q5™éýyõþß(William L. Briggs)¦“A multigrid Tutorial” [2]ú8¢°. þù“š«“R ù½¡tX ÏÚ 60SŠ•þ°. ½X Ÿª‚ ‘© R  xv !™ D¦ ’¾ÙÛú  òsv ‘t¦ #v‚ ª !™ üeú g‡ © s}Ï ¡¥ò  Íß(Omar Ghattas)‚Q 4»¢ §€õ ÿ°. üeú © s}Ï gß ‚xá(James Epperson), Úü¡¬ ¢(David O’Hallaron), gßßGXdß(James Stichnoth), §3ª‡î(Nick Tre- fethen), ”ýv°¦…ƒŽ(Daniel Tunkelang)‚Qê§€¢°. ›Å¢ÙÛ§úú½!êÀ¡`¦’Ò¦…”’’õð: copyright c Jonathan Richard Shewchuk and VisCom Commune 2
  • 6.
    VCTR-2006-F-002 vs¦v {™ŠªiP꟪Á(11 4 X)- –{† ,‡ô‘‡ , î–|†† , êõ‡‡ b 1 qqq   ŸŸŸ ›% Šªi€ê(conjugate gradient method)ú•Ͳv°úX, 4–¦t¿°ô‘¶ú}™Ú, þ 0qiþ0“™š¦’8“wW°. ›%™þ0ú 5ê© “q°°. þ0ùÂÙÛ¢ ³ QŠªi€êõŸÁ°÷T, qg¢”‘Xz`ê{}vqxQŠªi€êŸª
  • 7.
    ü‚vuü} ™“‚¢@3(hint)ê{”Ÿª¦4úz` v!}°. ˜ù¢›%¦•`ÍÛ‚Ïf Q ü}÷T, 6òŠªi€êŸªú•Ͳ™¡f0Ԉߠϓeé×qý s¦†„Ù vÍs¢ xvýú•ÍŸõ††VtSŠ€°. Šªi€êŸªùxÍ“eé¦6¢èßðúŸæ© 6¨€Ìü™ŠÄª°.Šªi€ ꟪ù°üÍצèßð‚ssî‰X°. Ax = b (1) Xx™cò™¯âv, b™xv!™¯âTA™xv!™e“(square), Âa(symmetric), j¦e ÙÒ(positive-define) ±µ°- Óùj¦ÙeÙÒ(positive-indefinite) ±µ½ê!°. “j¦eÙÒ” ˆ |ú¦y ™“#q£¹°v£“†ê5|‚°è…•ÇD¦7e£›Å™{°. èßðù–yÛ “eé, uƒÛu, ç¿Ûu, ½¡¾g5ú©d£X‘‘5Í5™î¢òÛª(finite difference)‰î¢Å ™ª(finite element method) 5‰ù|Å¢ª‚t%s5Í8°. Šªi€êŸª‰ùŠÄ“ªù2™±µú€Ì£X‚X¦ °. A ƒ}¢iÍ‚ 6”ù“ ªùAõÛ© v‹XÞ(backsubstitution)‚¦©“eéú™D°. ƒ}¢AúÛ© ™Ú@ý™è ¢ù Â? èßðú ŠÄ©t ©d ™Ú @ý™ 袉 üæ °. ”ýv ¢¥ A  Û©üV èßðù b¦ Š ©0úæ©t§òQÃô¿½!°. ƒ}¢±µúùEcý¾Ÿõ “™ÌÀ¾Ÿ¦2™ ±µ‰ üp©Ã%. 2™±µ A¦ ˆ¡Å™(triangular factors)‚™ 0 s¨ Ù™  ŠX÷¿ Ù’¦ Aà °ýg̨°. Û©% Ecý¦¢qX‘‚Ý  £½ê!÷T袨@ ½ê!°. î“ q‹XÞú‰eŠÄŸªÃ°Ì— ½ê!°. ŠV‚ÂÙÛ¦ŠÄX“ªùEcýîñmv2 ™±µ‚©§òQô¢°. ›%™Š Ûxͽ¡ú½°°v e T, vî¯â¦vùD‚©t™0cô° v£“†ê±µ…‡‰xÍë¢5‚©t™0xv!°v e¢°. ¢ŸÆX eú†Ö÷¿ ›%™Šªi€êŸª¦qõ  ¢¢`Ÿ Qu9©5¤D°. 2 vvvŸŸŸªªª a “e¦®vŸ‚©…•ÃVtè %. copyright c Jonathan Richard Shewchuk and VisCom Commune 3
  • 8.
    VCTR-2006-F-002 vs¦v {™ŠªiP꟪Á(11 4 X)- –{† ,‡ô‘‡ , î–|†† , êõ‡‡ b ±µú vè Ÿ æ© Â‘%õ €Ì£ DT, ™‘%™ ¯âõ 5ÍR™Ú €Ìý°. ße†™ ”ýß ‘%¿v袰. A™n × n ±µvx®b™¯â, Œ, n × 1 ±µ°. ½é1ù°ü‰vÇ¢°.          A11 A12 · · · A1n A21 A22 A2n ... ... ... An1 An1 · · · Ann                   x1 x2 ... xn          =          b1 b2 ... bn          . £ ¯â¦ 4X(inner product)ù xT yv ße† ¦ n i=1 xiyiú 5ÍT°. xT y = yT x°. x® y  ” p VxT y = 0°. ŠX÷¿xT y®yT Ax®1 × 1 ±µü™vÇéùße†©÷¿D›ý°. §™c(0s¨¯âx‚©°üÙ5éú§„£X, ±µA j¦eÙÒ(positive-definite)°. xT Ax 0 (2) ŠŸtsˆ¢¦yõ—'“q¢°vì “†. “ù”°“”‘X“s¦qtj¦ eÙÒ±µ”©“wùD‰qxQ°òQÙ“© ™DÑÏs¨°. õ© Ÿ æ©t™j¦eÙÒ(positive-definite)†™D2òÍé‚qxQ–³úyX™“…•ǛŠ!°. ¥“¦÷¿(AB)T = BT AT ‰(AB)−1 = B−1 A−1 †™|Å¢ŸÆ¨5éú#“vŸr †. 3 2òòòÍÍÍééé 2òÍé(quadratic form)ù¢³8©°ü‰ùÍצße†©ú™2ò¥½°. f(x) = 1 2 xT Ax − bT x + c (3) A™±µvx®b™¯â°. ”ývc™ße†’½°. ›%™ŠŸtA ÂaXv(symmetric) j¦eÙÒiÍ, Ax = b¦©õÌ Šf(x)õ/™Ü£½!üú¢³8ò¢°. ˜¦Y‚t›%™°ü‰¢³¢ìgšg‘gõ “v°j¢“úz`£D°. A =   3 2 2 6   , b =   3 −8   , c = 0. (4) copyright c Jonathan Richard Shewchuk and VisCom Commune 4
  • 9.
    VCTR-2006-F-002 vs¦v {™ŠªiP꟪Á(11 4 X)- –{† ,‡ô‘‡ , î–|†† , êõ‡‡ b èßðAx = b ”¡1‚5Í5!°. ŠX÷¿©x™n ¦#eV(Ú¤)¦pòb°(X¡ ¡¦ #eVù ¡¡ n − 1 òÙú  •°). ‘g¦ ©™ x = [2, −2]T °. Âÿü™ òé f(x)™ ”¡ 2‚5Í8°. f(x)¦5vx¦cjù”¡3‰°. A j¦eÙÒŸX‘‚f(x)‚¦©e¦ü™v Vùj“xÍצ€Œ‰ùcj°. (‚©2è‚Ì%ƒ8z` W°) [”¡1] 2òÙxÍèßðš. ©™xÛ0¦pòb° 2ò馟П(gradient)™°ü‰e¦ý°. f (x) =          ∂ ∂x1 f(x) ∂ ∂x2 f(x) ... ∂ ∂xn f(x)          . (5) ŸÐŸ™sq•bx‚©, f(x)¦ 6À’ “³ú òÅ™¯â›°. ”¡4ù½é4 ‰ ù’½õ½é3‚ Šuq•ŸÐŸ¯âõz` v!°. €Œcj¦j“V†±‚t™ŸÐŸ  0°. f (x)‚0üêÀ¥÷¿¦f(x)ù/™Ü£½!°. °™“Ø¢zú ©½é5õ½é3‚Â Š°üúîꣽ!°. f (x) = 1 2 AT x + 1 2 Ax − b. (6) copyright c Jonathan Richard Shewchuk and VisCom Commune 5
  • 10.
    VCTR-2006-F-002 vs¦v {™ŠªiP꟪Á(11 4 X)- –{† ,‡ô‘‡ , î–|†† , êõ‡‡ b [”¡2] 2òÍéf(x)¦”’’. vV¦/WbùAx = b¦©°. [”¡3] 2òÍé¦5vx. ¡ÍÙwxùô¢f(x) ©ú™°. copyright c Jonathan Richard Shewchuk and VisCom Commune 6
  • 11.
    VCTR-2006-F-002 vs¦v {™ŠªiP꟪Á(11 4 X)- –{† ,‡ô‘‡ , î–|†† , êõ‡‡ b [”¡ 4] 2òÍé¦ ŸÐŸ f (x). c( x‚  Š, ŸÐŸ ¯â™ f(x)   6 ¾Q ’ç ™ “³ú  ýÅT 5vx‚ ”p¢°. A ÂaV“eéù°ü‰¢œÜý°. f (x) = Ax − b. (7) ŸÐŸõ0÷¿ VÍý uv% ™xÍèßð½é1úu™°. ” t¿Ax = b¦©™f(x)¦ qb(critical point)°. A Âa`§s¦†j¦eÙÒ(positive-definite)†V©™f(x)¦/™©°. H†tAx = b¦©™f(x)ú/™Ü ™xúüü÷¿¦u£½!°. (A ÂaX“w÷V½é6™Š ªi€êŸªèßð 1 2 (AT + A)x = b¦©õüQý°™DúÊsv!°. X 1 2 (AT + A)™Âa ±µ°.) Âaj¦eÙÒ±µù·©Q”ù—úv!ú«? qi¦¦bp‚t¦f®xÍèß𦠩x = A−1 b €¦‘qõ…•Ã%. ½é3ú†Ö÷¿A ÂaiÍ(±µj¦eÙÒ(positivie- definite)“‚‘q{) °ü¢¥úý!°. (ÙÀC1). f(p) = f(x) + 1 2 (p − x)T A(p − x). (8) A j¦eÙÒ(positive-definite)†v V, Ù5é2‚¦©ó%¦¨c(p = x‚©j½°. ™x f¦Y‹/™©úy¢°. copyright c Jonathan Richard Shewchuk and VisCom Commune 7
  • 12.
    VCTR-2006-F-002 vs¦v {™ŠªiP꟪Á(11 4 X)- –{† ,‡ô‘‡ , î–|†† , êõ‡‡ b j¦eÙÒ(positive-definite) ±µ‚‘¢ 6”‘X©™±µ¦2òÍéf(x) j“Vý° ™D°. A §™j¦eÙÒ s¦†V°ô  !°. A™ü¦eÙÒ þ½!™Ú™j¦ eÙÒ±µ‚©ÙÒõ†öd‰, Œ”¡2¦s’æõšqnùcjý°. A 4±µiÍ ‚™î¢© {™iͰ; ©¦š¦ù 5¦”x, Óùe¢f ©ú “™#eV(hyperplane) ý°. A  æ‚t z`¢ qi iÍê s¦†V, x™ u6b(saddle point) üT / 5 Šª i€ê Ÿª5ìg£D°. ”¡5™ ¢  0úÊsv!°. b®c¦©ùj“ͦ/™bq7 “õde¢°. ” 5j“Ícj‚™–³úyX“w™°. xÍèßðú · Ì q²× Ù ‘g¿ ºÍ£«? / ‰ Šª i€ê Ÿª 5¦ “ª0ù ”¡ 1® #eV¦ pòõ  ©t  s¦† ”¡ 2® ¥½¦ /™Üõ  © ”‘X ©     Ÿ X‘°. 4 ///   “““ªªª / “ª‚t™, qi¦bx(0)‚tè Šj“x¦…†±÷¿y uR²¢°. ©x‚?Û 8 «Qü™ƒ8ú§„£X«“¡³qx(0), x(1) · · · úD¢°.  5¦³q‚tf  6§òQ§™ ™“³úxØ¢°. “³ùf (x(i))¦ŠÂ“³°. ½é7‚ HòV, “³ù−f (x(i)) = b − Ax(i)°. ŠŸtë%0Ÿr©˜£a “e¦õ™¢°. ¡ò(error) e(i) = x(i) − x™©¿Ùâv¥57 ýpqu!5õ5ÍR™¯â°. 54“(residual) r(i) = b−Ax(i)ùeÝ¢b ©÷¿Ùâv¥5ò  !5õ 5ÍT°. r(i) = −Ae(i)ù ÖQ x ½ !v, 54“™ dv ¡òõ ±µ Aõ Ì Š b® ù ‡¢÷¿ ºÞ¢ D÷¿ Ç ½ !°. Ì |Å¢ Dù r(i) = −f (x(i))†™ DT, 54“(residula)õ /  Ÿª¦•±“³‰ùD÷¿f¡ Š˜¢°. üxÍ‘g‚t™³“ó%¦e¦úXÌ Š14` ‚t f¦¢°. ” t¿ “54“(residual)”†™ Ìqõ Q üV “/   “³”†™ ¦yõ g¤ý êÀŸr©£†. x(0) = [−2, −2]T ‚t ;Œ¢°v  e %.
  • 13.
    ü ½± ™ zù/ (steepest descent) “³ú H †t”¡6 (a)‚!™ìx’¦q7‚pq—D°. Œ, °ü‰”¿ÏqibúD£D°. x(1) = x(0) + αr(0). (9) ‘g™ “³ú H† v¥5 •±¢ †ú xØ£ D °. (Œ, qi αõ xØ£ D õ de ™ D°.) copyright c Jonathan Richard Shewchuk and VisCom Commune 8
  • 14.
    VCTR-2006-F-002 vs¦v {™ŠªiP꟪Á(11 4 X)- –{† ,‡ô‘‡ , î–|†† , êõ‡‡ b [”¡ 5] (a) j¦ eÙÒ ±µú æ¢ 2òé. (b) ü¦ eÙÒ ±µú æ¢ 2òé. (c) ±µ(”ýv j¦ ÙeÙÒ). qw¦ †±ú “#™ xÛ ©¦ š¦°. (d) ÙeÙÒ ±µ X. ©  K6 bŸ X‘‚ / ‰ Šª i€ê ŸªXÌü“M™°. 3òÙ#”’‚t™±µ‹èK6cjú —½!°. copyright c Jonathan Richard Shewchuk and VisCom Commune 9
  • 15.
    VCTR-2006-F-002 vs¦v {™ŠªiP꟪Á(11 4 X)- –{† ,‡ô‘‡ , î–|†† , êõ‡‡ b [”¡6] / “ª. (a)x(0) = [−2, −2]T ‚t;Œ©tf¦/ ¦“³÷¿¢³qõD¢°. (b) £V¦pòx ’‚ !™ b0 |‚t fõ /™Ü ™ bú ü™°. (c) j“xù £ V(2òÍé j“V‰ Ò•x “³¦ ½” eV) pò ™x°. (d) /Wb‚t¦ŸÐŸ™Y³q¦ŸÐŸ®”p¢°. copyright c Jonathan Richard Shewchuk and VisCom Commune 10
  • 16.
    VCTR-2006-F-002 vs¦v {™ŠªiP꟪Á(11 4 X)- –{† ,‡ô‘‡ , î–|†† , êõ‡‡ b [”¡ 7] Ò• ”x(ìx Ü…v)ú H† Š †‚t ŸÐŸ f õ Êsv !°. xÛæ¿ ¡ ŸÐŸ¦ – ‹è Ãv !°(bx Ü…v). ŸÐŸ ¯â™ f¦ ŸÐŸ¦ ’  “³ú #Í4v –ù Ò•xú H† ¤ X¦ ’ ñú #Í6°. Ò•x’‚tŸÐŸ Ò•x‰”p ™†‚tf /™©ú™°. [”¡8] ŠŸ, / ¦“ªù[−2, −2]T ‚t;Œ v[2, −2]T ‚t½¶¢°. copyright c Jonathan Richard Shewchuk and VisCom Commune 11
  • 17.
    VCTR-2006-F-002 vs¦v {™ŠªiP꟪Á(11 4 X)- –{† ,‡ô‘‡ , î–|†† , êõ‡‡ b ”xÒ_(line search)ù”xúH†fú/™Ü ™αõxØ ™‰e°. ”¡6 (b)™‰eúz` ¢°. ½”eV‰j“V§5™pòx榢búxØ êÀg™¢°. ”¡6 (c)™£eV¦pò ‚¦©e¦ýj“x°. j“x¦/Wb‚tα©ùv¥ ? ŸÆX yXÛú  ©, α™ “³ ꥽(directional derivative) d dα f(x(1))  0X fõ /™Ü¢°.  ©ñ(chain rule)‚ ¦©, d dα f(x(1)) = f (x(1))T d dα x(1) = f (x(1))T r(0) °. ½éú 0÷¿  v, r(0)® f (x(1))0”püQ ™α xØüq˜¢°(”¡6 (d)õÆ). £ ¯â  /™b‚t t¿ ”p  üq˜  ™ ”‘X î  !°. ”¡ 7 ™ Ò•xú H†t ° j¢ b0‚t ŸÐŸ ¯âõ Êsv !°. j“x(”¡ 6 (c)) æ¦ ¦¦ b‚t  “™ j“x ŸÐŸ ©(slope)™”b‚t¦2òÍé “™ŸÐŸ(gradient)õÒ•”xæ‚–°úX(”¡7, bxÜ… v) fŸ™¯â¦£®°. –ý¯â0ùÒ•xúH†¤Xf¦’ íúvÇ¢°. f™–ý ŸÐŸ¯â¦£ 0†-ŸÐŸ Ò•x‚”p ™†-‚t/™©ú™°. αúde Ÿæ©, f (x(1)) = −r(1)‚V°üúuú½!°. rT (1)r(0) = 0 (b − Ax(1))T r(0) = 0 (b − A(x(0) + αr(0)))T r(0) = 0 (b − A(x(0))T r(0) − α(Ar(0))T r(0) = 0 (b − Ax(0))T r(0) = α(Ar(0))T r(0) rT (0)r(0) = αrT (0)(Ar(0)) α = rT (0)r(0) rT (0)Ar(0) õc£Â©ÃV, / (Steepest Descent) Ÿªù°ü‰°. r(i) = b − Ax(i), (10) α(i) = rT (i)r(i) rT (i)Ar(i) , (11) x(i+1) = x(i) + α(i)r(i). (12) copyright c Jonathan Richard Shewchuk and VisCom Commune 12
  • 18.
    VCTR-2006-F-002 vs¦v {™ŠªiP꟪Á(11 4 X)- –{† ,‡ô‘‡ , î–|†† , êõ‡‡ b šg™”¡8‚t®½¶£X«“½±ý°. “”8”i¿‚%. ™¡¡¦ŸÐŸ  Y¦ŸÐŸ‚©”p ŸX‘‚5Í5™Ç’°. æ‚s›¢xvýù¢¥¦ŠÄX¥°£¦±µ-¯â…‡úÅu¢°. / (Steepest De- scent) Ÿª¦qƒüÌù±µ-¯â…‚¦©•Íü™Ú, °±8ê ÏÚ 5™{’½ !°. ½é12¦jº¦ˆ‚−Aú… vbúÌ V°üúu™°. r(i+1) = r(i) − αAr(i). (13) r(0)úqƒ Ÿæ©½é10ú¢¥qƒ ™DùŠè›Å “§, ”ó¦ŠÄ‚t™½é13õ qš©t €Ì£ ½ !°. ½é 11‰ ½é 13 c£‚t 5Í5™ ±µ-¯â … Arù ¢ ¥§ qƒ V ý°. é§úÌ ŠŠÄú£XfŸ™‘gbù½é13ú ©e¦ü™½Žx(i) ©÷¿Ùâqiü 5(feedback)ê{fý°™b°. H†tÙô™½bФ¡¡ê¦€X÷¿¢eÝ¢x s¦ †”–
  • 19.
    ¦qib‚½¶£½!°™D°.  ¢³bù½é10úÌ ŠsŸX÷¿eÝ¢54 “(residual)õ°èqƒ¥÷¿¦©d£½!°. / (Steepest Descent)Ÿª¦½¶‚¢ÛuY‚, Š Û0vî¯â‚¢Ý좩õ £½!êÀ2®˜£¿§“²v¢°. 5 vvvîî¯âââ(eigenvector)®®®vvvîîî©©©(eigenvalue)‚‚‚¢¢¢vvvööö ›% xͽ¡¢‰dú½¢ó‚, vî¯â(eigenvector)®vî©(eigenvalue)ˆ|“ꈓx ½ {}°. Š Û0ú òZ€ ›%õ òZ€®üæ °V, vî©“g“ ™Dú “v ‘gõ{™“ªùg¡òW“§d‘”D0êˆ|““•e÷¿” © v!•wúD°. Ý ± Qêvî¯â®v¢”‘X© {°V, Šªi€êŸª‹è© “q£D °. Š Û§™vî¯â¦v ™D0‚©Ív88 ú “v!°V`ú8glq êý°. vî¯â0ùŸÆX÷¿Ûuêu¿t€Ìý°; / (Steepest Descent) Ÿª5Šªi€êŸ ªùxvýú½± Ÿæ©vî¯âõqƒ£›Å™{°. 5.1 vvvîîî©©©gggvvvîîî? ±µ B¦ vî¯â v™ Bõ XÌ Š ºÞú  Šê “ͦ ºÜ  q5“ w™ 0 s¨ ¯â°(eÝ  QŠÂ“³÷¿ºÞü™Dùg½). v™£ º 65”“³ŠÂ þ½™!“§, ˜÷¿î“ copyright c Jonathan Richard Shewchuk and VisCom Commune 13
  • 20.
    VCTR-2006-F-002 vs¦v {™ŠªiP꟪Á(11 4 X)- –{† ,‡ô‘‡ , î–|†† , êõ‡‡ b ™wúD°. °è©, Bv = λvqiße†’½λ …8¢°. Xλ ©B¦vî©°. ¦¦ ’½α‚©, ¯âαvê‹èô¢vî©λõ™vî¯â°. ™B(αv) = αBv = λαvŸX‘ °. °è©, vî¯âõ¾Ÿõš65vŠêŠY8vî¯â°. @·êi¦˜£«? ŠÄªù‘‘Bõqi¯â‚qš©tŠÄXÌ Š©õu¢°. B  5 ¦ vî¯â‚ ŠÄX÷¿ XÌþ X, °ü £  “  ÏÚ  5¦ ’á Œf£ ½ !°. |λ| 1 i͆ V, i ˆ¢Â¿¤XBi v = λi v™0 ¯â¿½¶£D°(”¡9). |λ| 1 V, Bi v™ˆ¢Â¿v—D °(10). ¥B XÌþX¥°, ¯â™|λ|¦©‚H†v“65s“Qý°. [”¡9] v™−0.5¦vî©‚Âÿü™B¦vî¯â. i ’  V, Bi v™0‚½¶¢°. [”¡10] š‚tv™vî©2õ “™vî¯â°. i ’  V, Bi v™ˆ¢Â¿Œƒ¢°. B  Âa±µ iÍ(‘‘ ”©“ wù iÍ‚ê    °), B™ xÍX ë¢ n ¦ vî¯âõ   •°. õ v1, v2, · · · , vn† vŸ %. š¦ù î “ w°. ™ ¡ vî¯â  0 s¨ X¾¢ ’ ½§Â ¾Ÿ  ºiþ ½ !Ÿ X‘°. ¡¡¦ vî¯â™ %ê‚Q Âÿü™ vî©ú  “™Ú, õ λ1, λ2, · · · , λn¿ vè %. vî©0ù sq• ±µ‚ © î Q e¦ý°. vî©ù t¿ ù ©ú  —½ê!vt¿°õ½ê!°. šõ0q, ¨5±µI¦vî©ùc£1v, 0 ¯â s¨¦¦¯ â I¦vî¯â°. B  vî¯â  s¨ ¯â‚ XÌüV qi q@«? xͽú ©¥‚ !q Í |Å¢ Ÿ Á-`‚t òXv% ™”ŸÁ-ù 5¦¯âõ±ôx²•°ô¯â¦¦÷¿¢s ™D°. vî¯â0¦š¦{vi} Rn ¦ŸWõØ™’áúv²©Ã%(Âa±µB™xÍë¢n¦vî¯ copyright c Jonathan Richard Shewchuk and VisCom Commune 14
  • 21.
    VCTR-2006-F-002 vs¦v {™ŠªiP꟪Á(11 4 X)- –{† ,‡ô‘‡ , î–|†† , êõ‡‡ b â0ú •°). ¦¦n-òÙ¯â™0vî¯â0¦x̓¦÷¿vÇþ½!°. ¢±µ‰¯â¦ …ùÛ•ªYXÌüt¿¡¡¦vî¯â‚…©“™B¦î‰™ë¢X÷¿ƒ€£½!°. ”¡11‚t¯âx™£vî¯âv1‰v2¦¦÷¿5Í5!°. Bõx‚… ™DùBõvî¯â0 ‚ ¡¡ … Š ¦ú u ™ D‰ °. Bõ ŠÄ©t …© 5 V, Bi x = Bi v1 + Bi v2 = λi 2v2  ý°. c (v¾Ÿ 1ð÷V, Bi x™0‚½¶ú£D°. (™xúu v!™vî¯â0c£  BõŠÄX÷¿…£iÍ0‚½¶ ŸX‘°). vî©0| 5†ê1ðÀ©ú™°V, x™ˆ¢ ‚ Œƒ£ D°. D †¿ ½X©u ¡%0 ±µ¦ ߈3¤ Ši(spectral radius)‚ |Łú ÙŠ  ™î°. ±µ¦ßˆ3¤Šiù°ü‰°. ρ(B) = max |λi|, λi ùB¦vî¯â x 0‚§òQ½¶ ŸõÙ Vρ(B)ù1ðs˜ v,    VùD”°. [”¡ 11] ¯â v(ìx Ü…v)™ vî¯â0(bx Ü…v)¦ xÍ ƒ¦÷¿ vÇþ ½ !°. ® ‘ý vî© λ1 = 0.7‰ λ2 = −2 °. B  ŠÄX÷¿ XÌüV ¢ vî¯â™ 0‚ ½¶ v °ô  #™ Œƒ¢°. H†t Bi x ‹è Œƒ¢°. xÍ ë¢ n ¦ vî¯âõ °  ““ q ™ üÂa ±µw( ) …8¢°™ €ìú s›£ ›Å   !°. ù ±µ0ú Ù„ ±µ(defective matrix)†v ¢°. öù •`¢ xÍ Â½¡%0 ± µ‚ © Ù ¾¢ Xîú 0 5ÍRv !°. ’ƒ¢ z`ù ‘t‚t °ØŸ‚ gˆ Ä3 “ §, Ù„ ±µ(defective matrix)¦ ±ô 4ù ŠÜý vî¯â(generalized eigenvectors)® ŠÜý vî ©(generalized eigenvalue)õÌ ŠÛu£½!°. Bi x™0‚½¶ Ÿæ¢›Å?Ûƒ8÷¿c(Š Üývî©(generalized eigenvalues)01ðù©ú u˜¢°™ªYùŠY8îî “§, õ’ ` ™DùÌÎq²×•°. ŠŸt îÌ¢ €ìù °ü‰ °: j¦ eÙÒ ±µ¦ vî©ù c£ j°. €ìù v e ¦õÌ Š°ü‰’`£½!°. copyright c Jonathan Richard Shewchuk and VisCom Commune 15
  • 22.
    VCTR-2006-F-002 vs¦v {™ŠªiP꟪Á(11 4 X)- –{† ,‡ô‘‡ , î–|†† , êõ‡‡ b Bv = λv vT Bv = λvT v. j¦eÙÒ(positive-definite) e¦‚¦ Š, vT Bv™j°(–s¨v‚ Š). H†tλ ‹èj ½ˆ‚{°. 5.2 bbb‘‘‘üüü(Jacobi) ŠŠŠÄÄĪªª 0‚š’½¶ ™‰eús™DZu0€‚tŸõ™Ú‚êÓü™Dù“Ás¨°. ˆÌ îÌ¢ ‰eú …•Ã%: Ax = bú Ÿ æ¢ ˜‘ü(Jacobi) “ª°. ±µ A™ £ ÙÛ÷¿ Ûý(split)ý °: A¦Â¡Ûú”¿v°ôÛ0ùc£0D®Â¡xÛùc£0v°ôÛ0ùA® ùE. H†tA = D + E°. %‘ü“ªù°ü‰°: Ax = b Dx = −Ex + b x = −D−1 Ex + D−1 b x = Bx + x, where B = −D−1 E, z = D−1 b. (14) D Â¡±µt¿ÖQ‹±µúu£½!°. ¨5éù°ü‰ùbÜéú ©ÖQŠÄŸª ÷¿ºÞ£½!°. x(i+1) = Bx(i) + z. (15) sq• è ¯â x0‚ ©, ½éù ´¦ ¯â0ú f¢°. Íý™ ŠÄŸªú  © šX÷ ¿5Í5™¯â0 5 5 ”Y¦©‰üp°úX©x‚Ì «×“Ÿõ†ˆ°. x™½é15¦v eb†vÙò™Ú, ™x(i) = xXx(i+1)ê‹èx®ù©üŸX‘°. ŠŸt¦½éîê‰e Í%¦X÷¿ÃD°. €ìîê™%¦XD°. ½é14 Âê ‚x‚¢¨5éúv¥(“§0qU½!°. €ìAõŠ  “¿Ûý Ÿ§ V- Œ, 榚®°ô D® Eú xØ Ÿ§  V -  Íß-%Ý(Gauss-Seidel) “ª, 9ò š°Üª(Successive Over-Relaxation, SOR) 5ú îê£ ½ !°. X ††™ †™ Íý  xØ¢ Ûý “ª‚ ©¾ ™ B  ù ©¦ ߈3¤ Ši(spectral radius)õ™D°. ŠŸt›%™–¦’˜‘˜Ûý“ªúxØ •°. copyright c Jonathan Richard Shewchuk and VisCom Commune 16
  • 23.
    VCTR-2006-F-002 vs¦v {™ŠªiP꟪Á(11 4 X)- –{† ,‡ô‘‡ , î–|†† , êõ‡‡ b ¦¦qi¯âx(0)‚t袰v %. ¡ŠÄ‚©, Bú¯â‚XÌ¢‚zú”d‰‚Ì ¢°. ¡ŠÄ³q‚tqi§q“™ ?  5¦ ¯âõ Íý  y 0 © v !™ °ô ¯â0¦ ¦÷¿ ŠŸ™ ÙYú °è ¢ ¥ XÌ© à %. ŠÄú ©5Í5™x(i)úeÝ¢©x®¡ò¨e(i)¦¦÷¿vÇ©Ã%. ” V½é15™°ü‰ ý°. x(i+1) = Bx(i) + z = B(x + e(i)) + z = Bx + z + Be(i) = x + Be(i) ½é14‚¦©, ∴ e(i+1) = Be(i). (16) ¡ŠÄùx(i)¦“eÝ¢ÙÛ”‚–³ús“w“§(x vebŸX‘°); ¥ŠÄX¥°¡ê ³ù–³ú‹™°. ½é16õ ©`–8x½!™bùρ(B) 1iÍ‚i ˆ¢Â¿c– V¡ò ¨e(i) 0‚½¶¢°™D°. H†t#Ÿ¯âx(0)õqxQxØ —a /‘X©‚–³úyX“ q¢°. “Áx(0)õqxQxØ —a‚H†sq•´Ì¡òR‚tx‚½¶ ™Ú‚›Å¢ŠÄ콂™ –³úyXQý°.  “§”–³ù߈3¤Šiρ(B)¦–³‚ü©ýgÑ|Å T, ߈3¤Šiù ½¶¦šêõde¢°. vj B¦vî¯â0 ÏÚ 6Àvî©ú “™(Œ, ρ(B) = λj ) vî¯â† v %. vî¯â0¦x̓¦÷¿vÇý#Ÿ¡òe(0) vj¦“³÷¿Ûú •°V, Û  6—ýQ½¶£D°. B™ŠX÷¿Âaês¦v(üÀA Âa“†ê) ݰY£“êcô°.  “§˜‘ü(Jacobi) “ ª¦ ½¶šê™ ρ(B)‚ ¾Q •ÍüT, ©ù ¢ ¢ A‚ µ²!°. ݱ Qê ˜‘ü Ÿªù c( A‚©½¶ ™Dùs¦T, î“qj¦eÙÒ(positivie-definite)A‚©tê½¶ “wú½! °. 5.3 uuuXXXššš ¢“0úuX÷¿ÃŸæ©, ›%™½é4‚5Í8šõqòv¢°. 6W, vvî ¯âõü™“ª›Å °. e¦‚¦©vî©λõ “™¦¦vî¯âv‚©°ü¢¢°. copyright c Jonathan Richard Shewchuk and VisCom Commune 17
  • 24.
    VCTR-2006-F-002 vs¦v {™ŠªiP꟪Á(11 4 X)- –{† ,‡ô‘‡ , î–|†† , êõ‡‡ b [”¡12] A¦vî¯â™2òÍéf(x)‚¦©e¦ýj“V¦9“³‰X¢°. ¡¡¦vî¯â™‘ývî© XÅ!°. ¡¡¦vî©ù©¾ü™i€¦ 7ôeê‚ü»¢°. Av = λv = λIv (λI − A)v = 0. vî¯â™0 ¯â s¦°. H†tλI − A™4±µq˜¢°. H†t°ü¢¢°. det(λI − A) = 0. λI − A¦±µéú°¨é(characteristic polynomial)†Ùô°. Dùλ‚¢nò°¨é÷¿, °¨é¦–(Y)±µA¦vî©ý°. ½é4‚!™A¦4°¨éù°ü‰°. det   λ − 3 −2 −2 λ − 6   = λ2 − 9λ + 14 = (λ − 7)(λ − 2), °¨é¦–vî©t¿±µ¦vî©ù7‰2°. λ = 7Xvî¯â™°ü‰u£½! °. copyright c Jonathan Richard Shewchuk and VisCom Commune 18
  • 25.
    VCTR-2006-F-002 vs¦v {™ŠªiP꟪Á(11 4 X)- –{† ,‡ô‘‡ , î–|†† , êõ‡‡ b (λI − A)v =   4 −2 −2 1     v1 v2   = 0 ∴ 4v1 − 2v2 = 0. “eéú§„ ™¦¦© †¿vî¯â°. šõ0q, v = [1, 2]T  vî¯â°. ù“ª ÷¿vî©2‚©¾ ™vî¯â¿[−2, 1]T õu£½!°. ”¡12‚tǽ!™†®, vî¯ â0¾¢ÍÙ¦9‰X¢°™Dúǽ!°. ¢vVÌ›¢i€õ •°™DêÝ £½!°. (ü½vî©ù”¡5(b)®5(d)‚ÙD‰9úH†ô£Xf¦©§™¥ú¦ y¢°.) g˜‘ü(Jacobi) “ªô ™cåúÃ%. ½é4‚!™’½0úÌ Š°ü‰ùŠÄé úu™°. x(i+1) = −   1 3 0 0 1 6     0 2 2 0   x(i) +   1 3 0 0 1 6     2 −8   =   0 −2 3 −1 3 0   x(i) +   2 3 −4 3   B¦vî¯âõu Vvî©− √ 2/3X[ √ 2, 1]T v, vî©√ 2/3X[− √ 2, 1]T °. 0ù ”¡ 13(a)‚t ”¡÷¿ 5Í5 !°. 0ù A¦ vî¯â® X “ w÷T, j“V¦ 9‰ê ’‘ { °. ”¡13(b)™˜‘ü(Jacobi) “ª¦½¶úÊsv!°. xvý½±üVtH† ™êŸ¢ i¿™ŠÄŸªú ©šX÷¿5Í5™¡ò¨¡¡ “™vî¯âÛ0qxQºÜ ™“ …•È÷¿¦©£½!°.(”¡13(c), (d), (e)). ”¡13(f)™Ü…$vèõ ©vî¯âÛ0ú”ý v!°. 0Ûù”¡11‚tÙ†®¡¡¦vî©‚¦©deýšê¿½¶¢°. ›%™`ú ©Š Û0“vî¯â”†™D¾ê0¦v úÃTŽŸŸæ©p½0§0q Th’¢v‘êu s¦†, ÍîÌ¢êu†™€ìúÝì8x…÷V”W°. 6 ///   (Steepest Descent) ŸŸŸªªª¦¦¦½½½¶¶¶ÛÛÛuuu 6.1 ¢¢¢¥¥¥§§§‚‚‚©©©üüüŸŸŸ /   Ÿª¦ ½¶ú © Ÿ æ© Íx e(i)  vî© λeõ  “™ vî¯â†v  %. ” V 54 copyright c Jonathan Richard Shewchuk and VisCom Commune 19
  • 26.
    VCTR-2006-F-002 vs¦v {™ŠªiP꟪Á(11 4 X)- –{† ,‡ô‘‡ , î–|†† , êõ‡‡ b [”¡ 13] b‘ü “ª¦ ½¶. (a) B¦ vî¯â0 ¡¡¦ v ¥Í #Í#!°. A¦ vî¯â® µý 0 vî¯â™ ÓV¦ 9 I¦°. (b) b‘ü Ÿª [−2, −2]T ‚t è Š [2, −2]T ‚t ½¶¢°. (c,d,e) ¡ò ¯â e(0), e(1), e(2)(ìx Ü…v)® 0¦ vî¯â Û(bx Ü…v). (f) Ü…$ù
  • 27.
    ü 4 ¡ò ¯â¦ vî¯â Ûú vÇ¢°. ¡òõvÇ ™¡¡¦vî¯âÛù0¦vî©‚H†š’£½!™šê¿0‚½¶¢°. copyright c Jonathan Richard Shewchuk and VisCom Commune 20
  • 28.
    VCTR-2006-F-002 vs¦v {™ŠªiP꟪Á(11 4 X)- –{† ,‡ô‘‡ , î–|†† , êõ‡‡ b “(residual) r(i) = −Ae(i) = −λee(i)ê‹èvî¯â°. é12õÌ Š°üúuú½!°. e(i+1) = e(i) + rT (i)r(i) rT (i)Ar(i) r(i) = e(i) + rT (i)r(i) λerT (i)Ar(i) (−λee(i)) = 0. ”¡ 14™ “ª · ¢ ¥§‚ ©‚ êµ ™“õ Êu°. b x(i)™ ÍÙ¦ 9  ÏÚ  5‚ nŠ !°. H†t54“™ÍÙ¦|îú†¿ ýÅQý°. α(i) = λ−1 e õxØ¥÷¿¦Œ¡X½¶úuú ½!°. [”¡ 14] /  (Steepest Descent) Ÿªù ¡ò¨  #¦ vî¯â¿ vÇþ iÍ ¢¥¦ ŠÄ§÷¿ eÝ¢ ©‚ ½¶¢°. ÌΊXÛuúæ©, e(i)õvî¯â¦x̓¦÷¿vÇ©˜ T, ¢vî¯â0e‘ ”p(orthonormal)q˜¢°. ÙÀC2‚t±µA ÂaiÍn ¦”pvî¯â …8¥ú’`¢ °. vî¯â™¦¦¾Ÿ¿ºi£½!ŸX‘‚¡¡¦vî¯âõe‘Ü£½!°. ©Qvî¯â õxØ V°ü‰ùîÌ¢4ú™°. copyright c Jonathan Richard Shewchuk and VisCom Commune 21
  • 29.
    VCTR-2006-F-002 vs¦v {™ŠªiP꟪Á(11 4 X)- –{† ,‡ô‘‡ , î–|†† , êõ‡‡ b vT j vk =    1, j = k, 0, j = k. (17) ¡ò¨úvî¯â¦x̓¦÷¿vÇ %. e(i) = n j=1 ξjvj, (18) Xξj™e(i)¦Û»£°. é17‰é18¿Ùâ°ü¦¨5éúu™°: r(i) = −Ae(i) = − j ξjvj, (19) ||e(i)||2 = eT (i)e(i) = j ξ2 j , (20) eT (i)Ae(i) = ( j ξjvT j )( j ξjλjvj) = j ξ2 j λj, (21) ||r(i)||2 = rT (i)r(i) = j ξ2 j λ2 j , (22) rT (i)Ar(i) = j ξ2 j λ3 j , (23) é19™r(i) ‹èvî¯âÛ¦¦÷¿vÇþ½!üúÊsT, 0Û¦£™−ξjλj°. é 20‰22™†¿˜Ív†ß(Pythagoras)¦ªY°. gÛuú©Ã%. é12‚t°üúuú½!°. e(i+1) = e(i) + rT (i)r(i) rT (i)Ar(i) r(i) = e(i) + j ξ2 j λ2 j j ξ2 j λ3 j r(i) (24) ¥“¦š‚tÍý™e(i)  5¦vî¯âÛ§ú —iÍα(i) = λ−1 e õxØ¥÷¿¦¢¥§‚ ©‚½¶¥úÃ…°. ge(i) ¦¦©“§c(vî¯â ô¢vîXλõ “™iÍõ…• Ã%. é24õÌ Š°üúu™°. copyright c Jonathan Richard Shewchuk and VisCom Commune 22
  • 30.
    VCTR-2006-F-002 vs¦v {™ŠªiP꟪Á(11 4 X)- –{† ,‡ô‘‡ , î–|†† , êõ‡‡ b [”¡15] / ùvî©c£°V¥«ŠÄ‚teÝ¢©‚½¶¢°. e(i+1) = e(i) + λ2 j ξ2 j λ3 j ξ2 j (−λe(i)) = 0 ”¡15™“ª‹èŒ¡X÷¿©‚½¶¥úÃv!°. c(vî©0ô ŸX‘‚ÍÙù uÍ(spherical)üqqiæX‚tè (‘q{54“(residual) u¦|îú ýÅQý°. αõ xØ ™Dùˆ‚t®¥ô “¿α(i) = λ−1 ¿xØ¢°. ” 5, a¦t¿°ôvî©…8£iÍqié÷¿α(i)õxؠ̆êvî¯âÛ0úc £g6£½™{°. H†tXxØ£½!™“ªù‘¦ÍÊý°. €ì, é24‚5Í5!™Û½ ™λ−1 j ©‚© |Xe’÷¿Ç½!°.  |Xξ2 j ™e(i)¦Û0 ÏÚÀÛ‚Íx¿æõ£Q ¢°. d‰X÷¿ ŠÄX¥°e(i)¦¥ùÛ0 ÏÚÙ™ìg¿£ šq5Ÿê¢°(üÀ– Ù8™s¦“§). ¢î¿/ Ÿª‰Šªi€êŸªù x(rougher)†vÙô°. ŠÂ¿%‘ üŸªù߈Ì(smoother)Ú, ”î™c(vî¯âÛ0 ŠÄX¥°vq0ŸX‘°. /  ‰Šªi€ê™½¡‘¶¦Ù‚t‘‘߈â¿0qéüv!“§ìg¿™ßˆÌ s¦°. copyright c Jonathan Richard Shewchuk and VisCom Commune 23
  • 31.
    VCTR-2006-F-002 vs¦v {™ŠªiP꟪Á(11 4 X)- –{† ,‡ô‘‡ , î–|†† , êõ‡‡ b [”¡16] ”¡¦£¯â™ô¢‚C“i(norm)ú™°. 6.2 ŠŠŠ½½½¶¶¶ ŠXi͂©/ Ÿª¦½¶ú˜Ÿ ²V‚C“i(energy norm) ||e||A = (eT Ae)1/2 ú e¦©˜¢°(”¡16úÆ). i(norm)ùîÁýi(Euclidean norm)ð°ØŸ ÑÍTqiV‚ t™ÌÎ%ß Ïi(norm)°; é8ú…•ÃV||e||Aõ/™Ü ™Ddvf(x(i))õ/™ ™D úx½!°. i(norm)úÌ Š°üúuú½!°. copyright c Jonathan Richard Shewchuk and VisCom Commune 24
  • 32.
    VCTR-2006-F-002 vs¦v {™ŠªiP꟪Á(11 4 X)- –{† ,‡ô‘‡ , î–|†† , êõ‡‡ b ||e(i+1)||2 A = eT (i+1)Aei+1 = (eT (i) + α(i)rT (i))A(e(i) + α(i)r(i)) (½é12‚¦©) = eT (i)Ae(i) + 2α(i)rT (i)Ae(i) + α2 (i)rT (i)Ar(i) (½é14‚¦©) = ||e(i)||2 A + 2 rT (i)r(i) rT (i)Ar(i) −rT (i)r(i) + rT (i)r(i) rT (i)Ar(i) 2 rT (i)Ar(i) = ||e(i)||2 A − (rT (i)r(i))2 rT (i)Ar(i) = ||e(i)||2 A 1 − (rT (i)r(i))2 (rT (i)Ar(i))(eT (i)Ae(i)) = ||e(i)||2 A 1 − ( j ξ2 j λ2 j )2 ( j ξ2 j λ3 j )( j ξ2 j λj) (¨5é21, 22, 23‚¦©) = ||e(i)||2 Aω2 , ω2 = 1 − ( j ξ2 j λ2 j )2 ( j ξ2 j λ3 j )( j ξ2 j λj) (25) Ûuùω¦’¢úü™D‚µ²!°.  |X®vî©qxQ½¶‚–³úyX™“õÃŸæ© n = 2i͂©d‰õîê£D°. λ1 ≥ λ2†v %. ±µA¦ßˆ3¤ƒ8½(spectral condition number)™κ = λ1/λ2 ≥ 1¿e¦ý°. e(i)¦ŸÐŸ(vî¯â‚¦©e¦ü™•vq‚©)™èb‚ ¦…XTµ = ξ2/ξ1ý°. g°üéúu™°. ω2 = 1 − (ξ2 1λ2 1 + ξ2 2λ2 2)2 (ξ2 1λ1 + ξ2 2λ2)(ξ2 1λ3 1 + ξ2 2λ3 2) = 1 − (κ2 + µ2 )2 (κ + µ2)(κ3 + µ2) (26) ω¦©ù/ Ÿª¦½¶šêõde Tµ®κ‚¢¥½¿”¡17‰”²•°. ”’ ’¿ˆtã “šõÝ£½!°. §™e(0) vî¯â†VŸÐŸµ 0üT(Óùˆ¢), X ”’’‚tω 0ÿúǽ!°. H†t½¶ùŒ¡X÷¿Øq•°. ¢vî©c£ô °V ƒ8½κ 1üT, X‹èω 0ý°. ”¡ 18ù ”¡ 17¦ € Š ¡¡¦ –
  • 33.
    ‚ ©¾ ™ šõÃv !°. 0 ò Íé0ù vî¯â ‚¦©e¦ü™•vq‚t”²€°. ”¡18(a)®18(b)™Àƒ8½õ •š°. / ùèb Ï ”Q xØü}°V §òQ ½¶¢° (”¡ 18(a)). ” 5 ŠX÷¿ κ  À ©ú  “V Í 5h   úð(”¡18(b)). £¥«”¡ùÀƒ8½ ·5h“õ 6”‘X÷¿Ãv!°: f(x)™u îÍ×õ§0T/ Ÿªùuî¦jÅúµ°° T6¦•± “q ™’× ý°. ”¡ copyright c Jonathan Richard Shewchuk and VisCom Commune 25
  • 34.
    VCTR-2006-F-002 vs¦v {™ŠªiP꟪Á(11 4 X)- –{† ,‡ô‘‡ , î–|†† , êõ‡‡ b 18(c)® 18(d)‚t ƒ8 ½™ ù ©t¿ ò Íéù 6¦ uÍ ý°. X ½¶ù èb‚ ‘q { §òQØq•°. [”¡ 17] /  (Steepest Descent) Ÿª¦ ½¶ê ω. ½¶ê ω™ µ (¡ò¨ e(i)¦ ŸÐŸ©)‰ κ (A¦ ƒ8 ½)¦ ¥½°. ½¶ùµ®κ ù©X§ò°. veý±µ‚tµ = ±κX/J¦½¶úð. κõ’½¿£X(A veüq!÷t¿), ¢³¢yXÛú ©é26µ = ±κX/ ÿúx½ !°. ”¡17‚tx‚¦©§0q“™2y¢õŸxúǽ!°. ”¡19™Íý €Ì©µÏ±µ A‚©/t¦èbú”ýv!°. èb0ùξ2/ξ1 = ±κ¿e¦ü™xæ‚n°. ω¦’¢(/ t¦èb‚©¾)ùµ2 = κ2 ¿ze¥÷¿¦üú½!°. ω2 ≤ 1 − 4κ4 κ5 + 2κ4 + κ3 = κ5 − 2κ4 + κ3 κ5 + 2κ4 + κ3 = (κ − 1)2 (κ + 1)2 ω ≤ κ − 1 κ + 1 . (27) é27¦Ù5锡20‚”²u!°. ±µ5h’ׂ!ú½À(Œ, ƒ8½κ Á½À), /  ¦½¶šê™ÌΗ²•°. `9.2‚tÂaTj¦eÙÒ±µ°ü‰ùƒ8½õ •°V é27n 2iÍ‚êŠY8¢¢°™Dú’`¢°. copyright c Jonathan Richard Shewchuk and VisCom Commune 26
  • 35.
    VCTR-2006-F-002 vs¦v {™ŠªiP꟪Á(11 4 X)- –{† ,‡ô‘‡ , î–|†† , êõ‡‡ b [”¡ 18] P šg™ ”¡ 17¦ P Š‚ ©¾ ™ “b –
  • 36.
    õ vÇ¢°. (a)™À κ, ù µ. (b) #h ½¶¦ š. κ®µ c£¾°. (c) ùκ®µ. (d) ùκ®Àµ. copyright c Jonathan Richard Shewchuk and VisCom Commune 27
  • 37.
    VCTR-2006-F-002 vs¦v {™ŠªiP꟪Á(11 4 X)- –{† ,‡ô‘‡ , î–|†† , êõ‡‡ b [”¡ 19] ìx0ù /   Ÿª‚t /J¦ ½¶ú Ù èbú vÇ v !°. bxù ½¶ ‰e‚t 6X™ ³q0úÃv!°. è/J¦“b‚tØq—iÍ, ”°ü³q‹è/J¦“y‚tØq•°. ¡¡¦ ³q‚tj“V9(ç•Ü…v)õeÝ45ê¿pò Qý°. ŠŸtκ™3.5°. κ = λmax/λmin, ™y/Âv/™vü(ratio)°. / Ÿª¦½¶d‰™°ü‰°. ||e(i)||2 ≤ κ − 1 κ + 1 i ||e(0)||A, ”ýv (28) f(x(i)) − f(x) f(x(0)) − f(x) = 1 2 eT (i)Ae(i) 1 2 eT (0)Ae(0) (½é8‚¦©) = κ − 1 κ + 1 2i . 7 ŠŠŠªªª“““³³³ŸŸŸªªª 7.1 ŠŠŠªªª /  (Steepest Descent) Ÿªù ‘‘ ”¡ 8‰ Y‚ y Ò•°Ï “³ú °è Ò•¢°. ”¢ copyright c Jonathan Richard Shewchuk and VisCom Commune 28
  • 38.
    VCTR-2006-F-002 vs¦v {™ŠªiP꟪Á(11 4 X)- –{† ,‡ô‘‡ , î–|†† , êõ‡‡ b [”¡20] / ¦½¶ù±µ¦ƒ8½(condition number) ’ ¥‚H†JÜý°. Ú ©Q ù “³¦ Ò•ú 5€qt Š  ¥ ½±£ D s¦†  5¦ Ò• “³‚ ©  ˜£ 6 ýõ ¢ ¥‚ †¿ ¤ ½ !°V Ì E“ wú«? s7q™ °ü‰ °: Íx t¿ ”p ™ Ò_ “³ d(0), d(1), · · · , d(n−1)¦š¦ú€†Ã%. ¡Ò•“³‚©tÍý™¢¥¦³q¿y6x® 6 «Ï ³q«“ êÀ ™D°. X›Å¢•±6ýõx½!°V, c(Ò•“³‚©1 ¥¦Ò•§½ ± Vüv, dvn ³qó‚©‚êµ£D°. ”¡21ù•v9úÒ•“³÷¿€Ì Šz` v!°. (½e) ³q‚t™eÝ¢x1-•v®X £X«“Ò•ú•± T, £¥«(½”) ³q‚t™Ù ™©úuQý°. e(1)d(0)®½”úsd© Æ. õŠÜ V, ³q‚t°ü‰æXõxØ ™D°. x(i+1) = x(i) + α(i)d(i) (29) ¢¥Ò•¢d(i) “³÷¿™ˆ÷¿Ì’Ò•›Å{êÀ Ÿæ©, e(e+1) d(i) t¿”p©˜ ¢°™€ìúÌ Šα(i) ©úu¢°. ¢ƒ8úÌ Š°üéúuú½!°. copyright c Jonathan Richard Shewchuk and VisCom Commune 29
  • 39.
    VCTR-2006-F-002 vs¦v {™ŠªiP꟪Á(11 4 X)- –{† ,‡ô‘‡ , î–|†† , êõ‡‡ b [”¡21] ”p“³Ÿª. IÖQꓪùÍý y»úNv!úiÍ‚§Ì£½!° dT (i)e(i+1) = 0 dT (i)(e(i) + α(i)d(i)) = 0 (½é29‚¦ Š) α(i) = − dT (i)e(i) dT (i)d(i) (30) ݱ Qꓪù€ìVc{™“ª°. “ªú€Ì Šα(i)õqƒ ²Ve(i)õxs˜§  ™Ú, e(i)õu°™Dùy©õxv!°™Dt¿‘g% y²!™’×D°. ¢‘gbú©d ²V, ”p ™Ò•“³s¦†A-”pÒ•“³ú€Ì Š˜¢°. £¯â d(i) ®d(j) t¿A-”p™Šª(conjugate) ü²V°üƒ8ú§„©˜¢°. dT (i)Ad(i) = 0 ”¡22 (a)™A-”p¯â qxQÙ õÊsv!°. ˜„xÈæ‚;³üq!°v’ ’©Ã%. § Š Û ”¡ 22 (a)¦ jú ä3st ÍÙ Ù
  • 40.
    ¤ ÃX«“ 3s¾h°vf¡© à %. ” V¯â0”¡22 (b)
  • 41.
  • 42.
  • 43.
    VCTR-2006-F-002 vs¦v {™ŠªiP꟪Á(11 4 X)- –{† ,‡ô‘‡ , î–|†† , êõ‡‡ b [”¡22] ”¡(b) ¯â¦û0”p t¿”¡(a) ¯â¦ûùA-”p°.  Ÿª‰¥ô “¿B•“³d(i)úH†t/™búü™D‰ô °. õÝ  æ©, “³ ꥽õ0÷¿£vs’®qÃ%. d dα f(x(i+1)) = 0 f (x(i+1))T d dα x(i+1) = 0 −rT (i+1)d(i) = 0 dT (i)Ae(i) = 0 é30¦îꓪúÌ Š, B•“³0t¿A-”p üêÀ ™α(i)™°ü‰vÇý°. α(i) = − dT (i)Ae(i) dT (i)Ad(i) (31) = dT (i)r(i) dT (i)Ad(i) (32) ½é30‰™µýéùqƒ   °. é‚tB•¯â 54“(residual) ¯â®ô °V, éùdv/ Ÿª¦é‰ùDý°™b‚sd †(½é11ú÷v è¡). “ªn ¦³qR‚xõqƒ£½!°™Dú’` Ÿæ©, ¡ò¨(error term)úB•“³0 ¦x̓¦÷¿°ü‰vÇ©Ã%. copyright c Jonathan Richard Shewchuk and VisCom Commune 31
  • 44.
    VCTR-2006-F-002 vs¦v {™ŠªiP꟪Á(11 4 X)- –{† ,‡ô‘‡ , î–|†† , êõ‡‡ b [”¡ 23] Šª “³ Ÿªù n ¦ ŠÄ 4‚ ½¶¢°. (a) ¥« ³q‚t™ qi “³ d(0)õ H† ½± ý°. e(1) Šèd(0)‚A-”p©b¢°™g¢ƒ8úÌ Š/™bx(i)xØý°. (b) #Ÿ¡òe(0)™ç•Ü…v¿vèý A-”p Û¦ ¦÷¿ vÇ£ ½ !°. Šª “³ Ÿª¦ ŠÄ ³q  ¢ ¥ ½±þ X¥° 0 Û |‚t  #¦ Ûò»¿g6ý°. e(0) = n−1 j=0 δjd(j) (33) X δj ©ù ¢³¢ ½¡X Ÿpõ  © uú ½ !°. B• “³0ù ’Ò A-”pt¿, dT (k)Aõ ½é 33¦jº‚¡¡¦ˆ‚… V 5¦Ò•“³úg½¢°ôc(Ò•“³‚Âÿ ™δj ©0úg6 £½!°: dT (k)Ae(0) = j δjdT (k)Ad(j) dT (k)Ae(0) = δ(k)dT (k)Ad(k) (d ¯â¦A-”p‚¦ Šuq™) δ(k) = dT (k)Ae(0) dT (k)Ad(k) = dT (k)A(e(0) + k−1 i=0 α(i)d(i)) dT (k)Ad(k) (d ¯â¦A ”p‚¦ Šuq™) = dT (k)Ae(k) dT (k)Ad(k) ( ½é29‚¦ Šîê) (34) copyright c Jonathan Richard Shewchuk and VisCom Commune 32
  • 45.
    VCTR-2006-F-002 vs¦v {™ŠªiP꟪Á(11 4 X)- –{† ,‡ô‘‡ , î–|†† , êõ‡‡ b ½é31‰34‚¦ Š, Íý™α(i) = −δ(i)úx½!°. €ìù¡ò¨‚¢”¿Ï‘búg‡ ¢°. °ü½é‚tÙ†®, xõu ™Û 5 5õüs5 ™‰eùdv¡ò¨úÛ »¿ 5fg6©5 ™D÷¿Ç½!°.(”¡23(b)õÆ) e(i) = e(0) + i−1 j=0 α(j)d(j) = n−1 j=0 δ(j)d(j) − i−1 j=0 δ(j)d(j) = n−1 j=i δ(j)d(j) (35) n ¥¦ŠÄ5V, c(Ûg6üqe(n) = 0ý°; ’`. 7.2 ”””ŠŠŠ-ÙÙÙyyy!!!(Gram-Schmidt) ŠŠŠªªª gA-”pB•“³÷¿Øq•š¦{d(j)}úu Ÿ§ Vý°. °±ß¥Qêõ¢³ Qf  ™“ª!™Ú“ª†¿Šª”Š-Ùy!‰e(conjugate Gram-Schmidt process)°. n¦xÍ뢯âu0, u1, · · · , un−1õ “v!°v %. üÀð“ XxØ   Ÿ™  “§ •v 9ú n ¦ xÍ ë¢ ¯â¿ V ½ !ú D°. Ò• “³ d(i)õ §0q RŸ æ© Íx uiõ  “v£, ŠŸtY¦c(Ò•“³¯â(”¡24õÇD)®A-”p “w™c(Ûú °. ° v5tCs!™¯â †¿Y¦c(Ò•“³‰A-”pÒ•“³d(i) ý°. °ô¿ %V d(0) = u0¿£v, i 0c(i͂©°ü‰Ò•“³¯âõu£½!°. d(i) = ui + i−1 k=0 βikd(k) (36) Xβik™i ki͂ Še¦ý°. ©0úu Ÿæ Š, δjõu£X€Ì¢D‰ô¢“ª ú€Ì£½!°. dT (i)Ad(j) = uT i Ad(j) + i−1 k=0 βikdT (k)Ad(j) 0 = uT i Ad(j) + βijdT (j)Ad(j), i j (d ¯â0€¦A-”p‚¦ Š) βij = − uT i Ad(j) dT (j)Ad(j) (37) copyright c Jonathan Richard Shewchuk and VisCom Commune 33
  • 46.
    VCTR-2006-F-002 vs¦v {™ŠªiP꟪Á(11 4 X)- –{† ,‡ô‘‡ , î–|†† , êõ‡‡ b Šª“³(conjugate direction) Ÿª‚”Š-Ùy3ŠªÜ(Gram-Schmidt conjugation)ú€Ì£X¦‘ gbù ”¿Ï Ò• “³ú de Ÿ æ© Y¦ c( Ò• “³ ¯â0ú Ecý‚  “v !q˜ ¢°™ DT, Ìu5YÒ•“³úde Ÿæ©t™c£O(n3 )¦ƒ›Å °™D°. €ì³æ£ ¦9¯âõ†Ö÷¿ŠªÜ(conjugation)õ½± ŠÒ•“³0úde •°V, Šª“³Ÿªùd v Íß™6ª(”¡25)‰ô¢Dý°. d‰X÷¿Šª“³ŸªùŠªi€êŸª-Šªi€ ꟪‹èŠª“³Ÿª¦¢‘ê°- 5Í5¢¢‘gõ©d£X«“6¦€Ìü“w…°. Šª“³Ÿªú© ™Ú‚ªîXÅ™™(Šªi€êŸªê¥ô “°) ”¡25 ”¡21õ š D‚ ݉ °™ Dú xsòý™ D°. Šª “³ Ÿªú ½±£ X(Šª i€ê Ÿªú j¥ Š), ”“ª€ìšq8(Óù¾Ÿ ºÍý) ‡¢‚tÇX”p“³(orthogonal direction) Ÿª÷¿‘gõ v!™D‰°™DúŸr †. [”¡ 24] £ ¯â¦ ”Š-Ùy! ŠªÜ(Gram-Schmidt conjugate). £ ¦ xÍ ë¢ ¯â u0® u1 ¯â‚t 袰. d(0) = u(0)¿ ze¢°. ¯â u1ù d0‚ A-”p(™ conjugate) u∗ ® d0‚ e± u+ £ Û÷¿ Û©þ ½ !°. ŠªÜóA-”pÙÛ§+Qüqd1 = u∗  ý° 7.3 ¡¡¡òòò¨¨¨¦¦¦///XXX Šª“³Ÿªù°ü‰ù8y!™4œ!°: “ªù ¥¦³q‚tÒ• Ìý©æR‚t /x¦©õu¢°. Ò•´Ìý–‹q7«? span{d(0), d(1), · · · , d(i−1)}™Ò•¯âd(0), d(1), · · · , d(i−1)‚¦©fü™i-òÙÙÛ‡¢TõDi†vvÇ %. e(i) ©ùe(0) + Di¿ÙâxØþ½! °. ŠŸ‚t ™“/x¦©”†™Qˆáy«? Šª“³Ÿª/x¦©õü™°™DùŸª e(0) + Di¦ÙÛ‡¢R‚t©úxØ£X||e(i)||A©/™ ü™©úxØ¢°™D°(”¡26ú Æ). €ì qi ¡%0ù ÙÛ ‡¢ e(0) + Di R‚t ||e(i)||A ©ú /™Ü¥÷¿¦ Šª i€ê (conjugate gradient) îꠟꢰ. ô¢ “ª÷¿ ¡ò¨ ‹è B• “³¦ xÍ ƒ¦÷¿ vÇþ ½ !÷T(½é 35), ¡ò¨¦ ‚g“ i(norm)ù°ü‰ù¦ƒvÇ÷¿5ÍU½!°. copyright c Jonathan Richard Shewchuk and VisCom Commune 34
  • 47.
    VCTR-2006-F-002 vs¦v {™ŠªiP꟪Á(11 4 X)- –{† ,‡ô‘‡ , î–|†† , êõ‡‡ b [”¡25] 9“³³æ¯âõ€Ì¢Šª“³Ÿªù Íß™6ª(Gauss Elimination)÷¿êN²u!°. ||e(i)||A = n−1 j=i n−1 k=i δ(j)δ(k)dT (j)Ad(k) (½é35‚¦©îê) = n−1 j=i δ2 (j)dT (j)Ad(j) (d ¯â¦A-”p‚¦ Šîê) ¦ƒ(summation) vÇé‚!™c(¨ùs”€Ìü“wùÒ•“³‚§‘üq!°. e(0) + Di ÙÛ‡¢‚txØý¦¦°ô¯âe™¦ƒvÇéúÝ6°úX5Í5™D‰ô¢¨0ú u ˜ T, ™dve(i) Šè/™‚g“i(norm)ú •°™Dú’`¢°. ½éú  © /Xú ’` •÷¦, i ”‘X÷¿ õ ©£ ½ !êÀ ©Ã%. Šª “³ Ÿª ¦ z ‰eú è¡X÷¿ vÇ£ ½ !™ /x¦ “ªù ”¡ 22® Íý  z ™ ‡¢‰ “šq 8(stretched)” ‡¢út¿üp ™D°. ”¡27 (a)®27 (c)™Šª“³ŸªR2 ‡¢‰R3 ‡¢‚t qxQ ô ™“õ Êsv !°; ”¡‚t t¿ ½”÷¿ Ù x0ù t¿ ”p(orthogonal)¢°. ŠV‚, ”¡27(b)®27(d)‚t™ô¢”¡úvî¯â9úH†š²ÍÙÍ5vxuÍ(spherical) üêÀ¢D°. ”¡‚t½”÷¿Ã™x0ùt¿A-”p°. ”¡27(a)úÃVŠª“³Ÿª#Ÿ8eXx(0)‚tè T, Ò•“³d(0)õÌ Š¢³q ô Š°ü8eXx(1) b‚t98v!°. X”¿Ï¡ò¯âe(1)™Ò•“³d(0)‰A-”p°. copyright c Jonathan Richard Shewchuk and VisCom Commune 35
  • 48.
    VCTR-2006-F-002 vs¦v {™ŠªiP꟪Á(11 4 X)- –{† ,‡ô‘‡ , î–|†† , êõ‡‡ b [”¡26] ”¡‚tq¨Q©•–‹e(0) + D2 = e(0) + span{d(0), d(1)}°. ÍÙù‚C“i(norm)e¢ ©ú™5vx°. £³q ½±ý, Šª“³Ÿªùe(0) + D2 ’‚t||e(i)||A ©/™ ü™be(2)õüQ ý°. ©Qüùx(1)qxQÙÛ‡¢x(0) + D1‚t/™b†™DúÃ6£½!ú«? »ù”¡27(b)‚5 Í5!°: e(1)®d(0) t¿A-”pŸX‘‚ŠŸÃ™šq8‡¢(stretched space)‚t£¯â ½ ”úØv!°. ‚ ¯âe(1)ùô¢‚g“i(norm)¦¡òõ™(Œ, ô¢||e||Aõ “™) 5v x0úvÇ ™ôîÙ0¦Š“ö°. H†tÙÛ‡¢x(0) +D1†¿x1nŠ!™ôîÙ-Œ, x(1)‰ ô¢ ‚g“ i(norm)¦ ¡òõ ™ 5vx-‚ c ™ ceV üT X ceV‰ 5vx c ™ “b†¿x(1)°. Dù €ì ”ý g‰§¢ ù s¦°; y 7.1 `‚t …•Æ †® , Ò• “³‰ ¡ò¨ t¿ A-Šª†™€ìdvÒ•“³úH†fõ/™ÜèÅ™D(H†t||e||Aõ/™ÜèÅ™D)‰ô  °. ” 5Šª“³Ÿª£¥«³qõ½± Š£¥«Ò•“³d(1) “³÷¿||e||Aú½±¢‚ êŠY8||e||A Y‚€Ì°ÏÒ•“³d(0) “³‚t/™î“ý°™DúqxQÃ6£½! ú«? i ¥¦ŠÄú½± v5V, qxQf(x(i)) ÙÛ‡¢x(0) + Di Y‚t/™Üþ½!™D«? d(0)®d(1)™t¿A-”pŸX‘‚”¡27(b)‚t½”÷¿§8°. ŠŸtÒ•“³d(1)©xõ³ ¢°Dù`–¢Ú, ”î™d(0) ¯â xõ|î÷¿ vx(1)õ“5™Ù‚©x(1)‚tc ŸX‘ °. ˆòÙšg™õÌÎ0Êu°. ”¡27(c)®27(d) ¡¡‚™|îù£¦ÍÙý ”² u !°. x(1)™ ½Ù ÍÙ æ‚ nŠ !v, x2)™ RÙ ÍÙ‚ nŠ !°. 0 ”¡ú ƒî8 …• Æ: eVx(0) + D2™ÀÍÙú ‰ T%òv!÷T, eVùRÙÍÙ‰x(2)‚tc ™eVý°. © x™eVs’¦ÍÙ¦|î‚!°. ”¡27(c)õÃVˆt¦—‘ú°èv½!°. §Š Û‰R x(1) æX‚t!™ÚÙÛ‡¢ copyright c Jonathan Richard Shewchuk and VisCom Commune 36
  • 49.
    VCTR-2006-F-002 vs¦v {™ŠªiP꟪Á(11 4 X)- –{† ,‡ô‘‡ , î–|†† , êõ‡‡ b [”¡ 27] Šª “³ Ÿª¦ /X. (a) òÙ ‘g. ½”÷¿ §#™ x0ù t¿ ”p(orthogonal)¢°. (b) “šq(stretched)” ‡¢‚t vÇý ô¢ ‘g. ŠŸt ½”÷¿ §#™ x0ù t¿ A-”p°. (c) ˆòÙ ‘g, xõ |î÷¿  ™ £ ¦ ôî ÍÙ  Ãv !°. ”x x(0) + D1ù ½Ù ÍÙ‚ © x(1)b‚t c¢°. eV x(0) + D2™4ÙÍق©x(2)b‚tc¢°. (d) ˆòÙ‘gõšq‡¢(stretched space)÷¿¦húXcå. copyright c Jonathan Richard Shewchuk and VisCom Commune 37
  • 50.
    VCTR-2006-F-002 vs¦v {™ŠªiP꟪Á(11 4 X)- –{† ,‡ô‘‡ , î–|†† , êõ‡‡ b x(0) + D2 ’ú@q°¦Vt¡ò¦i(norm) ||e||õ/™¿£½!™†÷¿ô ²v¢°v e %; ”¢ÚÍý °©½!™†ùÒ•†³d(1)‚t«q@½ {°. §™Ò•“³d(1)/™bú† ¿ ýÅv!°VÍý¦dvõµ£½!°. Ò•¯âd(1)/™búy6 ýÅv!°vÃ6 £½!™î !™ ? ”¡27(d) ”»úÊu°. d(1)d(0)‚ ŠA-”pt¿, ”¡‚tt¿½”÷¿§5v! °. gŠ ÛeVx(0) + D2‚eV¢6¦‘D
  • 51.
    ¤f¡ vs’õ°Ã%; XÃQ ü™6Vù”¡27(b)®ô£D°. bx(2)ù‘¦|îþDv,bx™‘¦s’Å‚!Qü ™Ú, ”æX™x(2)‚t½”÷¿y6s’¿R²¢æX þD°. d(1)‰d(0)½”÷¿§5v!÷ t¿, Ò•“³d(1)™eÝ8x(2)õ³ QüT, x(2)™eVx(0) + D2 ’‚!™b0 ÏÚ©x‚  6 «ÏbþD°. eVx(0) + D2™x(2) nŠ!™u‚c ™eV°. ŠŸtƒ¥«³qõ½ ± QüV, D2®A-”p ™“³÷¿Ó”Šx(2)‚t©x¿y6R² QþD°. ”¡ 27(d)‚t ˆá §q“™“õ © ™  °ô “ªù Š Û %ê © x‚ tt ÙÛ ‡¢ x(0) + Di‚t§Ó”êÀg¢üq!™uâú÷¿3s¾Ÿv!°v’’ ™D°. ³q¥° Ý6 ™ÙÛ‡¢(expanding subspace) D¦òÙ 5fšq5v, X¥°uâùƒšfÌŠ Û  «° ¤½!êÀ%î¿×—D°. g‡¢úé” r²”¡27(b)
  • 52.
    ¤ÃQ§0V”D† ¿Šª“³Ÿªý°. Šª “³ Ÿª¦°ô |Å¢ 4 0 ”¡‚ 5Í5 !°. Íý™ ¥¦ ½± ³q‚t #e V(hyperplane) x(0) + Di x(i) nŠ!™ÍÙ‚c Qý°™Dú…•Ã…°. 4 `‚z`¢†® ¦¦b‚t “™54“(residual)™“bú“5™ÍÙvV‰”p¢°™€ìúŸr †. D ùdvr(i) Di®”p¢°™Dú¦y¢°. õ½¡X÷¿ÃŸæ©é35‚−dT (i)Aõ¡¡¦jº ˆ‚…©Ã%. −dT (i)Ae(i) = − n−1 j=i δ(j)dT (i)Ad(j) (38) dT (i)r(j) = 0, i j (d-¯â¦A-”p‚¦ Š.) (39) ¨5éù°ô“ª÷¿îꣽê!°. Ò•“³‚©¢¥¦³qõ½± v5Vˆ÷¿Ì ’ù”“³÷¿Ò•£›Å {°™€ìú’Ÿ %; ¡ò¨ùY¦c(Ò•“³‚©¨’A-” pT, r(i) = −Ae(i)t¿54“(residual)™Y¦Ò•“³‰sg5”p ý°. Ò•“³u ¯â0úÌ Š§0q€÷t¿, u0, · · · , ui−1 f ™ÙÛ‡¢†¿DiT, 5 4“(residual) r(i)™ ¢Yu¯â®”p¢°(”¡28úÆ). Dù½é36‰r(j)¦RXúD Š ’`£½!°. copyright c Jonathan Richard Shewchuk and VisCom Commune 38
  • 53.
    VCTR-2006-F-002 vs¦v {™ŠªiP꟪Á(11 4 X)- –{† ,‡ô‘‡ , î–|†† , êõ‡‡ b dT (i)r(j) = uT i r(j) + i−1 k=0 βijdT (k)r(j) (40) 0 = uT i r(j), i j (½é39‚¦ Š) (41) ˆ÷¿ €Ìþ ¨5é  5 Ì !™Ú. ¨5éù ½é 40(”ýv ”¡ 28)÷¿ Ùâ uú ½ !™ ° ü‰ùé°. dT (i)r(i) = uT i r(i). (42) [”¡ 28] Ò• “³ d(0)® d(1) ¯â u0, u1õ Ì Š §0q€÷t¿, 0ù ô¢ ÙÛ‡¢ D2(ç• –‹)õ f¢°. ¡ò¨ e(2)™ D2‚ A-”pT, #4“(residual) r(2)™ D2® ”p°. °ü ŠÄú æ« ”¿Ï Ò• “³ d(2)ù“š«“¦Ò•“³¯â0¿fü™ÙÛ‡¢D2‚A-”p êÀ(u2õÌ Š) §0q•°. d(2)õf£ Xu2õ “v”Š-Ùy!ŠªÜõXÌ Šf ŸX‘‚, d(2)®u2¦b0ùD2‚e±¢eV‚nŠ!°. `ú )÷Vt ¢  “ Ì s›£ Dù /   Ÿªú €Ì£ X® ¥ô “¿ Šª “³ Ÿª ‹è ±µ-¯â … Ÿ ƒú ŠÄ 蟥° ¢ ¥§  êÀ £ ½ !°™ b°. õ æ©t™ 54 “(residual)úqƒ£X°ü‰ùbÜéú€Ì Š˜¢°. r(i+1) = −Ae(i+1) = −A(e(i) + α(i)d(i) = r(i) − α(i)Ad(i) (43) 8 ŠŠŠªªªiiiPPPêêê(conjugate gradient) ŸŸŸªªª Šª i€ê Ÿªú °Ø™ ˜‚t Šª i€ê Ÿª‚ ¢ RÌ “š«“ê s›ü“ w™ D ’£ D“§, ›Å¢c(6X g@€°. €ìŠªi€êŸª†™DùŠª“³Ÿª‰ô¢Ú, ³“Ò•“³ú§0X54“(residual)õŠªÜ Š§(°™D°(Œ, ui = r(i)¿ze¢°). copyright c Jonathan Richard Shewchuk and VisCom Commune 39
  • 54.
    VCTR-2006-F-002 vs¦v {™ŠªiP꟪Á(11 4 X)- –{† ,‡ô‘‡ , î–|†† , êõ‡‡ b  ¢ xØ “ªù в  “ î¿ ¦ýX°. Íx /   Ÿª‚t 54“(residual)ú €Ì ™ D 0 ô°÷¦ Šª i€ê Ÿª‚t™ €Ì “ q£ î  {°. ¦«, 54“(residual)ù Y¦ Ò • ¯â® ”p¢°™ ”ù 4ú  “v !°(½é 39). H†t 54“(residual) ¯â  0¯â  s¦†V ¨’Y¦Ò•“³‚xÍ뢔ҕ“³úf£½ !°. 54“¯â 0 ¯âiÍ™”% ¿© uq•iÍt¿‘g ü“w™°. 5|‚ÃQüW“§, 54“(residual)ú€Ì ™Ú‚™ ÌΦýXî …8¢°. 54“ ¯âõ €Ì ™ D qi ¦yõ  “™“ f¡© Ã%. Ò• ¯â0 54“(residual)ú Ì  Š§0q“ŸX‘‚, 54“¯â0f ™ÙÛ‡¢, Œspan{r(0), r(1), · · · , r(i−1)}ùDi®ô  °. ¢ ¡¡¦ 54“(residual)™ Y B• “³‰ ”pt¿ Y¦ 54“ ¯â c£®ê ‹è ”p¢ °((”¡29 ÷ƒ). H†t½é41ù°ü‰°èvÇý°. rT (i)r(j) = 0, i = j (44) 43‚t0y¿Ï€ìù¡¡¦”54“(residual) r(i) Y54“(residual)®Ad(i−1)¦x̓¦ †™D°. d(i−1) ∈ Diú’Ÿ V, €ìùdv¡¡¦”¿ÏÙÛ‡¢Di+1YÙÛ‡¢Di® ÙÛ‡¢ADi¦¦÷¿Ùấý°™D°. D(i) = span{d(0), Ad(0), A2 d(0), · · · , Ai−1 d(0)} = span{r(0), Ar(0), A2 r(0), · · · , Ai−1 r(0)}. ÙÛ‡¢ú¾ ¿’ÙÛ‡¢(Krylov subspace)†v ™Ú, Dù 5¦¯â‚qi±µúŠ ÄX÷¿XÌ Šf£½!°. ‡¢ù Í”ù4ú “v!°: ADi Di+1‚j¥üq!v, °ü54“ri+1‰Di+1‰”p t¿(½é39), ri+1Di‰A-”põÚ°™€ìúx½!°. ri+1 d(i)õg½¢Y¦c(Ò•“³‰yA-”põØv!ŸX‘‚”Š-Ùy3dªÜz¢³© “™D°! ½é37‚5Í5™”Š-Ùy3’½ βij = −uT i Ad(j)/dT (j)Ad(j)ú’Ÿ %; éú¢œ Q§0 qÃ%. Íx½é43‰riúRX V°ü‰ùd‰õu™°. copyright c Jonathan Richard Shewchuk and VisCom Commune 40
  • 55.
    VCTR-2006-F-002 vs¦v {™ŠªiP꟪Á(11 4 X)- –{† ,‡ô‘‡ , î–|†† , êõ‡‡ b [”¡29] Šªi€êŸª‚t, ³q‚t”¿u©“™#4“(residual)™Y¦³q‚t#Í.Ï#4“(residual) ˆ£‚Â Š”pT, ”ÄQxØü™Ò•“³ùY¦c(#4“®Ò•“³‚©A-”p üêÀ§0q•°. (Ò• “³ù #4“ ¯âõ Ì Š §(°). r(2)® d(2)¦ bù D(2)(q¨Q ”²• ÙÛ‡¢)® e±¢ eV‚ nŠ !°. Šªi€êŸª‚td(2)™r(2)®d(1)¦x̓¦°. rT (i)r(j+1) = rT (i)r(j) − α(j)rT (i)Ad(j) α(j)rT (i)Ad(j) = rT (i)r(j) − rT (i)r(j+1) rT (i)Ad(j) =    1 α(i) rT (i)r(i), i = j, −1 α(i−1) rT (i)r(i), i = j + 1, (é44‚¦ Š) 0, ”½¦iÍ. ∴ βij =    1 α(i−1) rT (i)r(i) dT (i−1) Ad(i−1) , i = j + 1 0, i j + 1, (é37‚¦ Š.) ¥Á
  • 56.
    ¤ÂÙÛ¦βij ¨ù€†u£¹°. g”¿Ï¯â A-”p üêÀ Ÿæ©Ì’Y ‚€Ì°ÏÒ•¯âúc£õW6£›Å {°. ¢|Å¢6bŠªi€êŸª¦|Å¢b T, ŠÄ臢Ä3ê®è¢Ä3êV‚tO(n2 )‚tO(m)¿§™ý°. XmùA¦0s¨Û¦ ½°. gÙâ5™β(i) = βi,i−1¦9™Í÷¿vŸ£D°. ˆÌ¢œ8§0V°ü‰°. β(i) = rT (i)r(i) dT (i−1)r(i−1) (½é32‚¦ Š) = rT (i)r(i) rT (i−1)r(i−1) (½é42‚¦ Š) g“š«“z`¢RÌc£cs 5¿eý©Ã%. Šªi€êŸªˆ°ü‰°. copyright c Jonathan Richard Shewchuk and VisCom Commune 41
  • 57.
    VCTR-2006-F-002 vs¦v {™ŠªiP꟪Á(11 4 X)- –{† ,‡ô‘‡ , î–|†† , êõ‡‡ b [”¡30] Šªi€êŸª d(0) = r(0) = b − Ax(0), (45) α(i) = rT (i)r(i) dT (i)Ad(i) (½é32®42‚¦ Š) (46) x(i+1) = x(i) + α(i)d(i), (47) r(i+1) = r(i) − α(i)d(i), β(i+1) = rT (i+1)r(i+1) rT (i)r(i) (48) d(i+1) = r(i+1) + β(i+1)d(i) (49) ”¡ 30ù Šª i€ê Ÿªú Íý  €Ì v !™ šg‚ X̰ú X¦ uQ ü™  ú Ês v !°. €ì Ÿª‚t 5Í5™ ŸÐŸ(gradient)™ t¿ Šª  s¦Ÿ X‘‚ “Šª i€ê(conjugate gradient)”†™Ìq™°™0qýD†v£½!°. ŸªùŸÐŸõŠªÜ ŠÒ•“³úuŸX ‘‚“ŠªÜýŸÐŸ(conjugated gradient)” Ÿª†v ™DÌeÝ¢vǰ. 9 ŠŠŠªªªiiiPPPêêꦦ¦½½½¶¶¶ÛÛÛuuu Šª i€ê™ n ¥¦ ŠÄ ó‚ °Òý°. ”©°V Šª i€ê Ÿª¦ ½¶ Ûu‚ · ‘îú £q˜ £ copyright c Jonathan Richard Shewchuk and VisCom Commune 42
  • 58.
    VCTR-2006-F-002 vs¦v {™ŠªiP꟪Á(11 4 X)- –{† ,‡ô‘‡ , î–|†† , êõ‡‡ b «? ìg¿ Ÿªú XÌ V Ùô™½b Ф¡ ¡ò X‘‚ 54“(residual) bb ÙeÝ©“T, £¡ ¡ò(cancellation error) X‘‚Ò•¯â0€¦A-”pbb’ìý°. Ф¡¡ò‚¦¢‘g™/  Ÿª‚t©d¢†®°Û½!“§, £¡¡ò‚¦¢‘g™ÖQ©d£½!™‘g s ¦°.
  • 59.
    ¤¡ò‚¦©Ò•¯â0€¦Šª·q“™‘gX‘‚1960‘ @X«“½¡ q™Šªi€êŸª‚‘îú£“w…÷T, 1970‘‚0qtŠÄú ©©õu ™“ª÷¿¦ Šªi€êŸªî‰X†™d‰ Œvýó‚˜ü¿t°è‘îú‹Qý°. è¢% Šªi€ê‚¢b©êº°°. ¡š@Šªi€ê ìg¿XÌü™‘g™”¾Ÿ  gˆ5vtn¥¦ŠÄ½±Ý  ¢iÍ ÂÙÛŸX‘‚, ½¶Ûu|Å¢¦yõ •°. ½ ¶ÛuùÙô™½b¡òõ¦Ÿæ¢Ds5†, eÝ¢xvý÷¿©d£½{™‘g0‚Â©Š ªi€êŸªîÌ °™bú’` Ÿæ¢D°. Šªi€êŸª¦¥«ŠÄ³q™/ Ÿª¦¥«ŠÄ³q®ô °. H†t6.1 ` ¦RÌú”Â¿Ì ŠŠªi€êŸª³¢¥¦ŠÄ§‚½¶ ™ƒ8úz`£½!°. 9.1 °°°¹¹¹¢¢¢°°°¨¨¨ééévvvòòòŸŸŸ Šªi€êŸª¦¡³q‚t, ©e(i)™e(0) + Di¿ÙâxØüv, XDi™°ü‰ùÙÛ‡¢ú y…•Ã…°. Di = span{r(0), Ar(0), A2 r(0), · · · , Ai−1 r(0)} = span{Ae(0), A2 e(0), A3 e(0), · · · , Ai e(0)}. ®ù¾ ¿’(Krylov) ÙÛ‡¢ù¢ “ŸÛ”ù4ú •°. veýi‚©, ¡ò¨ù° ü‰vÇý°. e(0) =  I + i j=1 ψjAj   e(0) q½ ψj™ © α(i), β(i)® ‘qüT, eÝ¢ ‘qù ŠŸt |Å “ w°. |Å¢ Dù 7.3‚ 5® !™ ’`, Œ, Šªi€êŸª||e(i)||Aõ/™Ü ™q½ψjõxØ¢°™€ì°. æ é‚t ’Òu¦ vÇù °¨é÷¿ vÇþ ½ !°. Pi(λ)õ ò½ i¦ °¨é†  %. Più % ¿ ©5 ±µ ¤ ½ !÷T, 0ù ô Q qƒý°. šõ 0q, § P2(λ) = 2λ2 + 1†v  V, P2(A) = 2A2 + I ý°.  ¢õ !™vŸªùPi(A)v = Pi(λ)v(Av = λv, A2 v = λ2 v, · · · .)® vî¯â‚tîÌ °. §Pi(0) = 1üêÀ ²v V, ¡ò¨ù°ü‰vÇþ½!°. e(i) = Pi(A)e(0), copyright c Jonathan Richard Shewchuk and VisCom Commune 43
  • 60.
    VCTR-2006-F-002 vs¦v {™ŠªiP꟪Á(11 4 X)- –{† ,‡ô‘‡ , î–|†† , êõ‡‡ b Šªi€êŸªùψj q½õxØ£X, °¨éúxØ¢°. °¨éúe(0)‚XÌ£X¦î‰‚© ƒ€ %. / Ÿª¦Ûu‚t®¥ô “¿, e(0)õ”p³ævî¯â0¦x̓¦÷¿vÇ¢°. e(0) = n j=1 ξjvj, ”ýv°ü¦é0úqU½!°. e(i) = j ξjPi(λj)vj Ae(i) = j ξjPi(λj)λjvj e(i) 2 A = j ξ2 j [Pi(λj)]2 λj. Šª i€ê Ÿªù vÇéú /™Ü ™ °¨éú ü÷T, “ª¦ ½¶ šê™ sˆý ”sê /t ¦ vî¯â  ½¶ ™ eêð ”ú ½  {°. Λ(A)  A¦ vî©0¦ 𦆠 V ¡ò¦ ‚g“ i(norm)ù°ü‰°. e(i) 2 A ≤ min Pi max λ∈Λ(A) [Pi(λ)]2 j ξ2 j λj = min Pi max λ∈Λ(A) [Pi(λ)]2 e(0) 2 A (50) ”¡31ù vî© 2® 7ú  “™ šg‚ © æ¦ vÇéú /™Ü ™ °¨éú a  “ ‘ê¦ ò ½‚ © Êsv !°. P0(0) = 1ú §„ ™ ò½ 0¦ °¨éù  5 ˆ‚ {÷T, ™ 31(a)‚t à ™ †® P0(λ) = 1°. ò½ 1¦ /X °¨éù P1(λ) = 1 − 2x/9v, ”¡31(b)‚t Ç ½ !°. P1(2) = 5/9, P1(7) = −5/9v, Šª i€ê¦ ¥« ŠÄ ó ¡ò¨¦ ‚g“i #ŸX 5/9ð ¾ “wüúx½!°. ”¡31(c)™£¥¦ŠÄóé50¦d‰ 0ÿúÊu°. Dù2ò°¨éƒ b(P2(0) = 1, P2(2) = 0, P2(7) = 0)ú“5êÀ£½!ŸX‘°. ŠX÷¿ò½n¦°¨éùn +1¦ b0ú“5¿À§0½!÷t¿n¦t¿°ôvî©0ú½Ì£½!°. “𫓦 f¦õ  © Šªi€êŸª n¥¦ ŠÄó‚ eÝ¢ d‰õ u™°™ Dú Ì 0 x ½ ! °: ÌÍŸ ù vî©0 …8¢°V Šªi€êŸª Ì §òQ ½¶¢°™ D‚ ¢ ’`°. ˆ¢ ½u¦Ùô™½be}êõ •°v£X, eÝ¢©õqƒ Ÿæ©Åuü™ŠÄì½™ŸÊ©˜t¿ °ôvî©0¦½ ý°. (ô‘҂¢¢ “°ô  !°: x(0) A¦Ùvî¯â0‰ yA−”põØv!™iͰ. §™x(0)õY£X5Í5“w™vî¯â0ù”‚©¾ ™vî ©0‹èé50‚5Í5“wúD°. ” 5ˆtiv¢†®,  ¢vî¯â0‹èÙô™½ bФ¡¡ò‚¦©°è5Í5QþD°.) copyright c Jonathan Richard Shewchuk and VisCom Commune 44
  • 61.
    VCTR-2006-F-002 vs¦v {™ŠªiP꟪Á(11 4 X)- –{† ,‡ô‘‡ , î–|†† , êõ‡‡ b [”¡ 31] i¥¦ ŠÄú ½±¢ ó Šª i€ê Ÿª v¥# ½¶°™“™ Pi(0) = 1†™ sq• g¢ ƒ8‚t i ò °¨éPi ¡¡vî©‚tv¥#0‚ «Ï“‚µ²!°. vî©0 λmin‰ λmax €‚ Ý‘Y Q Ûjüq !™ Dð, ”¡31(d)® –
  • 62.
    ‚ cŠ !™ iÍŠªi€êŸªÌÎý½·£½!üúx½!°.DùŠªi€êŸª‚té50¦©ú Q§™°¨éúxØ ™DÌÎÑq“ŸX‘°. §±µA¦vî©0¦4úxv!°V§ô½¶úqR™°¨éúgu£½ê!“§, Š Ÿt™ 6ŠXiÍ, Œvî©0λmin‰λmax €‚vòQÛj v, |Äü™v½ X q¨ù½¦t¿°ôvî©5Í5T, Ùô™½bФ¡¡ò Œf ™iÍõ e¢°. 9.2 üüüËËË’’’(Chebyshev) °°°¨¨¨ééé ¢  “ îÌ¢ c–“ªù î¢ ¦ b‚ ©t  s¦† ©æ[λmin, λmax]‚t é50ú /™Ü ™ D °. õ½±£½!™°¨é0ùüË’(Chebyshev) °¨éúŸŠ÷¿¢°. ò½i¦üË’(Chebyshev) °¨éù°ü‰°. Ti(ω) = 1 2 [(ω + ω2 − 1)i + (ω − ω2 − 1)i ]. (é°¨é
  • 63.
    ¤Ã“w™°V, i 152i͂©qÆ.) a “üË’(Chebyshev)° ¨é0 ”¡32‚ ”²u !°. üË’(Chebyshev) °¨é0ù e¦‹ ω ∈ [−1, 1]‚t |Ti(ω) ≤ 1| 4 ú “T(€ì-1‰1¦€‚t•ô¢°), c(°¨é‚!qt|Ti(ω)|¦©ùω /∈ [−1, 1]e¦‹‚ copyright c Jonathan Richard Shewchuk and VisCom Commune 45
  • 64.
    VCTR-2006-F-002 vs¦v {™ŠªiP꟪Á(11 4 X)- –{† ,‡ô‘‡ , î–|†† , êõ‡‡ b [”¡32] ò½2, 5, 10, 49¦üË’(Chebyshev) °¨é0 t/ÂXõQý°. y} “wùvÇ÷¿˜Ÿ V, |Ti(ω)|¦©”¡‚5Í5!™’%¦ˆ‚ t  ¢¢ 6§òQ’ ¢°. ½é50°ü‰ùPi(λ)õxØ¥‚¦©/™Üü™DùÙÀC3‚tz`ý°. Pi(λ) = Ti(λmax+λmin−2λ λmax−λmin ) Ti(λmax+λmin λmax−λmin ) °¨éù –‹ λmin ≤ λ ≤ λmax‚t üË’(Chebyshev) °¨é¦ •ô 4ú  •°(”¡33 ÷ƒ). Ûc™ Pi(0) = 1†™ Åu€¨ú ?„ Q  T, Û%™ λmin‰ λmax €¦ u¢‚t /© 1ú  • °. H†té50÷¿Ùâ°ü¦é¢¢°. e(i) A ≤ Ti λmax + λmin λmax − λmin −1 e(0) A = Ti κ + 1 κ − 1 −1 e(0) A = 2 √ κ + 1 √ κ − 1 i + √ κ − 1 √ κ + 1 i −1 e(0) A. (51) €¡Í’Òu¦£¥« ½(¤Õ, addend)™i ’ ¥‚H†0÷¿½¶¢°. H†tŠªi€ê¦½¶ ùˆÌ™¢Ù5é÷¿°ü‰vÇ ™DŠX°. e(i) A ≤ 2 √ κ − 1 √ κ + 1 i e(0) A (52) copyright c Jonathan Richard Shewchuk and VisCom Commune 46
  • 65.
    VCTR-2006-F-002 vs¦v {™ŠªiP꟪Á(11 4 X)- –{† ,‡ô‘‡ , î–|†† , êõ‡‡ b [”¡ 33] ŠX iÍ‚t –‹ λmin = 2® λmax = 7‚t é 50ú /™Ü ™ °¨é P2(λ). wxù ò½ 2¦ Chebyshev °¨é¦ ¾Ÿõ ºÍ¢ D°. £ ¥¦ ŠÄ ó¦ ¡ò¨¦ ‚C“ i(norm)ù #Ÿ©¦ 0.183•õ J“ M™°. 2¦vî©§…8 ™D÷¿yN²u!Ï”¡31(c)®üp †. Šªi€ê¦¥«³q™/ ¦¥«³q®ô °. é51‚ti = 1¿£V, / ‚‘ ¢½¶d‰é28úu™°. Dù”¡31(b)‚”²•xͰ¨é¦iͰ. ”¡34™Šªi€ê¦ŠÄ¥°¦½¶‚¢êv°. ìg¿X̰úX, Šªi€ê™”ùvî ©Ûj5”ùèæX5¦îX‘‚¦iÍé52 è€ ™½¶šêð̧òQ½¶¢°. é52®é28úüp V, Šªi€ê(conjugate gradient) Ÿª/ (steepest descent) ŸªÃ°Ì§ òQ½¶ ™°™D`Ý °(”¡35 ÷ƒ). ” 5Šªi€ê¦c(ŠÄ³q / ŸªÃ° Ì §òQ ½¶ ™ Dù s¦°; šõ 0V, Šª i€ê Ÿª¦ ¥« ³q™ /   Ÿª¦ ¥« ³ q®ô °. é52‚t…©u!™½2‚¦©tŠªi€êŸªÙŠÄ³q‚t™¢¦šêW  õý!Qý°. 10 ÄÄÄ333êêê / 5Šªi€êŸª¦¡³q‚t 6¨ùqƒè¢ú›Å¿ ™ƒù±µ-¯â…‡°. ŠX÷¿, ±µ-¯â…‡ù±µ¦0s¨Ù™¦½õm†£iÍO(m)¦qƒè¢ú›Å¿¢°. ‘t¦1 `‚t5Žý°j¢‘g0‚tàA™2™±µvm ∈ O(n)°. 妕½¿¡ò¦¾ŸõvŸæ©?Û¢ŠÄú½± ŸõÙ¢°v e %: Œ, e(i) ≤ ε e(0) . copyright c Jonathan Richard Shewchuk and VisCom Commune 47
  • 66.
    VCTR-2006-F-002 vs¦v {™ŠªiP꟪Á(11 4 X)- –{† ,‡ô‘‡ , î–|†† , êõ‡‡ b [”¡34] ’×½¦¥½¿t¦Šªi€ê(ŠÄ¥°)¦½¶. ”¡20‰üp †. é28ù/ Ÿªú€Ì Š¢qõ§„ Ÿæ©Åuü™/¦ŠÄì½ °ü‰üúà Šu°. i ≤ 1 2 κ ln 1 , ¢–, é52‚¦ VŠªi€êŸªÅu ™/¦ŠÄì½ °ü‰°. i ≤ 1 2 √ κ ln 2 . / ùO(mκ)¦è¢Ä3êõ “T, Šªi€ê™O(m √ κ)¦è¢Ä3êõ •°™dÁ°. £ xvýc£‡¢Ä3ê™O(m)°. d−òÙ e¦‹‚t ò ÍÙ iq© ‘g0ú î¢òÛ‰ î¢Å™ª÷¿ –€£ X¦ Ä3ê™ ‘‘ κ ∈ O(n2/d ) ý°. H†t, /   Ÿªù òÙ ‘g0‚ © O(n2 )¦ è¢Ä3êõ  ““§ Š ªi€ê™O(n3/2 )°. ¢ˆòÙ‘g0‚©/ ùO(n5/3 )¦Ä3ê“§Šªi€êŸªù O(n4/3 )¦è¢Ä3êõ •°. 11 èè艉‰‘‘‘ÒÒÒ ˆtz`¢/ ‰Šªi€êxvý‚t, a “ƒÙXD0fœü}°; 48, èbúqx QxØ vsg‘Ò —a¦‘g°. copyright c Jonathan Richard Shewchuk and VisCom Commune 48
  • 67.
    VCTR-2006-F-002 vs¦v {™ŠªiP꟪Á(11 4 X)- –{† ,‡ô‘‡ , î–|†† , êõ‡‡ b [”¡35] Šªi€ê¦¢¥¦ŠÄ‚X Ÿæ©Åuü™/ ¦ŠÄì½. 11.1 èèè è‚‘ Šz`£Dù¨“w°. §x¦©‚©œX8eX !°V, ”Dúè©x(0)¿ €Ì †. ”©“w°V, x(0) = 0÷¿£q†; xÍèßðú{™iÍ/ 5Šªi€êŸªùd v ½¶ Q üq !°. üxÍ /™Ü(14 `‚t z`)™ Š ¦ “‹/™  …8£ ½ !v è æX¦ xØ‚H†q—/™b‚½¶£“ deüT, qiiÍ‚™½¶Øq—“”©“wú“õde  ŸX‘‚«°¿Ï‘g ý°. 11.2 ‘‘‘ÒÒÒ / 5Šªi€ê /™b‚êµ£X54“(residual)™0üv, §é11548ó¦¢ ¥¦ŠÄúÌ Q¢°V, Ûc 0ý°. H†t54“(residual)0üVŒèqƒ‘Òüq˜¢ °. 54“(residual)¦ bÜé Í×(47) qƒ‚t Ф¡ ¡ò  €Xü™ iÍ‚™ 54“  0 s¨Úê 0÷¿qƒþ½ !°; ‘g™é45õÌ Šqƒú”¿è¥÷¿t©dþ½!°. à¦iͽ¶°Y8Øq“ŸY‚xvý‘ÒüŸõÙ¢°. ¡ò¨úÌ£½{ŸX ‘‚ 54“(residual)¦ ¾Ÿ  €Y‚ `èý ©  ¿ R² V ‘Ò ™ D à°; ‘‘ ©÷¿ #Ÿ54“(residual) ©‚0ðù©εú…©uùù©ú€Ì¢°. ( r(i) ε r(0) ). šg‘™ ÙÀB‚tǽ!°. copyright c Jonathan Richard Shewchuk and VisCom Commune 49
  • 68.
    VCTR-2006-F-002 vs¦v {™ŠªiP꟪Á(11 4 X)- –{† ,‡ô‘‡ , î–|†† , êõ‡‡ b 12 YYY
  • 71.
  • 72.
    ý™±µ¦ƒ8½(condition number)õx Ÿæ¢Ÿª°. ±µM±µAõ–€ ™Âa Vtj¦eÙÒ±µv,‹±µúÖQqƒ£½!°v %. ”©°V°üéúqt¢cX÷¿ Ax = bõ½!°. M−1 Ax = M−1 b. (53) §κ(M−1 A) κ(A)65M−1 A¦vî©0A¦vî©0ðÌ0cŠ!°V, Ù’¦‘gð é53¦‘g ŠÄªú ©Ì0½¶¢°. ‘g™±µM5A Âavj¦eÙÒ±µ†  ̆걵M−1 AùŠX÷¿”©“w°™D°. ÂaTj¦eÙÒc(±µM‚©EET = M4ú “™±µE (î¢Dùs¦“ §) …8 ŸX‘‚, q²Óù˜£½!°. (”¢±µE™ªßÅ(Cholesky) Û©®ù“ª÷¿u £½!°.) ±µM−1 A®E−1 AE−T ™ô¢vî©0ú •°. D¢ ™î™v vî©λõ  “™±µM−1 A¦vî¯âX, ET v™°ü‰vî©λõ “™±µE−1 AE−T ¦vî¯â ŸX‘°. (E−1 AE−T )(ET v) = (ET E−T )E−1 Av = ET M−1 Av = λET v. xÍèßðAx = b™°ü¦‘g¿ºÍþ½!°. E−1 AE−T x = E−1 b, x = ET x, ‘g‚tÍý™Íxx‚©v5tx‚©}°. ±µE−1 AE−T  ÂaVtj¦eÙÒŸ X‘‚, x™ / 5 Šªi€ê‚ ¦© u£ ½ !°. Šª i€ê Ÿªú €Ì Š ‘gõ ©d  ™‰eú“ºÞýY
  • 73.
    ýŠªi€êŸª(Transformed preconditioned conjugategradient method)”†Ùô °. d(0) = r(0) = E−1 b − E−1 AET x(0), α(i) = rT (i)r(i) dT (i)E−1AE−T d(i) , x(i+1) = x(i) + α(i)d(i), r(i+1) = r(i) − α(i)E−1 AE−T d(i), β(i+1) = rT (i+1)r(i+1) rT (i)r(i) , d(i+1) = r(i+1) + β(i+1)d(i). copyright c Jonathan Richard Shewchuk and VisCom Commune 50