SlideShare a Scribd company logo
1 of 20
Ch 7.2: Review of Matrices
For theoretical and computation reasons, we review results
of matrix theory in this section and the next.
A matrix A is an m x n rectangular array of elements,
arranged in m rows and n columns, denoted
Some examples of 2 x 2 matrices are given below:
( )














==
mnmm
n
n
ji
aaa
aaa
aaa
a




21
22221
11211
A






−+
−
=





=





=
ii
i
CB
7654
231
,
42
31
,
43
21
A
Transpose
The transpose of A = (aij) is AT
= (aji).
For example,














=⇒














=
mnnn
m
m
T
mnmm
n
n
aaa
aaa
aaa
aaa
aaa
aaa








21
22212
12111
21
22221
11211
AA










=⇒





=





=⇒





=
63
52
41
654
321
,
42
31
43
21 TT
BBAA
Conjugate
The conjugate of A = (aij) is A = (aij).
For example,














=⇒














=
mnmm
n
n
mnmm
n
n
aaa
aaa
aaa
aaa
aaa
aaa








21
22221
11211
21
22221
11211
AA






+
−
=⇒





−
+
=
443
321
443
321
i
i
i
i
AA
Adjoint
The adjoint of A is AT
, and is denoted by A*
For example,














=⇒














=
mnnn
m
m
mnmm
n
n
aaa
aaa
aaa
aaa
aaa
aaa








21
22212
12111
*
21
22221
11211
AA






−
+
=⇒





−
+
=
432
431
443
321 *
i
i
i
i
AA
Square Matrices
A square matrix A has the same number of rows and
columns. That is, A is n x n. In this case, A is said to have
order n.
For example,














=
nnnn
n
n
aaa
aaa
aaa




21
22221
11211
A










=





=
987
654
321
,
43
21
BA
Vectors
A column vector x is an n x 1 matrix. For example,
A row vector x is a 1 x n matrix. For example,
Note here that y = xT
, and that in general, if x is a column
vector x, then xT
is a row vector.










=
3
2
1
x
( )321=y
The Zero Matrix
The zero matrix is defined to be 0 = (0), whose dimensions
depend on the context. For example,
,
00
00
00
,
000
000
,
00
00










=





=





= 000
Matrix Equality
Two matrices A = (aij) and B = (bij) are equal if aij = bij for
all i and j. For example,
BABA =⇒





=





=
43
21
,
43
21
Matrix – Scalar Multiplication
The product of a matrix A = (aij) and a constant k is defined
to be kA = (kaij). For example,






−−−
−−−
=−⇒





=
302520
15105
5
654
321
AA
Matrix Addition and Subtraction
The sum of two m x n matrices A = (aij) and B = (bij) is
defined to be A + B = (aij + bij). For example,
The difference of two m x n matrices A = (aij) and B = (bij)
is defined to be A - B = (aij - bij). For example,






=+⇒





=





=
1210
86
87
65
,
43
21
BABA






−−
−−
=−⇒





=





=
44
44
87
65
,
43
21
BABA
Matrix Multiplication
The product of an m x n matrix A = (aij) and an n x r matrix
B = (bij) is defined to be the matrix C = (cij), where
Examples (note AB does not necessarily equal BA):
∑=
=
n
k
kjikij bac
1






=





−+++
−+++
=⇒










−
=





=






=





++
++
=⇒






=





++
++
=⇒





=





=
417
15
61000512
340023
10
21
03
,
654
321
2014
1410
164122
12291
2511
115
16983
8341
42
31
,
43
21
CDDC
BA
ABBA
Vector Multiplication
The dot product of two n x 1 vectors x & y is defined as
The inner product of two n x 1 vectors x & y is defined as
Example:
∑=
=
n
k
ji
T
yx
1
yx
( ) ∑=
==
n
k
ji
T
yx,
1
yxyx
( ) iiii,
iiii
i
i
i
T
T
2118)55)(3()32)(2()1)(1(
912)55)(3()32)(2()1)(1(
55
32
1
,
3
2
1
+=−+++−==⇒
+−=++−+−=⇒










+
−
−
=










=
yxyx
yxyx
Vector Length
The length of an n x 1 vector x is defined as
Note here that we have used the fact that if x = a + bi, then
Example:
( )
2/1
1
2
2/1
1
2/1
|| 





=





== ∑∑ ==
n
k
k
n
k
kk xxx,xxx
( )
( ) 3016941
)43)(43()2)(2()1)(1(
43
2
1
2/1
=+++=
−+++==⇒










+
= ii,
i
xxxx
( )( ) 222
xbabiabiaxx =+=−+=⋅
Orthogonality
Two n x 1 vectors x & y are orthogonal if (x,y) = 0.
Example:
( ) 0)1)(3()4)(2()11)(1(
1
4
11
3
2
1
=−+−+=⇒










−
−=










= yxyx ,
Identity Matrix
The multiplicative identity matrix I is an n x n matrix
given by
For any square matrix A, it follows that AI = IA = A.
The dimensions of I depend on the context. For example,














=
100
010
001




I










=




















=





=











=
987
654
321
987
654
321
100
010
001
,
43
21
10
01
43
21
IBAI
Inverse Matrix
A square matrix A is nonsingular, or invertible, if there
exists a matrix B such that that AB = BA = I. Otherwise A
is singular.
The matrix B, if it exists, is unique and is denoted by A-1
and
is called the inverse of A.
It turns out that A-1
exists iff detA ≠ 0, and A-1
can be found
using row reduction (also called Gaussian elimination) on
the augmented matrix (A|I), see example on next slide.
The three elementary row operations:
Interchange two rows.
Multiply a row by a nonzero scalar.
Add a multiple of one row to another row.
Example: Finding the Identity Matrix (1 of 2)
Use row reduction to find the inverse of the matrix A below,
if it exists.
Solution: If possible, use elementary row operations to
reduce (A|I),
such that the left side is the identity matrix, for then the
right side will be A-1
. (See next slide.)










−
=
834
301
210
A
( ) ,
100834
010301
001210










−
=IA
Example: Finding the Identity Matrix (2 of 2)
Thus
( )










−
−−
−−
→










−
−−→










−
→










−−−
→










−
→










−
=
2/122/3100
142010
2/372/9001
143200
142010
010301
143200
001210
010301
140430
001210
010301
100834
001210
010301
100834
010301
001210
IA










−
−−
−−
=−
2/122/3
142
2/372/9
1
A
Matrix Functions
The elements of a matrix can be functions of a real variable.
In this case, we write
Such a matrix is continuous at a point, or on an interval
(a, b), if each element is continuous there. Similarly with
differentiation and integration:














=














=
)()()(
)()()(
)()()(
)(,
)(
)(
)(
)(
21
22221
11211
2
1
tatata
tatata
tatata
t
tx
tx
tx
t
mnmm
n
n
m 




Ax




=





= ∫∫
b
a
ij
b
a
ij
dttadtt
dt
da
dt
d
)()(, A
A
Example & Differentiation Rules
Example:
Many of the rules from calculus apply in this setting. For
example: ( )
( )
( )






+





=
+=
+
=
dt
d
dt
d
dt
d
dt
d
dt
d
dt
d
dt
d
dt
d
B
AB
AAB
BABA
C
A
C
CA
matrixconstantaiswhere,








−
=⇒






−
=⇒







=
∫ π
ππ
41
0
)(
,
0sin
cos6
4cos
sin3
)(
3
0
2
dtt
t
tt
dt
d
t
tt
t
A
A
A

More Related Content

What's hot (20)

Linear regression
Linear regressionLinear regression
Linear regression
 
Simple linear regression
Simple linear regressionSimple linear regression
Simple linear regression
 
Simple linear regression
Simple linear regressionSimple linear regression
Simple linear regression
 
Đề Thi HK2 Toán 8 - THCS - THPT Ngôi Sao
Đề Thi HK2 Toán 8 - THCS - THPT Ngôi SaoĐề Thi HK2 Toán 8 - THCS - THPT Ngôi Sao
Đề Thi HK2 Toán 8 - THCS - THPT Ngôi Sao
 
METHOD OF LEAST SQURE
METHOD OF LEAST SQUREMETHOD OF LEAST SQURE
METHOD OF LEAST SQURE
 
130553704223906250
130553704223906250130553704223906250
130553704223906250
 
Matrices
MatricesMatrices
Matrices
 
Curve fitting
Curve fittingCurve fitting
Curve fitting
 
Bruja de Agnesi
Bruja de AgnesiBruja de Agnesi
Bruja de Agnesi
 
Add Math(F5) Graph Of Function Ii 2.1
Add Math(F5) Graph Of Function Ii 2.1Add Math(F5) Graph Of Function Ii 2.1
Add Math(F5) Graph Of Function Ii 2.1
 
Matlab polynimials and curve fitting
Matlab polynimials and curve fittingMatlab polynimials and curve fitting
Matlab polynimials and curve fitting
 
Applied numerical methods lec8
Applied numerical methods lec8Applied numerical methods lec8
Applied numerical methods lec8
 
Đề Thi HK2 Toán 7 - THCS Hermann Gmeiner
Đề Thi HK2 Toán 7 - THCS Hermann GmeinerĐề Thi HK2 Toán 7 - THCS Hermann Gmeiner
Đề Thi HK2 Toán 7 - THCS Hermann Gmeiner
 
Ch14
Ch14Ch14
Ch14
 
Non linear curve fitting
Non linear curve fitting Non linear curve fitting
Non linear curve fitting
 
Đề Thi HK2 Toán 7 - THCS Nguyễn Du
Đề Thi HK2 Toán 7 - THCS Nguyễn DuĐề Thi HK2 Toán 7 - THCS Nguyễn Du
Đề Thi HK2 Toán 7 - THCS Nguyễn Du
 
Activity 02
Activity 02Activity 02
Activity 02
 
Least Squares
Least SquaresLeast Squares
Least Squares
 
Trigonometric functions
Trigonometric functionsTrigonometric functions
Trigonometric functions
 
Matrix
MatrixMatrix
Matrix
 

Viewers also liked

Chemical & Microbial analysis of farm & forest soil
Chemical & Microbial analysis of farm & forest soilChemical & Microbial analysis of farm & forest soil
Chemical & Microbial analysis of farm & forest soilIshan Trivedi
 
Applications of matrices in real life
Applications of matrices in real lifeApplications of matrices in real life
Applications of matrices in real lifeSuhaibFaiz
 
Eigen value and eigen vector
Eigen value and eigen vectorEigen value and eigen vector
Eigen value and eigen vectorRutvij Patel
 
presentation on matrix
 presentation on matrix presentation on matrix
presentation on matrixNikhi Jain
 
Matrices And Application Of Matrices
Matrices And Application Of MatricesMatrices And Application Of Matrices
Matrices And Application Of Matricesmailrenuka
 

Viewers also liked (7)

Ch06 5
Ch06 5Ch06 5
Ch06 5
 
Chemical & Microbial analysis of farm & forest soil
Chemical & Microbial analysis of farm & forest soilChemical & Microbial analysis of farm & forest soil
Chemical & Microbial analysis of farm & forest soil
 
Applications of matrices in real life
Applications of matrices in real lifeApplications of matrices in real life
Applications of matrices in real life
 
Eigen value and eigen vector
Eigen value and eigen vectorEigen value and eigen vector
Eigen value and eigen vector
 
Application of matrices in real life
Application of matrices in real lifeApplication of matrices in real life
Application of matrices in real life
 
presentation on matrix
 presentation on matrix presentation on matrix
presentation on matrix
 
Matrices And Application Of Matrices
Matrices And Application Of MatricesMatrices And Application Of Matrices
Matrices And Application Of Matrices
 

Similar to Ch07 2

chap01987654etghujh76687976jgtfhhhgve.ppt
chap01987654etghujh76687976jgtfhhhgve.pptchap01987654etghujh76687976jgtfhhhgve.ppt
chap01987654etghujh76687976jgtfhhhgve.pptadonyasdd
 
Bba i-bm-u-2- matrix -
Bba i-bm-u-2- matrix -Bba i-bm-u-2- matrix -
Bba i-bm-u-2- matrix -Rai University
 
Ppt on matrices and Determinants
Ppt on matrices and DeterminantsPpt on matrices and Determinants
Ppt on matrices and DeterminantsNirmalaSolapur
 
Calculus and matrix algebra notes
Calculus and matrix algebra notesCalculus and matrix algebra notes
Calculus and matrix algebra notesVICTOROGOT4
 
Matrix and Determinants
Matrix and DeterminantsMatrix and Determinants
Matrix and DeterminantsAarjavPinara
 
Linear Algebra and Matrix
Linear Algebra and MatrixLinear Algebra and Matrix
Linear Algebra and Matrixitutor
 
GATE Preparation : Matrix Algebra
GATE Preparation : Matrix AlgebraGATE Preparation : Matrix Algebra
GATE Preparation : Matrix AlgebraParthDave57
 
Matrices & determinants
Matrices & determinantsMatrices & determinants
Matrices & determinantsindu thakur
 
systems of linear equations & matrices
systems of linear equations & matricessystems of linear equations & matrices
systems of linear equations & matricesStudent
 
Matrices - Mathematics
Matrices - MathematicsMatrices - Mathematics
Matrices - MathematicsDrishti Bhalla
 
Appendix B Matrices And Determinants
Appendix B  Matrices And DeterminantsAppendix B  Matrices And Determinants
Appendix B Matrices And DeterminantsAngie Miller
 
Matrices ,Basics, Determinant, Inverse, EigenValues, Linear Equations, RANK
Matrices ,Basics, Determinant, Inverse, EigenValues, Linear Equations, RANKMatrices ,Basics, Determinant, Inverse, EigenValues, Linear Equations, RANK
Matrices ,Basics, Determinant, Inverse, EigenValues, Linear Equations, RANKWaqas Afzal
 

Similar to Ch07 2 (20)

Matrices
MatricesMatrices
Matrices
 
chap01987654etghujh76687976jgtfhhhgve.ppt
chap01987654etghujh76687976jgtfhhhgve.pptchap01987654etghujh76687976jgtfhhhgve.ppt
chap01987654etghujh76687976jgtfhhhgve.ppt
 
Matrices
MatricesMatrices
Matrices
 
Bba i-bm-u-2- matrix -
Bba i-bm-u-2- matrix -Bba i-bm-u-2- matrix -
Bba i-bm-u-2- matrix -
 
Ppt on matrices and Determinants
Ppt on matrices and DeterminantsPpt on matrices and Determinants
Ppt on matrices and Determinants
 
Matrices & Determinants
Matrices & DeterminantsMatrices & Determinants
Matrices & Determinants
 
Calculus and matrix algebra notes
Calculus and matrix algebra notesCalculus and matrix algebra notes
Calculus and matrix algebra notes
 
Matrix and Determinants
Matrix and DeterminantsMatrix and Determinants
Matrix and Determinants
 
Linear Algebra and Matrix
Linear Algebra and MatrixLinear Algebra and Matrix
Linear Algebra and Matrix
 
3.-Matrix.pdf
3.-Matrix.pdf3.-Matrix.pdf
3.-Matrix.pdf
 
3. Matrix Algebra.ppt
3. Matrix Algebra.ppt3. Matrix Algebra.ppt
3. Matrix Algebra.ppt
 
GATE Preparation : Matrix Algebra
GATE Preparation : Matrix AlgebraGATE Preparation : Matrix Algebra
GATE Preparation : Matrix Algebra
 
1563 matrix algebra
1563 matrix algebra1563 matrix algebra
1563 matrix algebra
 
Matrices & determinants
Matrices & determinantsMatrices & determinants
Matrices & determinants
 
systems of linear equations & matrices
systems of linear equations & matricessystems of linear equations & matrices
systems of linear equations & matrices
 
Matrices - Mathematics
Matrices - MathematicsMatrices - Mathematics
Matrices - Mathematics
 
Ch07 3
Ch07 3Ch07 3
Ch07 3
 
Matrices & Determinants.pdf
Matrices & Determinants.pdfMatrices & Determinants.pdf
Matrices & Determinants.pdf
 
Appendix B Matrices And Determinants
Appendix B  Matrices And DeterminantsAppendix B  Matrices And Determinants
Appendix B Matrices And Determinants
 
Matrices ,Basics, Determinant, Inverse, EigenValues, Linear Equations, RANK
Matrices ,Basics, Determinant, Inverse, EigenValues, Linear Equations, RANKMatrices ,Basics, Determinant, Inverse, EigenValues, Linear Equations, RANK
Matrices ,Basics, Determinant, Inverse, EigenValues, Linear Equations, RANK
 

More from Rendy Robert (20)

Ch08 3
Ch08 3Ch08 3
Ch08 3
 
Ch08 1
Ch08 1Ch08 1
Ch08 1
 
Ch07 9
Ch07 9Ch07 9
Ch07 9
 
Ch07 8
Ch07 8Ch07 8
Ch07 8
 
Ch07 7
Ch07 7Ch07 7
Ch07 7
 
Ch07 6
Ch07 6Ch07 6
Ch07 6
 
Ch07 5
Ch07 5Ch07 5
Ch07 5
 
Ch07 4
Ch07 4Ch07 4
Ch07 4
 
Ch07 1
Ch07 1Ch07 1
Ch07 1
 
Ch06 6
Ch06 6Ch06 6
Ch06 6
 
Ch06 4
Ch06 4Ch06 4
Ch06 4
 
Ch06 3
Ch06 3Ch06 3
Ch06 3
 
Ch06 2
Ch06 2Ch06 2
Ch06 2
 
Ch06 1
Ch06 1Ch06 1
Ch06 1
 
Ch05 8
Ch05 8Ch05 8
Ch05 8
 
Ch05 7
Ch05 7Ch05 7
Ch05 7
 
Ch05 6
Ch05 6Ch05 6
Ch05 6
 
Ch05 5
Ch05 5Ch05 5
Ch05 5
 
Ch05 4
Ch05 4Ch05 4
Ch05 4
 
Ch05 3
Ch05 3Ch05 3
Ch05 3
 

Ch07 2

  • 1. Ch 7.2: Review of Matrices For theoretical and computation reasons, we review results of matrix theory in this section and the next. A matrix A is an m x n rectangular array of elements, arranged in m rows and n columns, denoted Some examples of 2 x 2 matrices are given below: ( )               == mnmm n n ji aaa aaa aaa a     21 22221 11211 A       −+ − =      =      = ii i CB 7654 231 , 42 31 , 43 21 A
  • 2. Transpose The transpose of A = (aij) is AT = (aji). For example,               =⇒               = mnnn m m T mnmm n n aaa aaa aaa aaa aaa aaa         21 22212 12111 21 22221 11211 AA           =⇒      =      =⇒      = 63 52 41 654 321 , 42 31 43 21 TT BBAA
  • 3. Conjugate The conjugate of A = (aij) is A = (aij). For example,               =⇒               = mnmm n n mnmm n n aaa aaa aaa aaa aaa aaa         21 22221 11211 21 22221 11211 AA       + − =⇒      − + = 443 321 443 321 i i i i AA
  • 4. Adjoint The adjoint of A is AT , and is denoted by A* For example,               =⇒               = mnnn m m mnmm n n aaa aaa aaa aaa aaa aaa         21 22212 12111 * 21 22221 11211 AA       − + =⇒      − + = 432 431 443 321 * i i i i AA
  • 5. Square Matrices A square matrix A has the same number of rows and columns. That is, A is n x n. In this case, A is said to have order n. For example,               = nnnn n n aaa aaa aaa     21 22221 11211 A           =      = 987 654 321 , 43 21 BA
  • 6. Vectors A column vector x is an n x 1 matrix. For example, A row vector x is a 1 x n matrix. For example, Note here that y = xT , and that in general, if x is a column vector x, then xT is a row vector.           = 3 2 1 x ( )321=y
  • 7. The Zero Matrix The zero matrix is defined to be 0 = (0), whose dimensions depend on the context. For example, , 00 00 00 , 000 000 , 00 00           =      =      = 000
  • 8. Matrix Equality Two matrices A = (aij) and B = (bij) are equal if aij = bij for all i and j. For example, BABA =⇒      =      = 43 21 , 43 21
  • 9. Matrix – Scalar Multiplication The product of a matrix A = (aij) and a constant k is defined to be kA = (kaij). For example,       −−− −−− =−⇒      = 302520 15105 5 654 321 AA
  • 10. Matrix Addition and Subtraction The sum of two m x n matrices A = (aij) and B = (bij) is defined to be A + B = (aij + bij). For example, The difference of two m x n matrices A = (aij) and B = (bij) is defined to be A - B = (aij - bij). For example,       =+⇒      =      = 1210 86 87 65 , 43 21 BABA       −− −− =−⇒      =      = 44 44 87 65 , 43 21 BABA
  • 11. Matrix Multiplication The product of an m x n matrix A = (aij) and an n x r matrix B = (bij) is defined to be the matrix C = (cij), where Examples (note AB does not necessarily equal BA): ∑= = n k kjikij bac 1       =      −+++ −+++ =⇒           − =      =       =      ++ ++ =⇒       =      ++ ++ =⇒      =      = 417 15 61000512 340023 10 21 03 , 654 321 2014 1410 164122 12291 2511 115 16983 8341 42 31 , 43 21 CDDC BA ABBA
  • 12. Vector Multiplication The dot product of two n x 1 vectors x & y is defined as The inner product of two n x 1 vectors x & y is defined as Example: ∑= = n k ji T yx 1 yx ( ) ∑= == n k ji T yx, 1 yxyx ( ) iiii, iiii i i i T T 2118)55)(3()32)(2()1)(1( 912)55)(3()32)(2()1)(1( 55 32 1 , 3 2 1 +=−+++−==⇒ +−=++−+−=⇒           + − − =           = yxyx yxyx
  • 13. Vector Length The length of an n x 1 vector x is defined as Note here that we have used the fact that if x = a + bi, then Example: ( ) 2/1 1 2 2/1 1 2/1 ||       =      == ∑∑ == n k k n k kk xxx,xxx ( ) ( ) 3016941 )43)(43()2)(2()1)(1( 43 2 1 2/1 =+++= −+++==⇒           + = ii, i xxxx ( )( ) 222 xbabiabiaxx =+=−+=⋅
  • 14. Orthogonality Two n x 1 vectors x & y are orthogonal if (x,y) = 0. Example: ( ) 0)1)(3()4)(2()11)(1( 1 4 11 3 2 1 =−+−+=⇒           − −=           = yxyx ,
  • 15. Identity Matrix The multiplicative identity matrix I is an n x n matrix given by For any square matrix A, it follows that AI = IA = A. The dimensions of I depend on the context. For example,               = 100 010 001     I           =                     =      =            = 987 654 321 987 654 321 100 010 001 , 43 21 10 01 43 21 IBAI
  • 16. Inverse Matrix A square matrix A is nonsingular, or invertible, if there exists a matrix B such that that AB = BA = I. Otherwise A is singular. The matrix B, if it exists, is unique and is denoted by A-1 and is called the inverse of A. It turns out that A-1 exists iff detA ≠ 0, and A-1 can be found using row reduction (also called Gaussian elimination) on the augmented matrix (A|I), see example on next slide. The three elementary row operations: Interchange two rows. Multiply a row by a nonzero scalar. Add a multiple of one row to another row.
  • 17. Example: Finding the Identity Matrix (1 of 2) Use row reduction to find the inverse of the matrix A below, if it exists. Solution: If possible, use elementary row operations to reduce (A|I), such that the left side is the identity matrix, for then the right side will be A-1 . (See next slide.)           − = 834 301 210 A ( ) , 100834 010301 001210           − =IA
  • 18. Example: Finding the Identity Matrix (2 of 2) Thus ( )           − −− −− →           − −−→           − →           −−− →           − →           − = 2/122/3100 142010 2/372/9001 143200 142010 010301 143200 001210 010301 140430 001210 010301 100834 001210 010301 100834 010301 001210 IA           − −− −− =− 2/122/3 142 2/372/9 1 A
  • 19. Matrix Functions The elements of a matrix can be functions of a real variable. In this case, we write Such a matrix is continuous at a point, or on an interval (a, b), if each element is continuous there. Similarly with differentiation and integration:               =               = )()()( )()()( )()()( )(, )( )( )( )( 21 22221 11211 2 1 tatata tatata tatata t tx tx tx t mnmm n n m      Ax     =      = ∫∫ b a ij b a ij dttadtt dt da dt d )()(, A A
  • 20. Example & Differentiation Rules Example: Many of the rules from calculus apply in this setting. For example: ( ) ( ) ( )       +      = += + = dt d dt d dt d dt d dt d dt d dt d dt d B AB AAB BABA C A C CA matrixconstantaiswhere,         − =⇒       − =⇒        = ∫ π ππ 41 0 )( , 0sin cos6 4cos sin3 )( 3 0 2 dtt t tt dt d t tt t A A A