SlideShare a Scribd company logo
Overview Background Radial Velocity Numerical Simulation Radiative Transfer Results Conclusions
Synthetic Spectral Signatures in Hierarchically
Collapsing Cores
Robert Loughnane
Instituto de Radioastronom´ıa y Astrof´ısica
(IRyA-UNAM)
Morelia, Michoac´an, M´exico
in collaboration with: Enrique V´azquez-Semadeni & Ra´ul Naranjo-Romero
CLOUDY: Emission Lines in Astrophysics,
from Gaseous Nebulae to Quasars,
M´exico City, M´exico
Monday 8th August, 2016
Robert Loughnane CLOUDY 2016
Overview Background Radial Velocity Numerical Simulation Radiative Transfer Results Conclusions
Overview
Background
Radial Velocity
Simulation Details
Radiative Transfer
Analytical Infall Analysis
Results: Tb/Tr and δv
Concluding Remarks
Robert Loughnane CLOUDY 2016
Overview Background Radial Velocity Numerical Simulation Radiative Transfer Results Conclusions
Overview
1 Overview
2 Background
Present Understanding of Cores I
Present Understanding of Cores II
Hierarchical Collapse I
Hierarchical Collapse II
Hierarchical Collapse III
3 Radial Velocity
Velocity Assumptions
4 Numerical Simulation
Simulation Details I
Simulation Details II
Simulation Details III
5 Radiative Transfer
Modeling Approximation
6 Results
Selected Results I
Selected Results II
Selected Results III
7 Conclusions
Robert Loughnane CLOUDY 2016
Overview Background Radial Velocity Numerical Simulation Radiative Transfer Results Conclusions
Present Understanding of Cores I
How are cores supported?
Figure: N2D+
emission from single massive
self-gravitating core from ALMA. [Image
courtesy of Bill Saxton & Alexandra Angelich
(NRAO/AUI/NSF); ALMA
(ESO/NAOJ/NRAO)]
Molecular clouds (MCs) are supersonically
turbulent - not magnetically supported
(Crutcher et al. 2010)
Gravoturbulent: MCs are supported
against collapse by virialized turbulence
(Heyer et al. 2009)
Magnetic support scenario →
gravoturbulent scenario
Cores evolve quasi-statically in prestellar
phase → supported by observations of
Bonnor-Ebert (BE) like density
profiles
Robert Loughnane CLOUDY 2016
Overview Background Radial Velocity Numerical Simulation Radiative Transfer Results Conclusions
Present Understanding of Cores II
“Quasi-static” picture
How can cores be “quasi-static”? They are produced in a
supersonically turbulent medium!
Complications:
Jeans-stable confined configurations need a confining medium
for the dense cores
How does hydrostatic configuration arise first - then accretes
quasi-statically if formed by a dynamic compression?
Evolving configurations form and acrete through shocks.
Before becoming Jeans-unstable, expands and then become
unstable. It therefore collapses and never once undergoes
quasi-static stage.
Robert Loughnane CLOUDY 2016
Overview Background Radial Velocity Numerical Simulation Radiative Transfer Results Conclusions
Hierarchical Collapse I
Plausible Scenario
Global hierarchical collapse of MCs (Buckert & Hartmann 2007;
V´azquez-Semadeni et al. 2007, 2009; Naranjo-Romero et al. 2015
[NR15])
MCs are turbulent - due to several instabilities during assembly
- strongly Jeans unstable (mass ≈ many Jeans masses, MJ)
Gas entering suffers phase transition: warm-diffuse atomic
phase → dense-cold phase ⇒ n↑ and T↓ by ∼102. Reduction
in MJ by 104 (G´omez & V´azquez-Semadeni 2014)
Clouds contract globally → ¯MJ goes down due to larger ¯n
(constant T) ⇒ small-scale fluctuations [from turbulence]
undergo collapse when M > MJ.
Robert Loughnane CLOUDY 2016
Overview Background Radial Velocity Numerical Simulation Radiative Transfer Results Conclusions
Hierarchical Collapse II
NR15 Simulation
NR15: Numerical simulation of collapse of local, near-MJ
fluctuation in a uniform, multi-MJ spherical background medium.
NOTE: Collapse is until prestellar stage with center outside box.
Similar to Larson (1969) - but it sits on a uniform, Jeans unstable
background
Features of simulation:
Develops BE-like density profile - not in equilibrium
Characterized by “outside-in” velocity profile
Core develops supersonic infall speeds before singularity.
Contradicts notion that low-mass starless cores exhibit subsonic
infall speeds (Lee et al. 2001)
Robert Loughnane CLOUDY 2016
Overview Background Radial Velocity Numerical Simulation Radiative Transfer Results Conclusions
Hierarchical Collapse III
Density & Velocity Profiles
−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5
x/LJ
10
4
10
5
10
6
10
7
n[cm
−3
]
−0.3 −0.2 −0.1 0.0 0.1 0.2 0.3
r [pc]
−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5
x/LJ
−3
−2
−1
0
1
2
3
v/cs
−0.3 −0.2 −0.1 0.0 0.1 0.2 0.3
r [pc]
Simulation develops radial velocity profile from fluctuation in
background flow. Core with amplitude 50% more than mean
density of unstable “cloud”.
“Core” defined at radius it merges into background. Grows in
mass & radius over time - dissimilar to other numerical setups.
Robert Loughnane CLOUDY 2016
Overview Background Radial Velocity Numerical Simulation Radiative Transfer Results Conclusions
Overview
1 Overview
2 Background
Present Understanding of Cores I
Present Understanding of Cores II
Hierarchical Collapse I
Hierarchical Collapse II
Hierarchical Collapse III
3 Radial Velocity
Velocity Assumptions
4 Numerical Simulation
Simulation Details I
Simulation Details II
Simulation Details III
5 Radiative Transfer
Modeling Approximation
6 Results
Selected Results I
Selected Results II
Selected Results III
7 Conclusions
Robert Loughnane CLOUDY 2016
Overview Background Radial Velocity Numerical Simulation Radiative Transfer Results Conclusions
Velocity Assumptions
Velocity Assumptions
Optically-thick lines of non-homologously collapsing cores show
blue-skewed, self-absorbed profiles.
Plausible collapse: Blue-skewed, self-absorbed optically-thick line
and gaussian-like optically thin line at the self-absorption dip.
Earliest assumptions on radial velocity profiles:
Inside-out collapse (Snell & Loren 1977, Zhou et al. 1993) -
collapse of initially static SIS (Shu 1977). Unrealistic since
SIS is unstable!
Other suggestions: Simple two-layer model (Myers et al.
1996) and initially unstable BE-like sphere (e.g. Keto et al.
2015). Latter ⇒ QE-BE model is most likely for
Taurus-Auriga core L1544!
Robert Loughnane CLOUDY 2016
Overview Background Radial Velocity Numerical Simulation Radiative Transfer Results Conclusions
Overview
1 Overview
2 Background
Present Understanding of Cores I
Present Understanding of Cores II
Hierarchical Collapse I
Hierarchical Collapse II
Hierarchical Collapse III
3 Radial Velocity
Velocity Assumptions
4 Numerical Simulation
Simulation Details I
Simulation Details II
Simulation Details III
5 Radiative Transfer
Modeling Approximation
6 Results
Selected Results I
Selected Results II
Selected Results III
7 Conclusions
Robert Loughnane CLOUDY 2016
Overview Background Radial Velocity Numerical Simulation Radiative Transfer Results Conclusions
Simulation Details I
Numerical Setup
Isothermal (T=11.4K) gas starting at rest with a uniform density
n=104cm−3 ⇒ cs=0.2km s−1
The Jeans length LJ= πc2
s
Gρ
1/2
≈ 0.22pc, where µmol=2.36
Lb=
√
10LJ ≈ 0.71pc per side with total mass
M ≈ 207M ≈ 31.6MJ. Grid resolution is 5123 cells.
Robert Loughnane CLOUDY 2016
Overview Background Radial Velocity Numerical Simulation Radiative Transfer Results Conclusions
Simulation Details II
Modeled Sub-box
For synthetic spectra generation:
Central half-length sub-box of grid with V=0.047pc3 = Lb
2
3
centered on highest density voxel.
⇒ Sub-box resolution is 2563 grid cells with spatial resolution of
1.387×10−3pc
x, LOS y
z
Robert Loughnane CLOUDY 2016
Overview Background Radial Velocity Numerical Simulation Radiative Transfer Results Conclusions
Simulation Details III
Analysed Timesteps
Robert Loughnane CLOUDY 2016
Overview Background Radial Velocity Numerical Simulation Radiative Transfer Results Conclusions
Overview
1 Overview
2 Background
Present Understanding of Cores I
Present Understanding of Cores II
Hierarchical Collapse I
Hierarchical Collapse II
Hierarchical Collapse III
3 Radial Velocity
Velocity Assumptions
4 Numerical Simulation
Simulation Details I
Simulation Details II
Simulation Details III
5 Radiative Transfer
Modeling Approximation
6 Results
Selected Results I
Selected Results II
Selected Results III
7 Conclusions
Robert Loughnane CLOUDY 2016
Overview Background Radial Velocity Numerical Simulation Radiative Transfer Results Conclusions
Modeling Approximation
Modeling Approximation
MOLLIE (Keto et al. 2004, 2010)
High-τ: HCO+
more opaque than CS
& H2CO - µHCO+ > µCS
χHCO+ =3×10−9
Low-τ: N2H+
JF1F=101→012 -
gaussian
χN2H+ =3×10−10
Beam convolution:
θb = 0.015, 0.03, 0.06pc
Robert Loughnane CLOUDY 2016
Overview Background Radial Velocity Numerical Simulation Radiative Transfer Results Conclusions
Overview
1 Overview
2 Background
Present Understanding of Cores I
Present Understanding of Cores II
Hierarchical Collapse I
Hierarchical Collapse II
Hierarchical Collapse III
3 Radial Velocity
Velocity Assumptions
4 Numerical Simulation
Simulation Details I
Simulation Details II
Simulation Details III
5 Radiative Transfer
Modeling Approximation
6 Results
Selected Results I
Selected Results II
Selected Results III
7 Conclusions
Robert Loughnane CLOUDY 2016
Overview Background Radial Velocity Numerical Simulation Radiative Transfer Results Conclusions
Selected Results I
Analytical Infall
Infall velocities derived using “Hill5hybrid”-model from De Vries
& Myers (2005). Fits σ, vlsr, τ0, TP & vin
Loughnane et al. (in prep)
Robert Loughnane CLOUDY 2016
Overview Background Radial Velocity Numerical Simulation Radiative Transfer Results Conclusions
Selected Results II
Mardones Parameter - δv
δv = Vthick−Vthin
∆vthin
δv-parameter (Mardones et al. 1997): Skewness of blue peak
De Vries & Myers (2005).
Loughnane et al. (in prep)
Robert Loughnane CLOUDY 2016
Overview Background Radial Velocity Numerical Simulation Radiative Transfer Results Conclusions
Selected Results III
Degree of Asymmetry: Tb/Tr-ratio
Another measure of the degree of infall δv-parameter
(Mardones et al. 1997): Skewness of blue peak
Stahler & Yen (2010): Current numerical models cannot
reproduce observed Tb/Tr-ratio
Loughnane et al. (in prep)
Robert Loughnane CLOUDY 2016
Overview Background Radial Velocity Numerical Simulation Radiative Transfer Results Conclusions
Overview
1 Overview
2 Background
Present Understanding of Cores I
Present Understanding of Cores II
Hierarchical Collapse I
Hierarchical Collapse II
Hierarchical Collapse III
3 Radial Velocity
Velocity Assumptions
4 Numerical Simulation
Simulation Details I
Simulation Details II
Simulation Details III
5 Radiative Transfer
Modeling Approximation
6 Results
Selected Results I
Selected Results II
Selected Results III
7 Conclusions
Robert Loughnane CLOUDY 2016
Overview Background Radial Velocity Numerical Simulation Radiative Transfer Results Conclusions
Concluding Remarks
Apparently subsonic velocities - artifact of assumed radial
velocity profile
Core collapses outside-in with maximum speed at envelope -
not in the center, as in inside-out picture of Shu.
Line profiles are density-weighted LOS velocity histograms -
Vmax at lower densities
Core displays well-publicized values of δv and can reproduce
observed Tb/Tr
Robert Loughnane CLOUDY 2016
Overview Background Radial Velocity Numerical Simulation Radiative Transfer Results Conclusions
Gracias por su atenci´on!
r.loughnane@crya.unam.mx
Robert Loughnane CLOUDY 2016

More Related Content

Viewers also liked

4072 p2-p psp-desain dan produksi kria kulit
4072 p2-p psp-desain dan produksi kria kulit4072 p2-p psp-desain dan produksi kria kulit
4072 p2-p psp-desain dan produksi kria kulit
Winarto Winartoap
 
Daria Koroleva Certificate H&C.PDF
Daria Koroleva Certificate H&C.PDFDaria Koroleva Certificate H&C.PDF
Daria Koroleva Certificate H&C.PDFDarya Koroleva
 
Job evaluation bb
Job evaluation  bbJob evaluation  bb
Job evaluation bb
Mona Singh
 
IGARSS_LIU_XU_2011.ppt
IGARSS_LIU_XU_2011.pptIGARSS_LIU_XU_2011.ppt
IGARSS_LIU_XU_2011.ppt
grssieee
 
நாம் சரிவிகித உணவையே உண்ண வேண்டும்
நாம் சரிவிகித உணவையே உண்ண வேண்டும்நாம் சரிவிகித உணவையே உண்ண வேண்டும்
நாம் சரிவிகித உணவையே உண்ண வேண்டும்
ana appa
 
Sergio Buarque de Holanda
Sergio Buarque de HolandaSergio Buarque de Holanda
Sergio Buarque de Holanda
Juli Rossi
 
2014.10.28 pres cae_finale
2014.10.28 pres cae_finale2014.10.28 pres cae_finale
2014.10.28 pres cae_finale
Alessandro Cariani
 
Photonic Materials
Photonic MaterialsPhotonic Materials
Photonic Materials
Gaurav Singh Chandel
 
Rotary-Club-Speech-Japanese
Rotary-Club-Speech-JapaneseRotary-Club-Speech-Japanese
Rotary-Club-Speech-JapaneseCorrina Wang
 
Unlocking potential
Unlocking potentialUnlocking potential
Unlocking potential
lmittler
 
Thermal Imaging and its Applications
Thermal Imaging and its ApplicationsThermal Imaging and its Applications
Thermal Imaging and its Applications
Priyanka Goswami
 
SAM Manual
SAM ManualSAM Manual
SAM Manual
Alexa Aise
 
Riorganizzare i comuni urbanistica
Riorganizzare i comuni urbanisticaRiorganizzare i comuni urbanistica
Riorganizzare i comuni urbanistica
Giuseppe Carpentieri
 
Thermography.ppt
Thermography.pptThermography.ppt
Thermography.ppt
sohitkc
 
Pp1 cuffia tur
Pp1 cuffia turPp1 cuffia tur
Pp1 cuffia tur
Alda-Cuffia
 
Comunicación
ComunicaciónComunicación
Comunicación
ivan220207
 
Enseñanza virtual, universidad y EESS avances y limitaciones
Enseñanza virtual, universidad y EESS avances y limitacionesEnseñanza virtual, universidad y EESS avances y limitaciones
Enseñanza virtual, universidad y EESS avances y limitaciones
Conectarnos Soluciones de Internet
 
Currency high lights 14.02.17
Currency high lights 14.02.17Currency high lights 14.02.17
Currency high lights 14.02.17
Choice Equity
 

Viewers also liked (18)

4072 p2-p psp-desain dan produksi kria kulit
4072 p2-p psp-desain dan produksi kria kulit4072 p2-p psp-desain dan produksi kria kulit
4072 p2-p psp-desain dan produksi kria kulit
 
Daria Koroleva Certificate H&C.PDF
Daria Koroleva Certificate H&C.PDFDaria Koroleva Certificate H&C.PDF
Daria Koroleva Certificate H&C.PDF
 
Job evaluation bb
Job evaluation  bbJob evaluation  bb
Job evaluation bb
 
IGARSS_LIU_XU_2011.ppt
IGARSS_LIU_XU_2011.pptIGARSS_LIU_XU_2011.ppt
IGARSS_LIU_XU_2011.ppt
 
நாம் சரிவிகித உணவையே உண்ண வேண்டும்
நாம் சரிவிகித உணவையே உண்ண வேண்டும்நாம் சரிவிகித உணவையே உண்ண வேண்டும்
நாம் சரிவிகித உணவையே உண்ண வேண்டும்
 
Sergio Buarque de Holanda
Sergio Buarque de HolandaSergio Buarque de Holanda
Sergio Buarque de Holanda
 
2014.10.28 pres cae_finale
2014.10.28 pres cae_finale2014.10.28 pres cae_finale
2014.10.28 pres cae_finale
 
Photonic Materials
Photonic MaterialsPhotonic Materials
Photonic Materials
 
Rotary-Club-Speech-Japanese
Rotary-Club-Speech-JapaneseRotary-Club-Speech-Japanese
Rotary-Club-Speech-Japanese
 
Unlocking potential
Unlocking potentialUnlocking potential
Unlocking potential
 
Thermal Imaging and its Applications
Thermal Imaging and its ApplicationsThermal Imaging and its Applications
Thermal Imaging and its Applications
 
SAM Manual
SAM ManualSAM Manual
SAM Manual
 
Riorganizzare i comuni urbanistica
Riorganizzare i comuni urbanisticaRiorganizzare i comuni urbanistica
Riorganizzare i comuni urbanistica
 
Thermography.ppt
Thermography.pptThermography.ppt
Thermography.ppt
 
Pp1 cuffia tur
Pp1 cuffia turPp1 cuffia tur
Pp1 cuffia tur
 
Comunicación
ComunicaciónComunicación
Comunicación
 
Enseñanza virtual, universidad y EESS avances y limitaciones
Enseñanza virtual, universidad y EESS avances y limitacionesEnseñanza virtual, universidad y EESS avances y limitaciones
Enseñanza virtual, universidad y EESS avances y limitaciones
 
Currency high lights 14.02.17
Currency high lights 14.02.17Currency high lights 14.02.17
Currency high lights 14.02.17
 

Similar to presentation

APS March 2020: Wang-Landau Crystallization of the Free Energy Surface of Cry...
APS March 2020: Wang-Landau Crystallization of the Free Energy Surface of Cry...APS March 2020: Wang-Landau Crystallization of the Free Energy Surface of Cry...
APS March 2020: Wang-Landau Crystallization of the Free Energy Surface of Cry...
Pierre Kawak
 
Bp219 04-13-2011
Bp219 04-13-2011Bp219 04-13-2011
Bp219 04-13-2011
waddling
 
Dissection of a Cold, Infalling High-Mass Star-Forming Core
Dissection of a Cold, Infalling High-Mass Star-Forming CoreDissection of a Cold, Infalling High-Mass Star-Forming Core
Dissection of a Cold, Infalling High-Mass Star-Forming Core
Tigran Khanzadyan
 
Cosmografi
CosmografiCosmografi
LOW FREQUENCY GW SOURCES: Chapter III: Probing massive black hole binary with...
LOW FREQUENCY GW SOURCES: Chapter III: Probing massive black hole binary with...LOW FREQUENCY GW SOURCES: Chapter III: Probing massive black hole binary with...
LOW FREQUENCY GW SOURCES: Chapter III: Probing massive black hole binary with...
Lake Como School of Advanced Studies
 
Master's presentation (English)
Master's presentation (English)Master's presentation (English)
Master's presentation (English)
Alexander Tsupko
 
Physical Modeling and Design for Phase Change Memories
Physical Modeling and Design for Phase Change MemoriesPhysical Modeling and Design for Phase Change Memories
Physical Modeling and Design for Phase Change Memories
IEEE Computer Society Computing Now
 
Laser Pulsing in Linear Compton Scattering
Laser Pulsing in Linear Compton ScatteringLaser Pulsing in Linear Compton Scattering
Laser Pulsing in Linear Compton Scattering
Todd Hodges
 
2D NMR ORGANIC SPECTROSCOPY by DR ANTHONY CRASTO
2D NMR ORGANIC SPECTROSCOPY by DR ANTHONY CRASTO2D NMR ORGANIC SPECTROSCOPY by DR ANTHONY CRASTO
2D NMR ORGANIC SPECTROSCOPY by DR ANTHONY CRASTO
Anthony Melvin Crasto Ph.D
 
The Physics of Gas Sloshing in Galaxy Clusters
The Physics of Gas Sloshing in Galaxy ClustersThe Physics of Gas Sloshing in Galaxy Clusters
The Physics of Gas Sloshing in Galaxy Clusters
John ZuHone
 
Comisso - Plasmoid Instability in Time-Evolving Current Sheets
Comisso - Plasmoid Instability in Time-Evolving Current SheetsComisso - Plasmoid Instability in Time-Evolving Current Sheets
Comisso - Plasmoid Instability in Time-Evolving Current Sheets
Luca Comisso
 
Structure change of the chiral critical point driven by isospin density (QCD@...
Structure change of the chiral critical point driven by isospin density (QCD@...Structure change of the chiral critical point driven by isospin density (QCD@...
Structure change of the chiral critical point driven by isospin density (QCD@...
Yuhei Iwata
 
2018.06.12 javier tejada ub NanoFrontMag
2018.06.12 javier tejada ub NanoFrontMag2018.06.12 javier tejada ub NanoFrontMag
2018.06.12 javier tejada ub NanoFrontMag
NanoFrontMag-cm
 
Qnsrbio
QnsrbioQnsrbio
Qnsrbio
martindudziak
 
Recent progress in proton and nuclear PDFs at small-x
Recent progress in proton and nuclear PDFs at small-xRecent progress in proton and nuclear PDFs at small-x
Recent progress in proton and nuclear PDFs at small-x
juanrojochacon
 
From Darkness, Light: Computing Cosmological Reionization
From Darkness, Light: Computing Cosmological ReionizationFrom Darkness, Light: Computing Cosmological Reionization
From Darkness, Light: Computing Cosmological Reionization
CosmoAIMS Bassett
 
Adaptive GNSS Carrier Tracking Under Ionospheric Scintillation Estimation Vs...
Adaptive GNSS Carrier Tracking Under Ionospheric Scintillation  Estimation Vs...Adaptive GNSS Carrier Tracking Under Ionospheric Scintillation  Estimation Vs...
Adaptive GNSS Carrier Tracking Under Ionospheric Scintillation Estimation Vs...
Stephen Faucher
 
Analysis Of Carbon Nanotubes And Quantum Dots In A Photovoltaic Device Slide ...
Analysis Of Carbon Nanotubes And Quantum Dots In A Photovoltaic Device Slide ...Analysis Of Carbon Nanotubes And Quantum Dots In A Photovoltaic Device Slide ...
Analysis Of Carbon Nanotubes And Quantum Dots In A Photovoltaic Device Slide ...
M. Faisal Halim
 
NANO266 - Lecture 13 - Ab initio molecular dyanmics
NANO266 - Lecture 13 - Ab initio molecular dyanmicsNANO266 - Lecture 13 - Ab initio molecular dyanmics
NANO266 - Lecture 13 - Ab initio molecular dyanmics
University of California, San Diego
 
Calculation of isotopic dipole moments with spectroscopic accuracy
Calculation of isotopic dipole moments with spectroscopic accuracyCalculation of isotopic dipole moments with spectroscopic accuracy
Calculation of isotopic dipole moments with spectroscopic accuracy
Antônio Arapiraca
 

Similar to presentation (20)

APS March 2020: Wang-Landau Crystallization of the Free Energy Surface of Cry...
APS March 2020: Wang-Landau Crystallization of the Free Energy Surface of Cry...APS March 2020: Wang-Landau Crystallization of the Free Energy Surface of Cry...
APS March 2020: Wang-Landau Crystallization of the Free Energy Surface of Cry...
 
Bp219 04-13-2011
Bp219 04-13-2011Bp219 04-13-2011
Bp219 04-13-2011
 
Dissection of a Cold, Infalling High-Mass Star-Forming Core
Dissection of a Cold, Infalling High-Mass Star-Forming CoreDissection of a Cold, Infalling High-Mass Star-Forming Core
Dissection of a Cold, Infalling High-Mass Star-Forming Core
 
Cosmografi
CosmografiCosmografi
Cosmografi
 
LOW FREQUENCY GW SOURCES: Chapter III: Probing massive black hole binary with...
LOW FREQUENCY GW SOURCES: Chapter III: Probing massive black hole binary with...LOW FREQUENCY GW SOURCES: Chapter III: Probing massive black hole binary with...
LOW FREQUENCY GW SOURCES: Chapter III: Probing massive black hole binary with...
 
Master's presentation (English)
Master's presentation (English)Master's presentation (English)
Master's presentation (English)
 
Physical Modeling and Design for Phase Change Memories
Physical Modeling and Design for Phase Change MemoriesPhysical Modeling and Design for Phase Change Memories
Physical Modeling and Design for Phase Change Memories
 
Laser Pulsing in Linear Compton Scattering
Laser Pulsing in Linear Compton ScatteringLaser Pulsing in Linear Compton Scattering
Laser Pulsing in Linear Compton Scattering
 
2D NMR ORGANIC SPECTROSCOPY by DR ANTHONY CRASTO
2D NMR ORGANIC SPECTROSCOPY by DR ANTHONY CRASTO2D NMR ORGANIC SPECTROSCOPY by DR ANTHONY CRASTO
2D NMR ORGANIC SPECTROSCOPY by DR ANTHONY CRASTO
 
The Physics of Gas Sloshing in Galaxy Clusters
The Physics of Gas Sloshing in Galaxy ClustersThe Physics of Gas Sloshing in Galaxy Clusters
The Physics of Gas Sloshing in Galaxy Clusters
 
Comisso - Plasmoid Instability in Time-Evolving Current Sheets
Comisso - Plasmoid Instability in Time-Evolving Current SheetsComisso - Plasmoid Instability in Time-Evolving Current Sheets
Comisso - Plasmoid Instability in Time-Evolving Current Sheets
 
Structure change of the chiral critical point driven by isospin density (QCD@...
Structure change of the chiral critical point driven by isospin density (QCD@...Structure change of the chiral critical point driven by isospin density (QCD@...
Structure change of the chiral critical point driven by isospin density (QCD@...
 
2018.06.12 javier tejada ub NanoFrontMag
2018.06.12 javier tejada ub NanoFrontMag2018.06.12 javier tejada ub NanoFrontMag
2018.06.12 javier tejada ub NanoFrontMag
 
Qnsrbio
QnsrbioQnsrbio
Qnsrbio
 
Recent progress in proton and nuclear PDFs at small-x
Recent progress in proton and nuclear PDFs at small-xRecent progress in proton and nuclear PDFs at small-x
Recent progress in proton and nuclear PDFs at small-x
 
From Darkness, Light: Computing Cosmological Reionization
From Darkness, Light: Computing Cosmological ReionizationFrom Darkness, Light: Computing Cosmological Reionization
From Darkness, Light: Computing Cosmological Reionization
 
Adaptive GNSS Carrier Tracking Under Ionospheric Scintillation Estimation Vs...
Adaptive GNSS Carrier Tracking Under Ionospheric Scintillation  Estimation Vs...Adaptive GNSS Carrier Tracking Under Ionospheric Scintillation  Estimation Vs...
Adaptive GNSS Carrier Tracking Under Ionospheric Scintillation Estimation Vs...
 
Analysis Of Carbon Nanotubes And Quantum Dots In A Photovoltaic Device Slide ...
Analysis Of Carbon Nanotubes And Quantum Dots In A Photovoltaic Device Slide ...Analysis Of Carbon Nanotubes And Quantum Dots In A Photovoltaic Device Slide ...
Analysis Of Carbon Nanotubes And Quantum Dots In A Photovoltaic Device Slide ...
 
NANO266 - Lecture 13 - Ab initio molecular dyanmics
NANO266 - Lecture 13 - Ab initio molecular dyanmicsNANO266 - Lecture 13 - Ab initio molecular dyanmics
NANO266 - Lecture 13 - Ab initio molecular dyanmics
 
Calculation of isotopic dipole moments with spectroscopic accuracy
Calculation of isotopic dipole moments with spectroscopic accuracyCalculation of isotopic dipole moments with spectroscopic accuracy
Calculation of isotopic dipole moments with spectroscopic accuracy
 

presentation

  • 1. Overview Background Radial Velocity Numerical Simulation Radiative Transfer Results Conclusions Synthetic Spectral Signatures in Hierarchically Collapsing Cores Robert Loughnane Instituto de Radioastronom´ıa y Astrof´ısica (IRyA-UNAM) Morelia, Michoac´an, M´exico in collaboration with: Enrique V´azquez-Semadeni & Ra´ul Naranjo-Romero CLOUDY: Emission Lines in Astrophysics, from Gaseous Nebulae to Quasars, M´exico City, M´exico Monday 8th August, 2016 Robert Loughnane CLOUDY 2016
  • 2. Overview Background Radial Velocity Numerical Simulation Radiative Transfer Results Conclusions Overview Background Radial Velocity Simulation Details Radiative Transfer Analytical Infall Analysis Results: Tb/Tr and δv Concluding Remarks Robert Loughnane CLOUDY 2016
  • 3. Overview Background Radial Velocity Numerical Simulation Radiative Transfer Results Conclusions Overview 1 Overview 2 Background Present Understanding of Cores I Present Understanding of Cores II Hierarchical Collapse I Hierarchical Collapse II Hierarchical Collapse III 3 Radial Velocity Velocity Assumptions 4 Numerical Simulation Simulation Details I Simulation Details II Simulation Details III 5 Radiative Transfer Modeling Approximation 6 Results Selected Results I Selected Results II Selected Results III 7 Conclusions Robert Loughnane CLOUDY 2016
  • 4. Overview Background Radial Velocity Numerical Simulation Radiative Transfer Results Conclusions Present Understanding of Cores I How are cores supported? Figure: N2D+ emission from single massive self-gravitating core from ALMA. [Image courtesy of Bill Saxton & Alexandra Angelich (NRAO/AUI/NSF); ALMA (ESO/NAOJ/NRAO)] Molecular clouds (MCs) are supersonically turbulent - not magnetically supported (Crutcher et al. 2010) Gravoturbulent: MCs are supported against collapse by virialized turbulence (Heyer et al. 2009) Magnetic support scenario → gravoturbulent scenario Cores evolve quasi-statically in prestellar phase → supported by observations of Bonnor-Ebert (BE) like density profiles Robert Loughnane CLOUDY 2016
  • 5. Overview Background Radial Velocity Numerical Simulation Radiative Transfer Results Conclusions Present Understanding of Cores II “Quasi-static” picture How can cores be “quasi-static”? They are produced in a supersonically turbulent medium! Complications: Jeans-stable confined configurations need a confining medium for the dense cores How does hydrostatic configuration arise first - then accretes quasi-statically if formed by a dynamic compression? Evolving configurations form and acrete through shocks. Before becoming Jeans-unstable, expands and then become unstable. It therefore collapses and never once undergoes quasi-static stage. Robert Loughnane CLOUDY 2016
  • 6. Overview Background Radial Velocity Numerical Simulation Radiative Transfer Results Conclusions Hierarchical Collapse I Plausible Scenario Global hierarchical collapse of MCs (Buckert & Hartmann 2007; V´azquez-Semadeni et al. 2007, 2009; Naranjo-Romero et al. 2015 [NR15]) MCs are turbulent - due to several instabilities during assembly - strongly Jeans unstable (mass ≈ many Jeans masses, MJ) Gas entering suffers phase transition: warm-diffuse atomic phase → dense-cold phase ⇒ n↑ and T↓ by ∼102. Reduction in MJ by 104 (G´omez & V´azquez-Semadeni 2014) Clouds contract globally → ¯MJ goes down due to larger ¯n (constant T) ⇒ small-scale fluctuations [from turbulence] undergo collapse when M > MJ. Robert Loughnane CLOUDY 2016
  • 7. Overview Background Radial Velocity Numerical Simulation Radiative Transfer Results Conclusions Hierarchical Collapse II NR15 Simulation NR15: Numerical simulation of collapse of local, near-MJ fluctuation in a uniform, multi-MJ spherical background medium. NOTE: Collapse is until prestellar stage with center outside box. Similar to Larson (1969) - but it sits on a uniform, Jeans unstable background Features of simulation: Develops BE-like density profile - not in equilibrium Characterized by “outside-in” velocity profile Core develops supersonic infall speeds before singularity. Contradicts notion that low-mass starless cores exhibit subsonic infall speeds (Lee et al. 2001) Robert Loughnane CLOUDY 2016
  • 8. Overview Background Radial Velocity Numerical Simulation Radiative Transfer Results Conclusions Hierarchical Collapse III Density & Velocity Profiles −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 x/LJ 10 4 10 5 10 6 10 7 n[cm −3 ] −0.3 −0.2 −0.1 0.0 0.1 0.2 0.3 r [pc] −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 x/LJ −3 −2 −1 0 1 2 3 v/cs −0.3 −0.2 −0.1 0.0 0.1 0.2 0.3 r [pc] Simulation develops radial velocity profile from fluctuation in background flow. Core with amplitude 50% more than mean density of unstable “cloud”. “Core” defined at radius it merges into background. Grows in mass & radius over time - dissimilar to other numerical setups. Robert Loughnane CLOUDY 2016
  • 9. Overview Background Radial Velocity Numerical Simulation Radiative Transfer Results Conclusions Overview 1 Overview 2 Background Present Understanding of Cores I Present Understanding of Cores II Hierarchical Collapse I Hierarchical Collapse II Hierarchical Collapse III 3 Radial Velocity Velocity Assumptions 4 Numerical Simulation Simulation Details I Simulation Details II Simulation Details III 5 Radiative Transfer Modeling Approximation 6 Results Selected Results I Selected Results II Selected Results III 7 Conclusions Robert Loughnane CLOUDY 2016
  • 10. Overview Background Radial Velocity Numerical Simulation Radiative Transfer Results Conclusions Velocity Assumptions Velocity Assumptions Optically-thick lines of non-homologously collapsing cores show blue-skewed, self-absorbed profiles. Plausible collapse: Blue-skewed, self-absorbed optically-thick line and gaussian-like optically thin line at the self-absorption dip. Earliest assumptions on radial velocity profiles: Inside-out collapse (Snell & Loren 1977, Zhou et al. 1993) - collapse of initially static SIS (Shu 1977). Unrealistic since SIS is unstable! Other suggestions: Simple two-layer model (Myers et al. 1996) and initially unstable BE-like sphere (e.g. Keto et al. 2015). Latter ⇒ QE-BE model is most likely for Taurus-Auriga core L1544! Robert Loughnane CLOUDY 2016
  • 11. Overview Background Radial Velocity Numerical Simulation Radiative Transfer Results Conclusions Overview 1 Overview 2 Background Present Understanding of Cores I Present Understanding of Cores II Hierarchical Collapse I Hierarchical Collapse II Hierarchical Collapse III 3 Radial Velocity Velocity Assumptions 4 Numerical Simulation Simulation Details I Simulation Details II Simulation Details III 5 Radiative Transfer Modeling Approximation 6 Results Selected Results I Selected Results II Selected Results III 7 Conclusions Robert Loughnane CLOUDY 2016
  • 12. Overview Background Radial Velocity Numerical Simulation Radiative Transfer Results Conclusions Simulation Details I Numerical Setup Isothermal (T=11.4K) gas starting at rest with a uniform density n=104cm−3 ⇒ cs=0.2km s−1 The Jeans length LJ= πc2 s Gρ 1/2 ≈ 0.22pc, where µmol=2.36 Lb= √ 10LJ ≈ 0.71pc per side with total mass M ≈ 207M ≈ 31.6MJ. Grid resolution is 5123 cells. Robert Loughnane CLOUDY 2016
  • 13. Overview Background Radial Velocity Numerical Simulation Radiative Transfer Results Conclusions Simulation Details II Modeled Sub-box For synthetic spectra generation: Central half-length sub-box of grid with V=0.047pc3 = Lb 2 3 centered on highest density voxel. ⇒ Sub-box resolution is 2563 grid cells with spatial resolution of 1.387×10−3pc x, LOS y z Robert Loughnane CLOUDY 2016
  • 14. Overview Background Radial Velocity Numerical Simulation Radiative Transfer Results Conclusions Simulation Details III Analysed Timesteps Robert Loughnane CLOUDY 2016
  • 15. Overview Background Radial Velocity Numerical Simulation Radiative Transfer Results Conclusions Overview 1 Overview 2 Background Present Understanding of Cores I Present Understanding of Cores II Hierarchical Collapse I Hierarchical Collapse II Hierarchical Collapse III 3 Radial Velocity Velocity Assumptions 4 Numerical Simulation Simulation Details I Simulation Details II Simulation Details III 5 Radiative Transfer Modeling Approximation 6 Results Selected Results I Selected Results II Selected Results III 7 Conclusions Robert Loughnane CLOUDY 2016
  • 16. Overview Background Radial Velocity Numerical Simulation Radiative Transfer Results Conclusions Modeling Approximation Modeling Approximation MOLLIE (Keto et al. 2004, 2010) High-τ: HCO+ more opaque than CS & H2CO - µHCO+ > µCS χHCO+ =3×10−9 Low-τ: N2H+ JF1F=101→012 - gaussian χN2H+ =3×10−10 Beam convolution: θb = 0.015, 0.03, 0.06pc Robert Loughnane CLOUDY 2016
  • 17. Overview Background Radial Velocity Numerical Simulation Radiative Transfer Results Conclusions Overview 1 Overview 2 Background Present Understanding of Cores I Present Understanding of Cores II Hierarchical Collapse I Hierarchical Collapse II Hierarchical Collapse III 3 Radial Velocity Velocity Assumptions 4 Numerical Simulation Simulation Details I Simulation Details II Simulation Details III 5 Radiative Transfer Modeling Approximation 6 Results Selected Results I Selected Results II Selected Results III 7 Conclusions Robert Loughnane CLOUDY 2016
  • 18. Overview Background Radial Velocity Numerical Simulation Radiative Transfer Results Conclusions Selected Results I Analytical Infall Infall velocities derived using “Hill5hybrid”-model from De Vries & Myers (2005). Fits σ, vlsr, τ0, TP & vin Loughnane et al. (in prep) Robert Loughnane CLOUDY 2016
  • 19. Overview Background Radial Velocity Numerical Simulation Radiative Transfer Results Conclusions Selected Results II Mardones Parameter - δv δv = Vthick−Vthin ∆vthin δv-parameter (Mardones et al. 1997): Skewness of blue peak De Vries & Myers (2005). Loughnane et al. (in prep) Robert Loughnane CLOUDY 2016
  • 20. Overview Background Radial Velocity Numerical Simulation Radiative Transfer Results Conclusions Selected Results III Degree of Asymmetry: Tb/Tr-ratio Another measure of the degree of infall δv-parameter (Mardones et al. 1997): Skewness of blue peak Stahler & Yen (2010): Current numerical models cannot reproduce observed Tb/Tr-ratio Loughnane et al. (in prep) Robert Loughnane CLOUDY 2016
  • 21. Overview Background Radial Velocity Numerical Simulation Radiative Transfer Results Conclusions Overview 1 Overview 2 Background Present Understanding of Cores I Present Understanding of Cores II Hierarchical Collapse I Hierarchical Collapse II Hierarchical Collapse III 3 Radial Velocity Velocity Assumptions 4 Numerical Simulation Simulation Details I Simulation Details II Simulation Details III 5 Radiative Transfer Modeling Approximation 6 Results Selected Results I Selected Results II Selected Results III 7 Conclusions Robert Loughnane CLOUDY 2016
  • 22. Overview Background Radial Velocity Numerical Simulation Radiative Transfer Results Conclusions Concluding Remarks Apparently subsonic velocities - artifact of assumed radial velocity profile Core collapses outside-in with maximum speed at envelope - not in the center, as in inside-out picture of Shu. Line profiles are density-weighted LOS velocity histograms - Vmax at lower densities Core displays well-publicized values of δv and can reproduce observed Tb/Tr Robert Loughnane CLOUDY 2016
  • 23. Overview Background Radial Velocity Numerical Simulation Radiative Transfer Results Conclusions Gracias por su atenci´on! r.loughnane@crya.unam.mx Robert Loughnane CLOUDY 2016