SlideShare a Scribd company logo

TheoryA.pdf

ΦΥΣΙΚΗ Α' ΓΥΜΝΑΣΙΟΥ

1 of 12
Download to read offline
ΥΣΙΚΗ Α’ ΓΥΜΝΑΣΙΟΥ
ΦΥΛΛΑΔΙΑ ΘΕΩΡΙΑΣ
ΠΕΡΙΕΧΟΜΕΝΑ
1 ΜΕΤΡΗΣΕΙΣ ΜΗΚΟΥΣ – Η ΜΕΣΗ ΤΙΜΗ 1
2 ΜΕΤΡΗΣΕΙΣ ΧΡΟΝΟΥ – Η ΑΚΡΙΒΕΙΑ 2
3 ΜΕΤΡΗΣΕΙΣ ΜΑΖΑΣ – ΤΑ ΔΙΑΓΡΑΜΜΑΤΑ 3
4 ΜΕΤΡΗΣΗ ΟΓΚΟΥ 5
5 ΜΕΤΡΗΣΗ ΠΥΚΝΟΤΗΤΑΣ 6
6 ΜΕΤΡΗΣΕΙΣ ΘΕΡΜΟΚΡΑΣΙΑΣ – Η ΒΑΘΜΟΝΟΜΗΣΗ 7
7 ΑΠΟ ΤΗ ΘΕΡΜΟΤΗΤΑ ΣΤΗ ΘΕΡΜΟΚΡΑΣΙΑ– Η ΘΕΡΜΙΚΗ ΙΣΟΡΡΟΠΙΑ 8
8 ΤΟ ΗΛΕΚΤΡΙΚΟ ΒΡΑΧΥ-ΚΥΚΛΩΜΑ– ΚΙΝΔΥΝΟΙ ΚΑΙ «ΑΣΦΑΛΕΙΑ» 9
9 ΑΠΟ ΤΟΝ ΗΛΕΚΤΡΙΣΜΟ ΣΤΟΝ ΜΑΓΝΗΤΙΣΜΟ – ΕΝΑΣ ΗΛΕΚΤΡΙΚΟΣ (ΙΔΙΟ-) ΚΙΝΗΤΗΡΑΣ 9
10 ΑΠΟ ΤΟ ΜΑΓΝΗΤΙΣΜΟ ΣΤΟΝ ΗΛΕΚΤΡΙΣΜΟ – ΜΙΑ ΗΛΕΚΤΡΙΚΗ (ΙΔΙΟ-) ΓΕΝΝΗΤΡΙΑ 10
11 ΤΟ ΔΙΕΘΝΕΣ ΣΥΣΤΗΜΑ ΜΟΝΑΔΩΝ 11
Φ
1 ΜΕΤΡΗΣΕΙΣ ΜΗΚΟΥΣ – Η ΜΕΣΗ ΤΙΜΗ
Φυσικό μέγεθος Μέγεθος ονομάζεται κάθε ποσότητα στη φύση που μπορεί να μετρηθεί. πχ το μήκος
είναι φυσικό μέγεθος γιατί μπορεί να μετρηθεί, η χαρά δεν είναι γιατί δε μπορεί να
μετρηθεί.
Μέτρηση Μέτρηση ενός φυσικού μεγέθους είναι η σύγκρισή του με ένα ομοειδές μέγεθος
που το ονομάζουμε μονάδα μέτρησης. Π.χ. για να μετρήσουμε το μήκος ενός
θρανίου το συγκρίνουμε με το μέτρο, που είναι η μονάδα μέτρησής του.
Μονάδα μέτρησης
του μήκους
Η διεθνής μονάδα μέτρησης του μήκους είναι το μέτρο (meter, m).
Υποδιαιρέσεις και
Πολλαπλάσια του
μέτρου
Κάποια πολλαπλάσια και υποδιαιρέσεις (ή υποπολλαπλάσια) του μέτρου, είναι τα
Χιλιόμετρο: 1 Km = 1.000 m Εκατοστόμετρο: 1 cm =
1
100
m
Χιλιοστόμετρο: 1 mm =
1
1.000
m Μικρόμετρο: 1 μm =
1
1.000.000
m
Όργανα μέτρησης
του μήκους
Όργανα μέτρησης είναι ο χάρακας, το πτυσσόμενο μέτρο, η μετροταινία, το
αποστασιόμετρο laser, το σόναρ κλπ. Το παχύμετρο μπορεί να μετρήσει με ακρίβεια
πολλά σχήματα, όπως την εσωτερική και εξωτερική διάμετρο δαχτυλιδιού, τη μεγάλη
και τη μικρή διάσταση ενός αβγού.
Σφάλματα Σφάλματα κατά την τοποθέτηση της μετροταινίας:
-η τοποθέτηση του «0» της μετροταινίας πριν ή μετά την αρχή του αντικειμένου.
-η τοποθέτηση αντικειμένων κάτω από τη μετροταινία.
-η τοποθέτηση της μετροταινίας διαγώνια.
-η τοποθέτηση της μετροταινίας έχοντας κάνει στροφή.
Ακόμα και με σωστά τοποθετημένη μετροταινία, υπάρχουν και
-τα σφάλματα οργάνου. –τα σφάλματα ανάγνωσης.
Πείραμα
(Μέτρηση του
μήκους θρανίου)
Διαθέτουμε μία μετροταινία και θέλουμε να μετρήσουμε το μήκος ενός θρανίου.
Με τη μετροταινία, μετράμε το μήκος του θρανίου δέκα φορές, προσέχοντας τα
παραπάνω σφάλματα. Μετά βρίσκουμε το μέσο όρο, προσθέτοντας όλες τις τιμές και
διαιρώντας με τον αριθμό των μετρήσεων.
Χρησιμότητα μέσου
όρου
Ο υπολογισμός του μέσου όρου είναι χρήσιμος γιατί όσο περισσότερες μετρήσεις
έχουμε, τόσο πιο κοντά πλησιάζουμε στην πραγματική τιμή.
Ασκήσεις α)Πόσο είναι το μήκος της μαύρης
γραμμής;
β) Μετρώντας το θρανίο δέκα φορές
πήραμε τις ακόλουθες τιμές: 118,8cm 119cm 119,2cm 120cm 118cm 118,5cm 120cm
119,5 119,5cm και 120cm. Να υπολογίσετε τη μέση τιμή του μήκους του θρανίου.
Φ
2 ΜΕΤΡΗΣΕΙΣ ΧΡΟΝΟΥ – Η ΑΚΡΙΒΕΙΑ
Μονάδα μέτρησης
του χρόνου
Η διεθνής μονάδα μέτρησης χρόνου είναι το δευτερόλεπτο (s).
Πολλαπλάσια του
Δευτερολέπτου
Άλλες μονάδες, μεγαλύτερες του δευτερολέπτου είναι:
Λεπτό: 1 min = 60 s
Ώρα: 1 h = 60 min = 3.600 s
Αναλογικά όργανα Αναλογικά όργανα μέτρησης είναι αυτά που χρησιμοποιούν αναλογίες, όπως το
ρολόι με δείκτες, το ηλιακό ρολόι, η κλεψύδρα.
Ψηφιακά όργανα Ψηφιακά όργανά μέτρησης είναι αυτά που έχουν μόνο ψηφία.
Ακρίβεια Μεγαλύτερη ακρίβεια ανάμεσα στις μετρήσεις έχουμε με τη μικρότερη μονάδα
μέτρησης. π.χ. ανάμεσα σε εκατοστά και χιλιοστά δευτερολέπτου μεγαλύτερη
ακρίβεια έχουμε με τα χιλιοστά.
Το ακριβέστερο όργανο μέτρησης του χρόνου, σήμερα, στον κόσμο είναι το ατομικό
ρολόι.
Πείραμα
(Μέτρηση του
χρόνου δέκα
ταλαντώσεων
εκκρεμούς)
Διαθέτουμε ένα χρονόμετρο και μία πλαστελίνη με ένα νήμα. Δένουμε την
πλαστελίνη στη μία άκρη του νήματος και στερεώνουμε την άλλη άκρη σε ένα
σταθερό σημείο. Εκτρέπουμε την πλαστελίνη από τη θέση ισορροπίας και την
αφήνουμε να ταλαντωθεί πατώντας το χρονόμετρο. Η πλαστελίνη εκτελεί μία
ταλάντωση όταν επιστρέφει στην ακραία θέση έχοντας περάσει από όλες τις θέσεις.
Όταν επιστρέψει για δέκατη φορά σημειώνουμε το χρόνο του χρονομέτρου.
Επαναλαμβάνουμε τη διαδικασία αυτή για πέντε φορές και βρίσκουμε το μέσο όρο.
Ασκήσεις α) Μετράμε το χρόνο δέκα ταλαντώσεων με ψηφιακό ρολόι και βρίσκουμε 8,94s και
με αναλογικό και βρίσκουμε 9s. Ποιο όργανο μας έδωσε μεγαλύτερη ακρίβεια;
β) Μετράμε το χρόνο δέκα ταλαντώσεων και παίρνουμε τις εξής τιμές 8,4s 8,5s 8,7s
9s 9s. Να υπολογίσετε τη μέση τιμή του χρόνου δέκα ταλαντώσεων.
Φ
3 ΜΕΤΡΗΣΕΙΣ ΜΑΖΑΣ – ΤΑ ΔΙΑΓΡΑΜΜΑΤΑ
Μάζα Η μάζα ενός σώματος συνδέεται με την ποσότητα ύλης που περιέχεται στο σώμα.
Συμβολίζεται με m.
Η μάζα συνδέεται, επίσης, με το πόσο εύκολα ή δύσκολα κινείται ένα σώμα. Όσο
πιο δύσκολα αρχίζει ή σταματά να κινείται τόσο μεγαλύτερη μάζα έχει.
Η μάζα είναι σταθερή για ένα σώμα και δεν εξαρτάται από το πού βρίσκεται αυτό.
Μονάδα μέτρησης
της μάζας
Η διεθνής μονάδα μέτρησης της μάζας είναι το χιλιόγραμμο (Kg) ή κιλό.
Υποπολλαπλάσια
του κιλού
Συχνά χρησιμοποιούμε υποπολλαπλάσια, όπως:
Γραμμάριο: 1g=
1
1.000
kg Μιλιγκραμ: 1mg=
1
1.000
g
Όργανο μέτρησης
της μάζας
Όργανο μέτρησης είναι ο ζυγός/ ζυγαριά σύγκρισης.
Για να μετρήσουμε τη μάζα ρευστού μετράμε τη μάζα του μαζί με αυτή του δοχείου
και μετά αφαιρούμε αυτή του δοχείου.
Μάζα ρευστού = Μάζα ολική – Μάζα δοχείου
Βάρος (Γήινο) Βάρος ενός σώματος είναι η δύναμη που ασκεί η Γη στο σώμα αυτό.
Συμβολίζεται με Β ή με W.
Μονάδα
μέτρησης του
βάρους
Αφού το βάρος είναι δύναμη, η μονάδα μέτρησής του είναι το Newton (N).
Μη Γήινο Βάρος Το βάρος ενός σώματος δεν είναι το ίδιο παντού. π.χ. το «σεληνιακό» βάρος
σώματος είναι περίπου ίσο με το 1/6 του «Γήινου» βάρους.
Όργανο μέτρησης
του βάρους
Όπως όλες οι δυνάμεις, το βάρος μετριέται με δυναμόμετρο.
Το δυναμόμετρο βασίζεται στην αρχή ότι «το βάρος είναι ανάλογο της
επιμήκυνσης του ελατηρίου.»
Σύνδεση μάζας
βάρους
Μπορούμε να υπολογίσουμε το βάρος σε Newton αν πολλαπλασιάσουμε τη μάζα
σε Kg επί ένα μέγεθος που έχει τιμή περίπου 10 στην επιφάνεια της Γης.
Β=mg
Αφού μάζα και βάρος συνδέονται μπορεί να τα μετρήσουμε και με τα ίδια όργανα.
Πείραμα 1
(Μέτρηση μάζας
με ζυγό
σύγκρισης)
Διαθέτουμε ένα ζυγό σύγκρισης με ίσους βραχίονες, μία πλαστελίνη και σταθμά
γνωστής μάζας. Αν δεν έχουμε ζυγό σύγκρισης, κατασκευάζουμε έναν από μία
κρεμάστρα με δύο πιατάκια κρεμασμένα στα άκρα της. Στο ένα πιατάκι βάζουμε το
αντικείμενο που θέλουμε να μετρήσουμε, και στο άλλο βάζουμε διαδοχικά σταθμά.
Όταν ισορροπήσει, προσθέτουμε τις μάζες των σταθμών και προκύπτει η μάζα του
αντικειμένου.
Φ
Πείραμα 2
(Βαθμονόμηση
ελατηρίου)
Διαθέτουμε ένα ελατήριο, ένα χάρακα και σταθμά γνωστής μάζας. Τοποθετούμε
το μηδέν του χάρακα στην άκρη του ελατηρίου που κρέμεται από σταθερό σημείο.
Τοποθετούμε διαδοχικά γνωστά σταθμά και σημειώνουμε σε πίνακα τις τιμές μάζας
και επιμήκυνσης. Στο τέλος, κάνουμε ένα διάγραμμα με τις τιμές αυτές.
Παρατηρούμε ότι η μάζα είναι ανάλογη της επιμήκυνσης.
Πείραμα 3
(Υπολογισμός
άγνωστης μάζας
από το
διάγραμμα)
Διαθέτουμε το ελατήριο του προηγούμενο πειράματος, ένα χάρακα και μία
πλαστελίνη άγνωστης μάζας. Για να υπολογίσουμε την άγνωστη μάζα της
πλαστελίνης, μετράμε την επιμήκυνση και ανατρέχουμε στο διάγραμμα
βαθμονόμησης του ελατηρίου για να βρούμε τη μάζα που αντιστοιχεί στην
επιμήκυνση αυτή.
Χρησιμότητα
διαγραμμάτων
Η σχεδίαση διαγραμμάτων είναι χρήσιμη γιατί γνωρίζοντας τιμές του ενός από τα
φυσικά μεγέθη που αναπαρίστανται, μπορούμε να βρούμε τις τιμές και του άλλου.
Ασκήσεις α) Κάνοντας το πείραμα 2 πήραμε τις διπλανές
τιμές.
Να σχεδιάσετε το διάγραμμα επιμήκυνσης -
μάζας. Με βάση αυτό το διάγραμμα να βρείτε
πόση μάζα έχει ένα σώμα που έχει επιμήκυνση 7
εκατοστά.
β) Να υπολογίσετε πόσο βάρος έχει ένα σώμα
μάζας 150g στη Γη.
ΜΑΖΑ m
(γραμ.)
ΕΠΙΜΗΚΥΝΣΗ ΔL
(εκατ.)
0 0
100 5
200 10
300 15
400 20
500 25
Φ
4 ΜΕΤΡΗΣΗ ΟΓΚΟΥ
Όγκος Όγκο ενός σώματος ονομάζουμε το πόσο χώρο καταλαμβάνει.
Μονάδα μέτρησης
του όγκου
Η διεθνής μονάδα μέτρησης του όγκου είναι το κυβικό μέτρο (m3
).
Το κυβικό μέτρο είναι ο όγκος ενός κύβου ακμής 1m.
Συνεπώς, η μονάδα μέτρησης του όγκου εκφράζεται μέσω της μονάδας του μήκους.
Υποδιαιρέσεις και
Πολλαπλάσια του
κυβικού μέτρου
** Υποπολλαπλάσια του κυβικού μέτρου είναι τα :
 Κυβικό δεκατόμετρο : 1 dm3
= 1 L
 Κυβικό εκατοστόμετρο : 1 cm3
= 1mL
 Κυβικό χιλιοστόμετρο : 1 mm3
Συνήθως, ως μονάδα μέτρησης των υγρών χρησιμοποιούμε το λίτρο. Το λίτρο (L)
ισούται με ένα κυβικό δεκατόμετρο, δηλαδή είναι ο όγκος ενός κύβου ακμής 1dm.
Όργανο μέτρησης
του όγκου
Για τη μέτρηση του όγκου των υγρών χρησιμοποιούμε τον ογκομετρικό κύλινδρο. Ο
ογκομετρικός κύλινδρος είναι ένα βαθμονομημένο κυλινδρικό δοχείο.
Πείραμα 1
(Μέτρηση
χωρητικότητας
δοχείου)
Διαθέτουμε ένα δοχείο, έναν ογκομετρικό και υγρό. Για να μετρήσουμε τη
χωρητικότητα του δοχείου, το γεμίζουμε με υγρό, κατόπιν το αδειάζουμε στον
ογκομετρικό και σημειώνουμε τη στάθμη.
Πείραμα 2
(Μέτρηση όγκου
στερεού)
Διαθέτουμε ένα στερεό και έναν ογκομετρικό κύλινδρο με υγρό. Σημειώνουμε τη
στάθμη του υγρού και μετά προσθέτουμε το στερεό και ξανασημειώνουμε τη στάθμη.
Ο όγκος του σώματος θα ισούται με τη διαφορά της τελικής μείον την αρχική στάθμη.
Ασκήσεις α)Να
σημειώσετε τον
όγκο του υγρού
σε κάθε
ογκομετρικό
κύλινδρο.
β)Να υπολογίσετε τον όγκο της πέτρας του
σχήματος.

Recommended

στα βήματα του γαλιλαίου 2 ο ισοχρονισμός του εκκρεμούς
στα βήματα του γαλιλαίου 2 ο ισοχρονισμός του εκκρεμούςστα βήματα του γαλιλαίου 2 ο ισοχρονισμός του εκκρεμούς
στα βήματα του γαλιλαίου 2 ο ισοχρονισμός του εκκρεμούςmanuel chaniotakis
 
Α-Γυμνασίου-Φυσική-Φύλλο-Εργασίας-3.pdf
Α-Γυμνασίου-Φυσική-Φύλλο-Εργασίας-3.pdfΑ-Γυμνασίου-Φυσική-Φύλλο-Εργασίας-3.pdf
Α-Γυμνασίου-Φυσική-Φύλλο-Εργασίας-3.pdfΜαυρουδης Μακης
 
01α_Γ' Λυκ Φυσ Προσ_Κενά Μηχανική
01α_Γ' Λυκ Φυσ Προσ_Κενά Μηχανική01α_Γ' Λυκ Φυσ Προσ_Κενά Μηχανική
01α_Γ' Λυκ Φυσ Προσ_Κενά ΜηχανικήDimitris Kontoudakis
 
161- Μέτρηση της επιτάχυνσης της βαρύτητας, ( με το multilog ).
161- Μέτρηση της επιτάχυνσης της βαρύτητας, ( με το multilog ).161- Μέτρηση της επιτάχυνσης της βαρύτητας, ( με το multilog ).
161- Μέτρηση της επιτάχυνσης της βαρύτητας, ( με το multilog ).Stathis Gourzis
 
Φύλλο Εργασίας 3: "Μετρήσεις Μάζας-Διαγράμματα" Χωρίς Απαντήσεις / Α΄Γυμνασίου
Φύλλο Εργασίας 3: "Μετρήσεις Μάζας-Διαγράμματα" Χωρίς Απαντήσεις / Α΄ΓυμνασίουΦύλλο Εργασίας 3: "Μετρήσεις Μάζας-Διαγράμματα" Χωρίς Απαντήσεις / Α΄Γυμνασίου
Φύλλο Εργασίας 3: "Μετρήσεις Μάζας-Διαγράμματα" Χωρίς Απαντήσεις / Α΄ΓυμνασίουHOME
 
Φυσική Επαναληπτικό διαγώνισμα μέχρι τον θνσκ
Φυσική   Επαναληπτικό διαγώνισμα μέχρι τον θνσκΦυσική   Επαναληπτικό διαγώνισμα μέχρι τον θνσκ
Φυσική Επαναληπτικό διαγώνισμα μέχρι τον θνσκBillonious
 

More Related Content

Similar to TheoryA.pdf

μια πρόταση διδασκαλίας στην ορμή - κρούση
μια πρόταση διδασκαλίας στην ορμή - κρούσημια πρόταση διδασκαλίας στην ορμή - κρούση
μια πρόταση διδασκαλίας στην ορμή - κρούσηΓιάννης Παπαδάκης
 
[Φυσική Β´ Γυμνασίου] Σύνοψη θεωρίας κεφ. 1 & 2
[Φυσική Β´ Γυμνασίου] Σύνοψη θεωρίας κεφ. 1 & 2[Φυσική Β´ Γυμνασίου] Σύνοψη θεωρίας κεφ. 1 & 2
[Φυσική Β´ Γυμνασίου] Σύνοψη θεωρίας κεφ. 1 & 2Dimitris Kontoudakis
 
Πανελλήνιος Διαγωνισμός Φυσικής 2016 - Α' Γυμνασίου (ΘΕΜΑΤΑ)
Πανελλήνιος Διαγωνισμός Φυσικής 2016 - Α' Γυμνασίου (ΘΕΜΑΤΑ)Πανελλήνιος Διαγωνισμός Φυσικής 2016 - Α' Γυμνασίου (ΘΕΜΑΤΑ)
Πανελλήνιος Διαγωνισμός Φυσικής 2016 - Α' Γυμνασίου (ΘΕΜΑΤΑ)Dimitris Kontoudakis
 
ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ 7
ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ 7ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ 7
ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ 7Xarisa Tertsoudi
 
Πανελλήνιος Διαγωνισμός Φυσικής Γ΄ Λυκείου 2015 / Β΄ Φάση / Θέματα και Λύσεις
Πανελλήνιος Διαγωνισμός Φυσικής Γ΄ Λυκείου 2015 / Β΄ Φάση /  Θέματα και ΛύσειςΠανελλήνιος Διαγωνισμός Φυσικής Γ΄ Λυκείου 2015 / Β΄ Φάση /  Θέματα και Λύσεις
Πανελλήνιος Διαγωνισμός Φυσικής Γ΄ Λυκείου 2015 / Β΄ Φάση / Θέματα και ΛύσειςHOME
 
Θέματα λίγο διαφορετικά δοσμένα Φυσική γυμνασιου
Θέματα λίγο διαφορετικά δοσμένα Φυσική γυμνασιουΘέματα λίγο διαφορετικά δοσμένα Φυσική γυμνασιου
Θέματα λίγο διαφορετικά δοσμένα Φυσική γυμνασιουChristos Gotzaridis
 
Πανελλήνιος Διαγωνισμός Φυσικής Α΄ Λυκείου 2007/ Θέματα και Λύσεις
Πανελλήνιος Διαγωνισμός Φυσικής Α΄ Λυκείου 2007/ Θέματα και ΛύσειςΠανελλήνιος Διαγωνισμός Φυσικής Α΄ Λυκείου 2007/ Θέματα και Λύσεις
Πανελλήνιος Διαγωνισμός Φυσικής Α΄ Λυκείου 2007/ Θέματα και ΛύσειςHOME
 
6.ΜάζαΕΠΟΠΤΙΚΟ.pdf
6.ΜάζαΕΠΟΠΤΙΚΟ.pdf6.ΜάζαΕΠΟΠΤΙΚΟ.pdf
6.ΜάζαΕΠΟΠΤΙΚΟ.pdfDimitra Mylonaki
 
Φυσική Μια ανάσα πριν το τέλος.
Φυσική   Μια ανάσα πριν το τέλος.Φυσική   Μια ανάσα πριν το τέλος.
Φυσική Μια ανάσα πριν το τέλος.Billonious
 
160 - Ισορροπία δυνάμεων.
160 - Ισορροπία δυνάμεων.160 - Ισορροπία δυνάμεων.
160 - Ισορροπία δυνάμεων.Stathis Gourzis
 
Εργαστηριακός υπολογισμός του ιξώδους Γ ΓΕΛ
Εργαστηριακός υπολογισμός του  ιξώδους Γ ΓΕΛΕργαστηριακός υπολογισμός του  ιξώδους Γ ΓΕΛ
Εργαστηριακός υπολογισμός του ιξώδους Γ ΓΕΛChristos Gotzaridis
 
164 - Πείραμα ορμής - 3.
164 - Πείραμα ορμής - 3.164 - Πείραμα ορμής - 3.
164 - Πείραμα ορμής - 3.Stathis Gourzis
 
Περί της υποστάσεως της μέτρησης «μήκος 3m».docx
Περί της υποστάσεως της μέτρησης «μήκος 3m».docxΠερί της υποστάσεως της μέτρησης «μήκος 3m».docx
Περί της υποστάσεως της μέτρησης «μήκος 3m».docxΓιάννης Πλατάρος
 
Kids@cern-μαζα
Kids@cern-μαζαKids@cern-μαζα
Kids@cern-μαζα2dimierap
 
Πανελλήνιος Διαγωνισμός Φυσικής 2016 - Α' Λυκείου (ΘΕΜΑΤΑ)
Πανελλήνιος Διαγωνισμός Φυσικής 2016 - Α' Λυκείου (ΘΕΜΑΤΑ)Πανελλήνιος Διαγωνισμός Φυσικής 2016 - Α' Λυκείου (ΘΕΜΑΤΑ)
Πανελλήνιος Διαγωνισμός Φυσικής 2016 - Α' Λυκείου (ΘΕΜΑΤΑ)Dimitris Kontoudakis
 
Εισαγωγή στην Κβαντομηχανική V: Η Αρχή της Αβεβαιότητας
Εισαγωγή στην Κβαντομηχανική V: Η Αρχή της ΑβεβαιότηταςΕισαγωγή στην Κβαντομηχανική V: Η Αρχή της Αβεβαιότητας
Εισαγωγή στην Κβαντομηχανική V: Η Αρχή της Αβεβαιότηταςmanuel chaniotakis
 
Φυσική Α' Λυκείου - Θέματα ΟΕΦΕ (2006-2013) - Ερωτήσεις και απαντήσεις
Φυσική Α' Λυκείου - Θέματα ΟΕΦΕ (2006-2013) - Ερωτήσεις και απαντήσειςΦυσική Α' Λυκείου - Θέματα ΟΕΦΕ (2006-2013) - Ερωτήσεις και απαντήσεις
Φυσική Α' Λυκείου - Θέματα ΟΕΦΕ (2006-2013) - Ερωτήσεις και απαντήσειςKats961
 

Similar to TheoryA.pdf (20)

μια πρόταση διδασκαλίας στην ορμή - κρούση
μια πρόταση διδασκαλίας στην ορμή - κρούσημια πρόταση διδασκαλίας στην ορμή - κρούση
μια πρόταση διδασκαλίας στην ορμή - κρούση
 
[Φυσική Β´ Γυμνασίου] Σύνοψη θεωρίας κεφ. 1 & 2
[Φυσική Β´ Γυμνασίου] Σύνοψη θεωρίας κεφ. 1 & 2[Φυσική Β´ Γυμνασίου] Σύνοψη θεωρίας κεφ. 1 & 2
[Φυσική Β´ Γυμνασίου] Σύνοψη θεωρίας κεφ. 1 & 2
 
Πανελλήνιος Διαγωνισμός Φυσικής 2016 - Α' Γυμνασίου (ΘΕΜΑΤΑ)
Πανελλήνιος Διαγωνισμός Φυσικής 2016 - Α' Γυμνασίου (ΘΕΜΑΤΑ)Πανελλήνιος Διαγωνισμός Φυσικής 2016 - Α' Γυμνασίου (ΘΕΜΑΤΑ)
Πανελλήνιος Διαγωνισμός Φυσικής 2016 - Α' Γυμνασίου (ΘΕΜΑΤΑ)
 
Fysikh α γυμνασίου
Fysikh α γυμνασίου  Fysikh α γυμνασίου
Fysikh α γυμνασίου
 
159 - Δυνάμεις.
159 - Δυνάμεις.159 - Δυνάμεις.
159 - Δυνάμεις.
 
ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ 7
ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ 7ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ 7
ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ 7
 
Πανελλήνιος Διαγωνισμός Φυσικής Γ΄ Λυκείου 2015 / Β΄ Φάση / Θέματα και Λύσεις
Πανελλήνιος Διαγωνισμός Φυσικής Γ΄ Λυκείου 2015 / Β΄ Φάση /  Θέματα και ΛύσειςΠανελλήνιος Διαγωνισμός Φυσικής Γ΄ Λυκείου 2015 / Β΄ Φάση /  Θέματα και Λύσεις
Πανελλήνιος Διαγωνισμός Φυσικής Γ΄ Λυκείου 2015 / Β΄ Φάση / Θέματα και Λύσεις
 
Pan diag g_lyk_2015_b_fasi_sol
Pan diag g_lyk_2015_b_fasi_solPan diag g_lyk_2015_b_fasi_sol
Pan diag g_lyk_2015_b_fasi_sol
 
Θέματα λίγο διαφορετικά δοσμένα Φυσική γυμνασιου
Θέματα λίγο διαφορετικά δοσμένα Φυσική γυμνασιουΘέματα λίγο διαφορετικά δοσμένα Φυσική γυμνασιου
Θέματα λίγο διαφορετικά δοσμένα Φυσική γυμνασιου
 
Πανελλήνιος Διαγωνισμός Φυσικής Α΄ Λυκείου 2007/ Θέματα και Λύσεις
Πανελλήνιος Διαγωνισμός Φυσικής Α΄ Λυκείου 2007/ Θέματα και ΛύσειςΠανελλήνιος Διαγωνισμός Φυσικής Α΄ Λυκείου 2007/ Θέματα και Λύσεις
Πανελλήνιος Διαγωνισμός Φυσικής Α΄ Λυκείου 2007/ Θέματα και Λύσεις
 
6.ΜάζαΕΠΟΠΤΙΚΟ.pdf
6.ΜάζαΕΠΟΠΤΙΚΟ.pdf6.ΜάζαΕΠΟΠΤΙΚΟ.pdf
6.ΜάζαΕΠΟΠΤΙΚΟ.pdf
 
Φυσική Μια ανάσα πριν το τέλος.
Φυσική   Μια ανάσα πριν το τέλος.Φυσική   Μια ανάσα πριν το τέλος.
Φυσική Μια ανάσα πριν το τέλος.
 
160 - Ισορροπία δυνάμεων.
160 - Ισορροπία δυνάμεων.160 - Ισορροπία δυνάμεων.
160 - Ισορροπία δυνάμεων.
 
Εργαστηριακός υπολογισμός του ιξώδους Γ ΓΕΛ
Εργαστηριακός υπολογισμός του  ιξώδους Γ ΓΕΛΕργαστηριακός υπολογισμός του  ιξώδους Γ ΓΕΛ
Εργαστηριακός υπολογισμός του ιξώδους Γ ΓΕΛ
 
164 - Πείραμα ορμής - 3.
164 - Πείραμα ορμής - 3.164 - Πείραμα ορμής - 3.
164 - Πείραμα ορμής - 3.
 
Περί της υποστάσεως της μέτρησης «μήκος 3m».docx
Περί της υποστάσεως της μέτρησης «μήκος 3m».docxΠερί της υποστάσεως της μέτρησης «μήκος 3m».docx
Περί της υποστάσεως της μέτρησης «μήκος 3m».docx
 
Kids@cern-μαζα
Kids@cern-μαζαKids@cern-μαζα
Kids@cern-μαζα
 
Πανελλήνιος Διαγωνισμός Φυσικής 2016 - Α' Λυκείου (ΘΕΜΑΤΑ)
Πανελλήνιος Διαγωνισμός Φυσικής 2016 - Α' Λυκείου (ΘΕΜΑΤΑ)Πανελλήνιος Διαγωνισμός Φυσικής 2016 - Α' Λυκείου (ΘΕΜΑΤΑ)
Πανελλήνιος Διαγωνισμός Φυσικής 2016 - Α' Λυκείου (ΘΕΜΑΤΑ)
 
Εισαγωγή στην Κβαντομηχανική V: Η Αρχή της Αβεβαιότητας
Εισαγωγή στην Κβαντομηχανική V: Η Αρχή της ΑβεβαιότηταςΕισαγωγή στην Κβαντομηχανική V: Η Αρχή της Αβεβαιότητας
Εισαγωγή στην Κβαντομηχανική V: Η Αρχή της Αβεβαιότητας
 
Φυσική Α' Λυκείου - Θέματα ΟΕΦΕ (2006-2013) - Ερωτήσεις και απαντήσεις
Φυσική Α' Λυκείου - Θέματα ΟΕΦΕ (2006-2013) - Ερωτήσεις και απαντήσειςΦυσική Α' Λυκείου - Θέματα ΟΕΦΕ (2006-2013) - Ερωτήσεις και απαντήσεις
Φυσική Α' Λυκείου - Θέματα ΟΕΦΕ (2006-2013) - Ερωτήσεις και απαντήσεις
 

More from Μαυρουδης Μακης

Διαγράμματα θέσης - χρόνου ,ταχύτητας χρόνου .pdf
Διαγράμματα θέσης - χρόνου ,ταχύτητας χρόνου .pdfΔιαγράμματα θέσης - χρόνου ,ταχύτητας χρόνου .pdf
Διαγράμματα θέσης - χρόνου ,ταχύτητας χρόνου .pdfΜαυρουδης Μακης
 
Θερμότητα θερμοκρασία Κλίμακες θερμοκρασιών.ppt
Θερμότητα θερμοκρασία Κλίμακες θερμοκρασιών.pptΘερμότητα θερμοκρασία Κλίμακες θερμοκρασιών.ppt
Θερμότητα θερμοκρασία Κλίμακες θερμοκρασιών.pptΜαυρουδης Μακης
 
ΔΥΝΑΜΕΙΣ Δυναμόμετρα Νόμοι του Newton2022-2023.pptx
ΔΥΝΑΜΕΙΣ  Δυναμόμετρα  Νόμοι του Newton2022-2023.pptxΔΥΝΑΜΕΙΣ  Δυναμόμετρα  Νόμοι του Newton2022-2023.pptx
ΔΥΝΑΜΕΙΣ Δυναμόμετρα Νόμοι του Newton2022-2023.pptxΜαυρουδης Μακης
 
ΚΙΝΗΣΗ ΘΕΣΗ ΜΕΤΑΤΟΠΙΣΗ ΤΑΧΥΤΗΤΑ 2022-2023.pptx
ΚΙΝΗΣΗ ΘΕΣΗ ΜΕΤΑΤΟΠΙΣΗ ΤΑΧΥΤΗΤΑ 2022-2023.pptxΚΙΝΗΣΗ ΘΕΣΗ ΜΕΤΑΤΟΠΙΣΗ ΤΑΧΥΤΗΤΑ 2022-2023.pptx
ΚΙΝΗΣΗ ΘΕΣΗ ΜΕΤΑΤΟΠΙΣΗ ΤΑΧΥΤΗΤΑ 2022-2023.pptxΜαυρουδης Μακης
 
Astrobiology Comic (Issue 1)για παιδιά Γυμνασίου.pdf
Astrobiology Comic (Issue 1)για παιδιά Γυμνασίου.pdfAstrobiology Comic (Issue 1)για παιδιά Γυμνασίου.pdf
Astrobiology Comic (Issue 1)για παιδιά Γυμνασίου.pdfΜαυρουδης Μακης
 
ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ 1 ΣΧΕΣΗ ΕΝΤΑΣΗΣ ΗΛ. ΡΕΥΜΑΤΟΣ ΚΑΙ ΦΩΤΟΒΟΛΙΑΣ ΛΑΜΠΤΗΡΑ.pdf
ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ 1 ΣΧΕΣΗ ΕΝΤΑΣΗΣ ΗΛ. ΡΕΥΜΑΤΟΣ ΚΑΙ ΦΩΤΟΒΟΛΙΑΣ ΛΑΜΠΤΗΡΑ.pdfΦΥΛΛΟ ΕΡΓΑΣΙΑΣ 1 ΣΧΕΣΗ ΕΝΤΑΣΗΣ ΗΛ. ΡΕΥΜΑΤΟΣ ΚΑΙ ΦΩΤΟΒΟΛΙΑΣ ΛΑΜΠΤΗΡΑ.pdf
ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ 1 ΣΧΕΣΗ ΕΝΤΑΣΗΣ ΗΛ. ΡΕΥΜΑΤΟΣ ΚΑΙ ΦΩΤΟΒΟΛΙΑΣ ΛΑΜΠΤΗΡΑ.pdfΜαυρουδης Μακης
 
ασκήσεις πάνω στις απλές αρμονικές ταλαντώσεις
ασκήσεις πάνω στις απλές αρμονικές ταλαντώσειςασκήσεις πάνω στις απλές αρμονικές ταλαντώσεις
ασκήσεις πάνω στις απλές αρμονικές ταλαντώσειςΜαυρουδης Μακης
 
ΜΟΝΟΜΕΤΡΑ ΔΙΑΝΥΣΜΑΤΙΚΑ ΜΕΓΕΘΗ (1).pptx
ΜΟΝΟΜΕΤΡΑ ΔΙΑΝΥΣΜΑΤΙΚΑ ΜΕΓΕΘΗ (1).pptxΜΟΝΟΜΕΤΡΑ ΔΙΑΝΥΣΜΑΤΙΚΑ ΜΕΓΕΘΗ (1).pptx
ΜΟΝΟΜΕΤΡΑ ΔΙΑΝΥΣΜΑΤΙΚΑ ΜΕΓΕΘΗ (1).pptxΜαυρουδης Μακης
 
ΒΙΒΛΙΟ ΣΧΟΛΙΚΟ ΦΥΣΙΚΗ Α ΓΥΜΝΑΣΙΟΥ.pdf
ΒΙΒΛΙΟ ΣΧΟΛΙΚΟ ΦΥΣΙΚΗ Α ΓΥΜΝΑΣΙΟΥ.pdfΒΙΒΛΙΟ ΣΧΟΛΙΚΟ ΦΥΣΙΚΗ Α ΓΥΜΝΑΣΙΟΥ.pdf
ΒΙΒΛΙΟ ΣΧΟΛΙΚΟ ΦΥΣΙΚΗ Α ΓΥΜΝΑΣΙΟΥ.pdfΜαυρουδης Μακης
 
1ο Φύλλο Αξιολόγησης. Φασουλόπουλος.pdf
1ο Φύλλο Αξιολόγησης. Φασουλόπουλος.pdf1ο Φύλλο Αξιολόγησης. Φασουλόπουλος.pdf
1ο Φύλλο Αξιολόγησης. Φασουλόπουλος.pdfΜαυρουδης Μακης
 
Ασκήσεις μέτρησης μήκους - χρόνου.docx
Ασκήσεις μέτρησης μήκους - χρόνου.docxΑσκήσεις μέτρησης μήκους - χρόνου.docx
Ασκήσεις μέτρησης μήκους - χρόνου.docxΜαυρουδης Μακης
 
γ1. ΗΛΕΚΤΡΙΚΗ ΔΥΝΑΜΗ ΚΑΙ ΦΟΡΤΙΟ.pdf
γ1. ΗΛΕΚΤΡΙΚΗ ΔΥΝΑΜΗ ΚΑΙ ΦΟΡΤΙΟ.pdfγ1. ΗΛΕΚΤΡΙΚΗ ΔΥΝΑΜΗ ΚΑΙ ΦΟΡΤΙΟ.pdf
γ1. ΗΛΕΚΤΡΙΚΗ ΔΥΝΑΜΗ ΚΑΙ ΦΟΡΤΙΟ.pdfΜαυρουδης Μακης
 
ΦΥΣΙΚΗ Α ΓΥΜΝΑΣΙΟΥ ΜΕ ΑΠΑΝΤΗΣΕΙΣ 2023-2024.pdf
ΦΥΣΙΚΗ Α ΓΥΜΝΑΣΙΟΥ ΜΕ ΑΠΑΝΤΗΣΕΙΣ 2023-2024.pdfΦΥΣΙΚΗ Α ΓΥΜΝΑΣΙΟΥ ΜΕ ΑΠΑΝΤΗΣΕΙΣ 2023-2024.pdf
ΦΥΣΙΚΗ Α ΓΥΜΝΑΣΙΟΥ ΜΕ ΑΠΑΝΤΗΣΕΙΣ 2023-2024.pdfΜαυρουδης Μακης
 
ΦΑΙΝOΜΕΝΑ ΑΛΛΗΛΕΠΙΔΡΑΣΗΣ ΑΚΤΙΝΟΒΟΛΙΑΣ ΜΕ ΥΛΗ UPDATED.pdf
ΦΑΙΝOΜΕΝΑ ΑΛΛΗΛΕΠΙΔΡΑΣΗΣ ΑΚΤΙΝΟΒΟΛΙΑΣ ΜΕ ΥΛΗ UPDATED.pdfΦΑΙΝOΜΕΝΑ ΑΛΛΗΛΕΠΙΔΡΑΣΗΣ ΑΚΤΙΝΟΒΟΛΙΑΣ ΜΕ ΥΛΗ UPDATED.pdf
ΦΑΙΝOΜΕΝΑ ΑΛΛΗΛΕΠΙΔΡΑΣΗΣ ΑΚΤΙΝΟΒΟΛΙΑΣ ΜΕ ΥΛΗ UPDATED.pdfΜαυρουδης Μακης
 
ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΦΥΣΙΚΗΣ Α ΛΥΚΕΙΟΥ 9654-10108.pdf
ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΦΥΣΙΚΗΣ Α ΛΥΚΕΙΟΥ 9654-10108.pdfΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΦΥΣΙΚΗΣ Α ΛΥΚΕΙΟΥ 9654-10108.pdf
ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΦΥΣΙΚΗΣ Α ΛΥΚΕΙΟΥ 9654-10108.pdfΜαυρουδης Μακης
 
ΦΥΣΙΚΗ+ΜΑΥΡΑΚΗΣ+-+ΜΑΥΡΟΥΔΗΣ+ΗΛΕΚΤΡΙΣΜΟΣ.pdf
ΦΥΣΙΚΗ+ΜΑΥΡΑΚΗΣ+-+ΜΑΥΡΟΥΔΗΣ+ΗΛΕΚΤΡΙΣΜΟΣ.pdfΦΥΣΙΚΗ+ΜΑΥΡΑΚΗΣ+-+ΜΑΥΡΟΥΔΗΣ+ΗΛΕΚΤΡΙΣΜΟΣ.pdf
ΦΥΣΙΚΗ+ΜΑΥΡΑΚΗΣ+-+ΜΑΥΡΟΥΔΗΣ+ΗΛΕΚΤΡΙΣΜΟΣ.pdfΜαυρουδης Μακης
 
ΥΠΟΔΕΙΓΜΑΤΙΚΑ ΛΥΜΕΝΗ ΤΑΛΑΝΤΩΣΗ.pdf
ΥΠΟΔΕΙΓΜΑΤΙΚΑ ΛΥΜΕΝΗ ΤΑΛΑΝΤΩΣΗ.pdfΥΠΟΔΕΙΓΜΑΤΙΚΑ ΛΥΜΕΝΗ ΤΑΛΑΝΤΩΣΗ.pdf
ΥΠΟΔΕΙΓΜΑΤΙΚΑ ΛΥΜΕΝΗ ΤΑΛΑΝΤΩΣΗ.pdfΜαυρουδης Μακης
 
ΦΥΛΛΟ+ΕΡΓΑΣΙΑΣ+ΘΕΣΗ+ΜΕΤΑΤΟΠΙΣΗ+ΑΠΟΣΤΑΣΗ+ΜΕΣΗ+ΤΑΧΥΤΗΤΑ.pdf
ΦΥΛΛΟ+ΕΡΓΑΣΙΑΣ+ΘΕΣΗ+ΜΕΤΑΤΟΠΙΣΗ+ΑΠΟΣΤΑΣΗ+ΜΕΣΗ+ΤΑΧΥΤΗΤΑ.pdfΦΥΛΛΟ+ΕΡΓΑΣΙΑΣ+ΘΕΣΗ+ΜΕΤΑΤΟΠΙΣΗ+ΑΠΟΣΤΑΣΗ+ΜΕΣΗ+ΤΑΧΥΤΗΤΑ.pdf
ΦΥΛΛΟ+ΕΡΓΑΣΙΑΣ+ΘΕΣΗ+ΜΕΤΑΤΟΠΙΣΗ+ΑΠΟΣΤΑΣΗ+ΜΕΣΗ+ΤΑΧΥΤΗΤΑ.pdfΜαυρουδης Μακης
 

More from Μαυρουδης Μακης (20)

Διαγράμματα θέσης - χρόνου ,ταχύτητας χρόνου .pdf
Διαγράμματα θέσης - χρόνου ,ταχύτητας χρόνου .pdfΔιαγράμματα θέσης - χρόνου ,ταχύτητας χρόνου .pdf
Διαγράμματα θέσης - χρόνου ,ταχύτητας χρόνου .pdf
 
Θερμότητα θερμοκρασία Κλίμακες θερμοκρασιών.ppt
Θερμότητα θερμοκρασία Κλίμακες θερμοκρασιών.pptΘερμότητα θερμοκρασία Κλίμακες θερμοκρασιών.ppt
Θερμότητα θερμοκρασία Κλίμακες θερμοκρασιών.ppt
 
ΔΥΝΑΜΕΙΣ Δυναμόμετρα Νόμοι του Newton2022-2023.pptx
ΔΥΝΑΜΕΙΣ  Δυναμόμετρα  Νόμοι του Newton2022-2023.pptxΔΥΝΑΜΕΙΣ  Δυναμόμετρα  Νόμοι του Newton2022-2023.pptx
ΔΥΝΑΜΕΙΣ Δυναμόμετρα Νόμοι του Newton2022-2023.pptx
 
ΚΙΝΗΣΗ ΘΕΣΗ ΜΕΤΑΤΟΠΙΣΗ ΤΑΧΥΤΗΤΑ 2022-2023.pptx
ΚΙΝΗΣΗ ΘΕΣΗ ΜΕΤΑΤΟΠΙΣΗ ΤΑΧΥΤΗΤΑ 2022-2023.pptxΚΙΝΗΣΗ ΘΕΣΗ ΜΕΤΑΤΟΠΙΣΗ ΤΑΧΥΤΗΤΑ 2022-2023.pptx
ΚΙΝΗΣΗ ΘΕΣΗ ΜΕΤΑΤΟΠΙΣΗ ΤΑΧΥΤΗΤΑ 2022-2023.pptx
 
Astrobiology Comic (Issue 1)για παιδιά Γυμνασίου.pdf
Astrobiology Comic (Issue 1)για παιδιά Γυμνασίου.pdfAstrobiology Comic (Issue 1)για παιδιά Γυμνασίου.pdf
Astrobiology Comic (Issue 1)για παιδιά Γυμνασίου.pdf
 
ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ 1 ΣΧΕΣΗ ΕΝΤΑΣΗΣ ΗΛ. ΡΕΥΜΑΤΟΣ ΚΑΙ ΦΩΤΟΒΟΛΙΑΣ ΛΑΜΠΤΗΡΑ.pdf
ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ 1 ΣΧΕΣΗ ΕΝΤΑΣΗΣ ΗΛ. ΡΕΥΜΑΤΟΣ ΚΑΙ ΦΩΤΟΒΟΛΙΑΣ ΛΑΜΠΤΗΡΑ.pdfΦΥΛΛΟ ΕΡΓΑΣΙΑΣ 1 ΣΧΕΣΗ ΕΝΤΑΣΗΣ ΗΛ. ΡΕΥΜΑΤΟΣ ΚΑΙ ΦΩΤΟΒΟΛΙΑΣ ΛΑΜΠΤΗΡΑ.pdf
ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ 1 ΣΧΕΣΗ ΕΝΤΑΣΗΣ ΗΛ. ΡΕΥΜΑΤΟΣ ΚΑΙ ΦΩΤΟΒΟΛΙΑΣ ΛΑΜΠΤΗΡΑ.pdf
 
ασκήσεις πάνω στις απλές αρμονικές ταλαντώσεις
ασκήσεις πάνω στις απλές αρμονικές ταλαντώσειςασκήσεις πάνω στις απλές αρμονικές ταλαντώσεις
ασκήσεις πάνω στις απλές αρμονικές ταλαντώσεις
 
ΜΟΝΟΜΕΤΡΑ ΔΙΑΝΥΣΜΑΤΙΚΑ ΜΕΓΕΘΗ (1).pptx
ΜΟΝΟΜΕΤΡΑ ΔΙΑΝΥΣΜΑΤΙΚΑ ΜΕΓΕΘΗ (1).pptxΜΟΝΟΜΕΤΡΑ ΔΙΑΝΥΣΜΑΤΙΚΑ ΜΕΓΕΘΗ (1).pptx
ΜΟΝΟΜΕΤΡΑ ΔΙΑΝΥΣΜΑΤΙΚΑ ΜΕΓΕΘΗ (1).pptx
 
ΒΙΒΛΙΟ ΣΧΟΛΙΚΟ ΦΥΣΙΚΗ Α ΓΥΜΝΑΣΙΟΥ.pdf
ΒΙΒΛΙΟ ΣΧΟΛΙΚΟ ΦΥΣΙΚΗ Α ΓΥΜΝΑΣΙΟΥ.pdfΒΙΒΛΙΟ ΣΧΟΛΙΚΟ ΦΥΣΙΚΗ Α ΓΥΜΝΑΣΙΟΥ.pdf
ΒΙΒΛΙΟ ΣΧΟΛΙΚΟ ΦΥΣΙΚΗ Α ΓΥΜΝΑΣΙΟΥ.pdf
 
1ο Φύλλο Αξιολόγησης. Φασουλόπουλος.pdf
1ο Φύλλο Αξιολόγησης. Φασουλόπουλος.pdf1ο Φύλλο Αξιολόγησης. Φασουλόπουλος.pdf
1ο Φύλλο Αξιολόγησης. Φασουλόπουλος.pdf
 
Ασκήσεις μέτρησης μήκους - χρόνου.docx
Ασκήσεις μέτρησης μήκους - χρόνου.docxΑσκήσεις μέτρησης μήκους - χρόνου.docx
Ασκήσεις μέτρησης μήκους - χρόνου.docx
 
γ1. ΗΛΕΚΤΡΙΚΗ ΔΥΝΑΜΗ ΚΑΙ ΦΟΡΤΙΟ.pdf
γ1. ΗΛΕΚΤΡΙΚΗ ΔΥΝΑΜΗ ΚΑΙ ΦΟΡΤΙΟ.pdfγ1. ΗΛΕΚΤΡΙΚΗ ΔΥΝΑΜΗ ΚΑΙ ΦΟΡΤΙΟ.pdf
γ1. ΗΛΕΚΤΡΙΚΗ ΔΥΝΑΜΗ ΚΑΙ ΦΟΡΤΙΟ.pdf
 
ΦΥΣΙΚΗ Α ΓΥΜΝΑΣΙΟΥ ΜΕ ΑΠΑΝΤΗΣΕΙΣ 2023-2024.pdf
ΦΥΣΙΚΗ Α ΓΥΜΝΑΣΙΟΥ ΜΕ ΑΠΑΝΤΗΣΕΙΣ 2023-2024.pdfΦΥΣΙΚΗ Α ΓΥΜΝΑΣΙΟΥ ΜΕ ΑΠΑΝΤΗΣΕΙΣ 2023-2024.pdf
ΦΥΣΙΚΗ Α ΓΥΜΝΑΣΙΟΥ ΜΕ ΑΠΑΝΤΗΣΕΙΣ 2023-2024.pdf
 
ΦΩΣ ΚΑΙ ΟΡΑΣΗ.pptx
ΦΩΣ ΚΑΙ ΟΡΑΣΗ.pptxΦΩΣ ΚΑΙ ΟΡΑΣΗ.pptx
ΦΩΣ ΚΑΙ ΟΡΑΣΗ.pptx
 
ΦΑΙΝOΜΕΝΑ ΑΛΛΗΛΕΠΙΔΡΑΣΗΣ ΑΚΤΙΝΟΒΟΛΙΑΣ ΜΕ ΥΛΗ UPDATED.pdf
ΦΑΙΝOΜΕΝΑ ΑΛΛΗΛΕΠΙΔΡΑΣΗΣ ΑΚΤΙΝΟΒΟΛΙΑΣ ΜΕ ΥΛΗ UPDATED.pdfΦΑΙΝOΜΕΝΑ ΑΛΛΗΛΕΠΙΔΡΑΣΗΣ ΑΚΤΙΝΟΒΟΛΙΑΣ ΜΕ ΥΛΗ UPDATED.pdf
ΦΑΙΝOΜΕΝΑ ΑΛΛΗΛΕΠΙΔΡΑΣΗΣ ΑΚΤΙΝΟΒΟΛΙΑΣ ΜΕ ΥΛΗ UPDATED.pdf
 
ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΦΥΣΙΚΗΣ Α ΛΥΚΕΙΟΥ 9654-10108.pdf
ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΦΥΣΙΚΗΣ Α ΛΥΚΕΙΟΥ 9654-10108.pdfΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΦΥΣΙΚΗΣ Α ΛΥΚΕΙΟΥ 9654-10108.pdf
ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΦΥΣΙΚΗΣ Α ΛΥΚΕΙΟΥ 9654-10108.pdf
 
ΦΥΣΙΚΗ+ΜΑΥΡΑΚΗΣ+-+ΜΑΥΡΟΥΔΗΣ+ΗΛΕΚΤΡΙΣΜΟΣ.pdf
ΦΥΣΙΚΗ+ΜΑΥΡΑΚΗΣ+-+ΜΑΥΡΟΥΔΗΣ+ΗΛΕΚΤΡΙΣΜΟΣ.pdfΦΥΣΙΚΗ+ΜΑΥΡΑΚΗΣ+-+ΜΑΥΡΟΥΔΗΣ+ΗΛΕΚΤΡΙΣΜΟΣ.pdf
ΦΥΣΙΚΗ+ΜΑΥΡΑΚΗΣ+-+ΜΑΥΡΟΥΔΗΣ+ΗΛΕΚΤΡΙΣΜΟΣ.pdf
 
ΥΠΟΔΕΙΓΜΑΤΙΚΑ ΛΥΜΕΝΗ ΤΑΛΑΝΤΩΣΗ.pdf
ΥΠΟΔΕΙΓΜΑΤΙΚΑ ΛΥΜΕΝΗ ΤΑΛΑΝΤΩΣΗ.pdfΥΠΟΔΕΙΓΜΑΤΙΚΑ ΛΥΜΕΝΗ ΤΑΛΑΝΤΩΣΗ.pdf
ΥΠΟΔΕΙΓΜΑΤΙΚΑ ΛΥΜΕΝΗ ΤΑΛΑΝΤΩΣΗ.pdf
 
ΦΩΤΟΗΛΕΚΤΡΙΚΟ ΦΑΙΝΟΜΕΝΟ.pdf
ΦΩΤΟΗΛΕΚΤΡΙΚΟ ΦΑΙΝΟΜΕΝΟ.pdfΦΩΤΟΗΛΕΚΤΡΙΚΟ ΦΑΙΝΟΜΕΝΟ.pdf
ΦΩΤΟΗΛΕΚΤΡΙΚΟ ΦΑΙΝΟΜΕΝΟ.pdf
 
ΦΥΛΛΟ+ΕΡΓΑΣΙΑΣ+ΘΕΣΗ+ΜΕΤΑΤΟΠΙΣΗ+ΑΠΟΣΤΑΣΗ+ΜΕΣΗ+ΤΑΧΥΤΗΤΑ.pdf
ΦΥΛΛΟ+ΕΡΓΑΣΙΑΣ+ΘΕΣΗ+ΜΕΤΑΤΟΠΙΣΗ+ΑΠΟΣΤΑΣΗ+ΜΕΣΗ+ΤΑΧΥΤΗΤΑ.pdfΦΥΛΛΟ+ΕΡΓΑΣΙΑΣ+ΘΕΣΗ+ΜΕΤΑΤΟΠΙΣΗ+ΑΠΟΣΤΑΣΗ+ΜΕΣΗ+ΤΑΧΥΤΗΤΑ.pdf
ΦΥΛΛΟ+ΕΡΓΑΣΙΑΣ+ΘΕΣΗ+ΜΕΤΑΤΟΠΙΣΗ+ΑΠΟΣΤΑΣΗ+ΜΕΣΗ+ΤΑΧΥΤΗΤΑ.pdf
 

Recently uploaded

Ειδικά θέματα διαχείρισης ιστολογίου στο blogs.sch.gr
Ειδικά θέματα διαχείρισης ιστολογίου στο blogs.sch.grΕιδικά θέματα διαχείρισης ιστολογίου στο blogs.sch.gr
Ειδικά θέματα διαχείρισης ιστολογίου στο blogs.sch.grEleniStergatou
 
Η σύνθεση Χριστιανισμού και Ελληνισμού αποτυπώνεται στην τέχνη Φώτογλου Κωνστ...
Η σύνθεση Χριστιανισμού και Ελληνισμού αποτυπώνεται στην τέχνη Φώτογλου Κωνστ...Η σύνθεση Χριστιανισμού και Ελληνισμού αποτυπώνεται στην τέχνη Φώτογλου Κωνστ...
Η σύνθεση Χριστιανισμού και Ελληνισμού αποτυπώνεται στην τέχνη Φώτογλου Κωνστ...Δήμητρα Τζίνου
 
Παιδικές Δασουπολίτικες Πατριδοφωνές 2023-2024.pdf
Παιδικές Δασουπολίτικες Πατριδοφωνές 2023-2024.pdfΠαιδικές Δασουπολίτικες Πατριδοφωνές 2023-2024.pdf
Παιδικές Δασουπολίτικες Πατριδοφωνές 2023-2024.pdfLouizaHadjimarcou1
 
Η ανάπτυξη του εμβρύου
Η            ανάπτυξη       του     εμβρύουΗ            ανάπτυξη       του     εμβρύου
Η ανάπτυξη του εμβρύουDimitra Mylonaki
 
ParkoGoudiF-ΠαρουσίασηΤηςΠεριβαλλοντικήςΟμάδαςΤου56ουΓυμνασίουΑθήνας
ParkoGoudiF-ΠαρουσίασηΤηςΠεριβαλλοντικήςΟμάδαςΤου56ουΓυμνασίουΑθήναςParkoGoudiF-ΠαρουσίασηΤηςΠεριβαλλοντικήςΟμάδαςΤου56ουΓυμνασίουΑθήνας
ParkoGoudiF-ΠαρουσίασηΤηςΠεριβαλλοντικήςΟμάδαςΤου56ουΓυμνασίουΑθήναςTassos Karampinis
 
Έξι σκεπτόμενα καπέλα & Μοναχισμός. Μοναχός ή μόνος;
Έξι σκεπτόμενα καπέλα & Μοναχισμός. Μοναχός ή μόνος;Έξι σκεπτόμενα καπέλα & Μοναχισμός. Μοναχός ή μόνος;
Έξι σκεπτόμενα καπέλα & Μοναχισμός. Μοναχός ή μόνος;Δήμητρα Τζίνου
 
Quizizz: Δημιουργία Κουίζ για το Υλικό και το Λογισμικό του Ηλεκτρονικού Υπο...
Quizizz: Δημιουργία Κουίζ  για το Υλικό και το Λογισμικό του Ηλεκτρονικού Υπο...Quizizz: Δημιουργία Κουίζ  για το Υλικό και το Λογισμικό του Ηλεκτρονικού Υπο...
Quizizz: Δημιουργία Κουίζ για το Υλικό και το Λογισμικό του Ηλεκτρονικού Υπο...Penelope Markellou
 
egkiklios_eggrafes_nipiagogeia_sxoleio.pdf
egkiklios_eggrafes_nipiagogeia_sxoleio.pdfegkiklios_eggrafes_nipiagogeia_sxoleio.pdf
egkiklios_eggrafes_nipiagogeia_sxoleio.pdfssuser5750e1
 
Στα Βήματα του Αποστόλου Παύλου. Β' Αποστολική Περιοδεία
Στα Βήματα του Αποστόλου Παύλου. Β' Αποστολική ΠεριοδείαΣτα Βήματα του Αποστόλου Παύλου. Β' Αποστολική Περιοδεία
Στα Βήματα του Αποστόλου Παύλου. Β' Αποστολική ΠεριοδείαΔήμητρα Τζίνου
 
Σημειώσεις Θεωρίας ΑΕΠΠ ΔΗΜΟΠΟΥΛΟΣ I.pdf
Σημειώσεις Θεωρίας ΑΕΠΠ ΔΗΜΟΠΟΥΛΟΣ I.pdfΣημειώσεις Θεωρίας ΑΕΠΠ ΔΗΜΟΠΟΥΛΟΣ I.pdf
Σημειώσεις Θεωρίας ΑΕΠΠ ΔΗΜΟΠΟΥΛΟΣ I.pdfJohn Dimopoulos
 
Politistiko_Idrima_Trapeza_Peiraios.pptx
Politistiko_Idrima_Trapeza_Peiraios.pptxPolitistiko_Idrima_Trapeza_Peiraios.pptx
Politistiko_Idrima_Trapeza_Peiraios.pptx36dimperist
 
Περιγραφή συγγενή από φωτογραφία
Περιγραφή    συγγενή    από    φωτογραφίαΠεριγραφή    συγγενή    από    φωτογραφία
Περιγραφή συγγενή από φωτογραφίαDimitra Mylonaki
 
ΟΙ ΤΡΟΠΙΚΟΤΗΤΕΣ ΤΟΥ ΛΟΓΟΥ ΣΤΗ ΝΕΑ ΕΛΛΗΝΙΚΗ.pptx
ΟΙ ΤΡΟΠΙΚΟΤΗΤΕΣ  ΤΟΥ ΛΟΓΟΥ ΣΤΗ ΝΕΑ ΕΛΛΗΝΙΚΗ.pptxΟΙ ΤΡΟΠΙΚΟΤΗΤΕΣ  ΤΟΥ ΛΟΓΟΥ ΣΤΗ ΝΕΑ ΕΛΛΗΝΙΚΗ.pptx
ΟΙ ΤΡΟΠΙΚΟΤΗΤΕΣ ΤΟΥ ΛΟΓΟΥ ΣΤΗ ΝΕΑ ΕΛΛΗΝΙΚΗ.pptxmarpolaki
 
ΦΕΣΤΙΒΑΛ ΜΗΚΡΟΥ ΜΗΚΟΥΣ ΔΡΑΜΑ 33333333333
ΦΕΣΤΙΒΑΛ ΜΗΚΡΟΥ ΜΗΚΟΥΣ ΔΡΑΜΑ 33333333333ΦΕΣΤΙΒΑΛ ΜΗΚΡΟΥ ΜΗΚΟΥΣ ΔΡΑΜΑ 33333333333
ΦΕΣΤΙΒΑΛ ΜΗΚΡΟΥ ΜΗΚΟΥΣ ΔΡΑΜΑ 33333333333Δώρα Κωνσταντίνου
 
Oi_Pinakes_tis_Alfavitas_apo_A_Taxi.pptx
Oi_Pinakes_tis_Alfavitas_apo_A_Taxi.pptxOi_Pinakes_tis_Alfavitas_apo_A_Taxi.pptx
Oi_Pinakes_tis_Alfavitas_apo_A_Taxi.pptx36dimperist
 
Περιγραφή φωτογραφίας: Ένας γνωστός άγνωστος.pdf
Περιγραφή φωτογραφίας: Ένας γνωστός άγνωστος.pdfΠεριγραφή φωτογραφίας: Ένας γνωστός άγνωστος.pdf
Περιγραφή φωτογραφίας: Ένας γνωστός άγνωστος.pdfDimitra Mylonaki
 
Μαρίνα Διαμαντή- Marina and the Diamonds.pptx
Μαρίνα Διαμαντή- Marina and the Diamonds.pptxΜαρίνα Διαμαντή- Marina and the Diamonds.pptx
Μαρίνα Διαμαντή- Marina and the Diamonds.pptxeucharis
 
Η παρεμβαση των μεγαλων δυναμεων και η ναυμαχια.pptx
Η παρεμβαση των μεγαλων δυναμεων και η ναυμαχια.pptxΗ παρεμβαση των μεγαλων δυναμεων και η ναυμαχια.pptx
Η παρεμβαση των μεγαλων δυναμεων και η ναυμαχια.pptxGeorgiaNianioglou
 
Ο ΜΑΡΚΟΣ ΜΠΟΤΣΑΡΗΣξ,ηωξηγξγφηξκξηκξηκξφκξηφ.pptx
Ο ΜΑΡΚΟΣ ΜΠΟΤΣΑΡΗΣξ,ηωξηγξγφηξκξηκξηκξφκξηφ.pptxΟ ΜΑΡΚΟΣ ΜΠΟΤΣΑΡΗΣξ,ηωξηγξγφηξκξηκξηκξφκξηφ.pptx
Ο ΜΑΡΚΟΣ ΜΠΟΤΣΑΡΗΣξ,ηωξηγξγφηξκξηκξηκξφκξηφ.pptxGeorgiaNianioglou
 
ΔΙΔΑΚΤΙΚΗ ΠΑΡΕΜΒΑΣΗ - Μετανάστευση Πολιτική Παιδεία Α' ΛΥΚΕΙΟΥ
ΔΙΔΑΚΤΙΚΗ ΠΑΡΕΜΒΑΣΗ - Μετανάστευση Πολιτική Παιδεία Α' ΛΥΚΕΙΟΥΔΙΔΑΚΤΙΚΗ ΠΑΡΕΜΒΑΣΗ - Μετανάστευση Πολιτική Παιδεία Α' ΛΥΚΕΙΟΥ
ΔΙΔΑΚΤΙΚΗ ΠΑΡΕΜΒΑΣΗ - Μετανάστευση Πολιτική Παιδεία Α' ΛΥΚΕΙΟΥIrini Panagiotaki
 

Recently uploaded (20)

Ειδικά θέματα διαχείρισης ιστολογίου στο blogs.sch.gr
Ειδικά θέματα διαχείρισης ιστολογίου στο blogs.sch.grΕιδικά θέματα διαχείρισης ιστολογίου στο blogs.sch.gr
Ειδικά θέματα διαχείρισης ιστολογίου στο blogs.sch.gr
 
Η σύνθεση Χριστιανισμού και Ελληνισμού αποτυπώνεται στην τέχνη Φώτογλου Κωνστ...
Η σύνθεση Χριστιανισμού και Ελληνισμού αποτυπώνεται στην τέχνη Φώτογλου Κωνστ...Η σύνθεση Χριστιανισμού και Ελληνισμού αποτυπώνεται στην τέχνη Φώτογλου Κωνστ...
Η σύνθεση Χριστιανισμού και Ελληνισμού αποτυπώνεται στην τέχνη Φώτογλου Κωνστ...
 
Παιδικές Δασουπολίτικες Πατριδοφωνές 2023-2024.pdf
Παιδικές Δασουπολίτικες Πατριδοφωνές 2023-2024.pdfΠαιδικές Δασουπολίτικες Πατριδοφωνές 2023-2024.pdf
Παιδικές Δασουπολίτικες Πατριδοφωνές 2023-2024.pdf
 
Η ανάπτυξη του εμβρύου
Η            ανάπτυξη       του     εμβρύουΗ            ανάπτυξη       του     εμβρύου
Η ανάπτυξη του εμβρύου
 
ParkoGoudiF-ΠαρουσίασηΤηςΠεριβαλλοντικήςΟμάδαςΤου56ουΓυμνασίουΑθήνας
ParkoGoudiF-ΠαρουσίασηΤηςΠεριβαλλοντικήςΟμάδαςΤου56ουΓυμνασίουΑθήναςParkoGoudiF-ΠαρουσίασηΤηςΠεριβαλλοντικήςΟμάδαςΤου56ουΓυμνασίουΑθήνας
ParkoGoudiF-ΠαρουσίασηΤηςΠεριβαλλοντικήςΟμάδαςΤου56ουΓυμνασίουΑθήνας
 
Έξι σκεπτόμενα καπέλα & Μοναχισμός. Μοναχός ή μόνος;
Έξι σκεπτόμενα καπέλα & Μοναχισμός. Μοναχός ή μόνος;Έξι σκεπτόμενα καπέλα & Μοναχισμός. Μοναχός ή μόνος;
Έξι σκεπτόμενα καπέλα & Μοναχισμός. Μοναχός ή μόνος;
 
Quizizz: Δημιουργία Κουίζ για το Υλικό και το Λογισμικό του Ηλεκτρονικού Υπο...
Quizizz: Δημιουργία Κουίζ  για το Υλικό και το Λογισμικό του Ηλεκτρονικού Υπο...Quizizz: Δημιουργία Κουίζ  για το Υλικό και το Λογισμικό του Ηλεκτρονικού Υπο...
Quizizz: Δημιουργία Κουίζ για το Υλικό και το Λογισμικό του Ηλεκτρονικού Υπο...
 
egkiklios_eggrafes_nipiagogeia_sxoleio.pdf
egkiklios_eggrafes_nipiagogeia_sxoleio.pdfegkiklios_eggrafes_nipiagogeia_sxoleio.pdf
egkiklios_eggrafes_nipiagogeia_sxoleio.pdf
 
Στα Βήματα του Αποστόλου Παύλου. Β' Αποστολική Περιοδεία
Στα Βήματα του Αποστόλου Παύλου. Β' Αποστολική ΠεριοδείαΣτα Βήματα του Αποστόλου Παύλου. Β' Αποστολική Περιοδεία
Στα Βήματα του Αποστόλου Παύλου. Β' Αποστολική Περιοδεία
 
Σημειώσεις Θεωρίας ΑΕΠΠ ΔΗΜΟΠΟΥΛΟΣ I.pdf
Σημειώσεις Θεωρίας ΑΕΠΠ ΔΗΜΟΠΟΥΛΟΣ I.pdfΣημειώσεις Θεωρίας ΑΕΠΠ ΔΗΜΟΠΟΥΛΟΣ I.pdf
Σημειώσεις Θεωρίας ΑΕΠΠ ΔΗΜΟΠΟΥΛΟΣ I.pdf
 
Politistiko_Idrima_Trapeza_Peiraios.pptx
Politistiko_Idrima_Trapeza_Peiraios.pptxPolitistiko_Idrima_Trapeza_Peiraios.pptx
Politistiko_Idrima_Trapeza_Peiraios.pptx
 
Περιγραφή συγγενή από φωτογραφία
Περιγραφή    συγγενή    από    φωτογραφίαΠεριγραφή    συγγενή    από    φωτογραφία
Περιγραφή συγγενή από φωτογραφία
 
ΟΙ ΤΡΟΠΙΚΟΤΗΤΕΣ ΤΟΥ ΛΟΓΟΥ ΣΤΗ ΝΕΑ ΕΛΛΗΝΙΚΗ.pptx
ΟΙ ΤΡΟΠΙΚΟΤΗΤΕΣ  ΤΟΥ ΛΟΓΟΥ ΣΤΗ ΝΕΑ ΕΛΛΗΝΙΚΗ.pptxΟΙ ΤΡΟΠΙΚΟΤΗΤΕΣ  ΤΟΥ ΛΟΓΟΥ ΣΤΗ ΝΕΑ ΕΛΛΗΝΙΚΗ.pptx
ΟΙ ΤΡΟΠΙΚΟΤΗΤΕΣ ΤΟΥ ΛΟΓΟΥ ΣΤΗ ΝΕΑ ΕΛΛΗΝΙΚΗ.pptx
 
ΦΕΣΤΙΒΑΛ ΜΗΚΡΟΥ ΜΗΚΟΥΣ ΔΡΑΜΑ 33333333333
ΦΕΣΤΙΒΑΛ ΜΗΚΡΟΥ ΜΗΚΟΥΣ ΔΡΑΜΑ 33333333333ΦΕΣΤΙΒΑΛ ΜΗΚΡΟΥ ΜΗΚΟΥΣ ΔΡΑΜΑ 33333333333
ΦΕΣΤΙΒΑΛ ΜΗΚΡΟΥ ΜΗΚΟΥΣ ΔΡΑΜΑ 33333333333
 
Oi_Pinakes_tis_Alfavitas_apo_A_Taxi.pptx
Oi_Pinakes_tis_Alfavitas_apo_A_Taxi.pptxOi_Pinakes_tis_Alfavitas_apo_A_Taxi.pptx
Oi_Pinakes_tis_Alfavitas_apo_A_Taxi.pptx
 
Περιγραφή φωτογραφίας: Ένας γνωστός άγνωστος.pdf
Περιγραφή φωτογραφίας: Ένας γνωστός άγνωστος.pdfΠεριγραφή φωτογραφίας: Ένας γνωστός άγνωστος.pdf
Περιγραφή φωτογραφίας: Ένας γνωστός άγνωστος.pdf
 
Μαρίνα Διαμαντή- Marina and the Diamonds.pptx
Μαρίνα Διαμαντή- Marina and the Diamonds.pptxΜαρίνα Διαμαντή- Marina and the Diamonds.pptx
Μαρίνα Διαμαντή- Marina and the Diamonds.pptx
 
Η παρεμβαση των μεγαλων δυναμεων και η ναυμαχια.pptx
Η παρεμβαση των μεγαλων δυναμεων και η ναυμαχια.pptxΗ παρεμβαση των μεγαλων δυναμεων και η ναυμαχια.pptx
Η παρεμβαση των μεγαλων δυναμεων και η ναυμαχια.pptx
 
Ο ΜΑΡΚΟΣ ΜΠΟΤΣΑΡΗΣξ,ηωξηγξγφηξκξηκξηκξφκξηφ.pptx
Ο ΜΑΡΚΟΣ ΜΠΟΤΣΑΡΗΣξ,ηωξηγξγφηξκξηκξηκξφκξηφ.pptxΟ ΜΑΡΚΟΣ ΜΠΟΤΣΑΡΗΣξ,ηωξηγξγφηξκξηκξηκξφκξηφ.pptx
Ο ΜΑΡΚΟΣ ΜΠΟΤΣΑΡΗΣξ,ηωξηγξγφηξκξηκξηκξφκξηφ.pptx
 
ΔΙΔΑΚΤΙΚΗ ΠΑΡΕΜΒΑΣΗ - Μετανάστευση Πολιτική Παιδεία Α' ΛΥΚΕΙΟΥ
ΔΙΔΑΚΤΙΚΗ ΠΑΡΕΜΒΑΣΗ - Μετανάστευση Πολιτική Παιδεία Α' ΛΥΚΕΙΟΥΔΙΔΑΚΤΙΚΗ ΠΑΡΕΜΒΑΣΗ - Μετανάστευση Πολιτική Παιδεία Α' ΛΥΚΕΙΟΥ
ΔΙΔΑΚΤΙΚΗ ΠΑΡΕΜΒΑΣΗ - Μετανάστευση Πολιτική Παιδεία Α' ΛΥΚΕΙΟΥ
 

TheoryA.pdf

  • 1. ΥΣΙΚΗ Α’ ΓΥΜΝΑΣΙΟΥ ΦΥΛΛΑΔΙΑ ΘΕΩΡΙΑΣ ΠΕΡΙΕΧΟΜΕΝΑ 1 ΜΕΤΡΗΣΕΙΣ ΜΗΚΟΥΣ – Η ΜΕΣΗ ΤΙΜΗ 1 2 ΜΕΤΡΗΣΕΙΣ ΧΡΟΝΟΥ – Η ΑΚΡΙΒΕΙΑ 2 3 ΜΕΤΡΗΣΕΙΣ ΜΑΖΑΣ – ΤΑ ΔΙΑΓΡΑΜΜΑΤΑ 3 4 ΜΕΤΡΗΣΗ ΟΓΚΟΥ 5 5 ΜΕΤΡΗΣΗ ΠΥΚΝΟΤΗΤΑΣ 6 6 ΜΕΤΡΗΣΕΙΣ ΘΕΡΜΟΚΡΑΣΙΑΣ – Η ΒΑΘΜΟΝΟΜΗΣΗ 7 7 ΑΠΟ ΤΗ ΘΕΡΜΟΤΗΤΑ ΣΤΗ ΘΕΡΜΟΚΡΑΣΙΑ– Η ΘΕΡΜΙΚΗ ΙΣΟΡΡΟΠΙΑ 8 8 ΤΟ ΗΛΕΚΤΡΙΚΟ ΒΡΑΧΥ-ΚΥΚΛΩΜΑ– ΚΙΝΔΥΝΟΙ ΚΑΙ «ΑΣΦΑΛΕΙΑ» 9 9 ΑΠΟ ΤΟΝ ΗΛΕΚΤΡΙΣΜΟ ΣΤΟΝ ΜΑΓΝΗΤΙΣΜΟ – ΕΝΑΣ ΗΛΕΚΤΡΙΚΟΣ (ΙΔΙΟ-) ΚΙΝΗΤΗΡΑΣ 9 10 ΑΠΟ ΤΟ ΜΑΓΝΗΤΙΣΜΟ ΣΤΟΝ ΗΛΕΚΤΡΙΣΜΟ – ΜΙΑ ΗΛΕΚΤΡΙΚΗ (ΙΔΙΟ-) ΓΕΝΝΗΤΡΙΑ 10 11 ΤΟ ΔΙΕΘΝΕΣ ΣΥΣΤΗΜΑ ΜΟΝΑΔΩΝ 11
  • 2. Φ 1 ΜΕΤΡΗΣΕΙΣ ΜΗΚΟΥΣ – Η ΜΕΣΗ ΤΙΜΗ Φυσικό μέγεθος Μέγεθος ονομάζεται κάθε ποσότητα στη φύση που μπορεί να μετρηθεί. πχ το μήκος είναι φυσικό μέγεθος γιατί μπορεί να μετρηθεί, η χαρά δεν είναι γιατί δε μπορεί να μετρηθεί. Μέτρηση Μέτρηση ενός φυσικού μεγέθους είναι η σύγκρισή του με ένα ομοειδές μέγεθος που το ονομάζουμε μονάδα μέτρησης. Π.χ. για να μετρήσουμε το μήκος ενός θρανίου το συγκρίνουμε με το μέτρο, που είναι η μονάδα μέτρησής του. Μονάδα μέτρησης του μήκους Η διεθνής μονάδα μέτρησης του μήκους είναι το μέτρο (meter, m). Υποδιαιρέσεις και Πολλαπλάσια του μέτρου Κάποια πολλαπλάσια και υποδιαιρέσεις (ή υποπολλαπλάσια) του μέτρου, είναι τα Χιλιόμετρο: 1 Km = 1.000 m Εκατοστόμετρο: 1 cm = 1 100 m Χιλιοστόμετρο: 1 mm = 1 1.000 m Μικρόμετρο: 1 μm = 1 1.000.000 m Όργανα μέτρησης του μήκους Όργανα μέτρησης είναι ο χάρακας, το πτυσσόμενο μέτρο, η μετροταινία, το αποστασιόμετρο laser, το σόναρ κλπ. Το παχύμετρο μπορεί να μετρήσει με ακρίβεια πολλά σχήματα, όπως την εσωτερική και εξωτερική διάμετρο δαχτυλιδιού, τη μεγάλη και τη μικρή διάσταση ενός αβγού. Σφάλματα Σφάλματα κατά την τοποθέτηση της μετροταινίας: -η τοποθέτηση του «0» της μετροταινίας πριν ή μετά την αρχή του αντικειμένου. -η τοποθέτηση αντικειμένων κάτω από τη μετροταινία. -η τοποθέτηση της μετροταινίας διαγώνια. -η τοποθέτηση της μετροταινίας έχοντας κάνει στροφή. Ακόμα και με σωστά τοποθετημένη μετροταινία, υπάρχουν και -τα σφάλματα οργάνου. –τα σφάλματα ανάγνωσης. Πείραμα (Μέτρηση του μήκους θρανίου) Διαθέτουμε μία μετροταινία και θέλουμε να μετρήσουμε το μήκος ενός θρανίου. Με τη μετροταινία, μετράμε το μήκος του θρανίου δέκα φορές, προσέχοντας τα παραπάνω σφάλματα. Μετά βρίσκουμε το μέσο όρο, προσθέτοντας όλες τις τιμές και διαιρώντας με τον αριθμό των μετρήσεων. Χρησιμότητα μέσου όρου Ο υπολογισμός του μέσου όρου είναι χρήσιμος γιατί όσο περισσότερες μετρήσεις έχουμε, τόσο πιο κοντά πλησιάζουμε στην πραγματική τιμή. Ασκήσεις α)Πόσο είναι το μήκος της μαύρης γραμμής; β) Μετρώντας το θρανίο δέκα φορές πήραμε τις ακόλουθες τιμές: 118,8cm 119cm 119,2cm 120cm 118cm 118,5cm 120cm 119,5 119,5cm και 120cm. Να υπολογίσετε τη μέση τιμή του μήκους του θρανίου.
  • 3. Φ 2 ΜΕΤΡΗΣΕΙΣ ΧΡΟΝΟΥ – Η ΑΚΡΙΒΕΙΑ Μονάδα μέτρησης του χρόνου Η διεθνής μονάδα μέτρησης χρόνου είναι το δευτερόλεπτο (s). Πολλαπλάσια του Δευτερολέπτου Άλλες μονάδες, μεγαλύτερες του δευτερολέπτου είναι: Λεπτό: 1 min = 60 s Ώρα: 1 h = 60 min = 3.600 s Αναλογικά όργανα Αναλογικά όργανα μέτρησης είναι αυτά που χρησιμοποιούν αναλογίες, όπως το ρολόι με δείκτες, το ηλιακό ρολόι, η κλεψύδρα. Ψηφιακά όργανα Ψηφιακά όργανά μέτρησης είναι αυτά που έχουν μόνο ψηφία. Ακρίβεια Μεγαλύτερη ακρίβεια ανάμεσα στις μετρήσεις έχουμε με τη μικρότερη μονάδα μέτρησης. π.χ. ανάμεσα σε εκατοστά και χιλιοστά δευτερολέπτου μεγαλύτερη ακρίβεια έχουμε με τα χιλιοστά. Το ακριβέστερο όργανο μέτρησης του χρόνου, σήμερα, στον κόσμο είναι το ατομικό ρολόι. Πείραμα (Μέτρηση του χρόνου δέκα ταλαντώσεων εκκρεμούς) Διαθέτουμε ένα χρονόμετρο και μία πλαστελίνη με ένα νήμα. Δένουμε την πλαστελίνη στη μία άκρη του νήματος και στερεώνουμε την άλλη άκρη σε ένα σταθερό σημείο. Εκτρέπουμε την πλαστελίνη από τη θέση ισορροπίας και την αφήνουμε να ταλαντωθεί πατώντας το χρονόμετρο. Η πλαστελίνη εκτελεί μία ταλάντωση όταν επιστρέφει στην ακραία θέση έχοντας περάσει από όλες τις θέσεις. Όταν επιστρέψει για δέκατη φορά σημειώνουμε το χρόνο του χρονομέτρου. Επαναλαμβάνουμε τη διαδικασία αυτή για πέντε φορές και βρίσκουμε το μέσο όρο. Ασκήσεις α) Μετράμε το χρόνο δέκα ταλαντώσεων με ψηφιακό ρολόι και βρίσκουμε 8,94s και με αναλογικό και βρίσκουμε 9s. Ποιο όργανο μας έδωσε μεγαλύτερη ακρίβεια; β) Μετράμε το χρόνο δέκα ταλαντώσεων και παίρνουμε τις εξής τιμές 8,4s 8,5s 8,7s 9s 9s. Να υπολογίσετε τη μέση τιμή του χρόνου δέκα ταλαντώσεων.
  • 4. Φ 3 ΜΕΤΡΗΣΕΙΣ ΜΑΖΑΣ – ΤΑ ΔΙΑΓΡΑΜΜΑΤΑ Μάζα Η μάζα ενός σώματος συνδέεται με την ποσότητα ύλης που περιέχεται στο σώμα. Συμβολίζεται με m. Η μάζα συνδέεται, επίσης, με το πόσο εύκολα ή δύσκολα κινείται ένα σώμα. Όσο πιο δύσκολα αρχίζει ή σταματά να κινείται τόσο μεγαλύτερη μάζα έχει. Η μάζα είναι σταθερή για ένα σώμα και δεν εξαρτάται από το πού βρίσκεται αυτό. Μονάδα μέτρησης της μάζας Η διεθνής μονάδα μέτρησης της μάζας είναι το χιλιόγραμμο (Kg) ή κιλό. Υποπολλαπλάσια του κιλού Συχνά χρησιμοποιούμε υποπολλαπλάσια, όπως: Γραμμάριο: 1g= 1 1.000 kg Μιλιγκραμ: 1mg= 1 1.000 g Όργανο μέτρησης της μάζας Όργανο μέτρησης είναι ο ζυγός/ ζυγαριά σύγκρισης. Για να μετρήσουμε τη μάζα ρευστού μετράμε τη μάζα του μαζί με αυτή του δοχείου και μετά αφαιρούμε αυτή του δοχείου. Μάζα ρευστού = Μάζα ολική – Μάζα δοχείου Βάρος (Γήινο) Βάρος ενός σώματος είναι η δύναμη που ασκεί η Γη στο σώμα αυτό. Συμβολίζεται με Β ή με W. Μονάδα μέτρησης του βάρους Αφού το βάρος είναι δύναμη, η μονάδα μέτρησής του είναι το Newton (N). Μη Γήινο Βάρος Το βάρος ενός σώματος δεν είναι το ίδιο παντού. π.χ. το «σεληνιακό» βάρος σώματος είναι περίπου ίσο με το 1/6 του «Γήινου» βάρους. Όργανο μέτρησης του βάρους Όπως όλες οι δυνάμεις, το βάρος μετριέται με δυναμόμετρο. Το δυναμόμετρο βασίζεται στην αρχή ότι «το βάρος είναι ανάλογο της επιμήκυνσης του ελατηρίου.» Σύνδεση μάζας βάρους Μπορούμε να υπολογίσουμε το βάρος σε Newton αν πολλαπλασιάσουμε τη μάζα σε Kg επί ένα μέγεθος που έχει τιμή περίπου 10 στην επιφάνεια της Γης. Β=mg Αφού μάζα και βάρος συνδέονται μπορεί να τα μετρήσουμε και με τα ίδια όργανα. Πείραμα 1 (Μέτρηση μάζας με ζυγό σύγκρισης) Διαθέτουμε ένα ζυγό σύγκρισης με ίσους βραχίονες, μία πλαστελίνη και σταθμά γνωστής μάζας. Αν δεν έχουμε ζυγό σύγκρισης, κατασκευάζουμε έναν από μία κρεμάστρα με δύο πιατάκια κρεμασμένα στα άκρα της. Στο ένα πιατάκι βάζουμε το αντικείμενο που θέλουμε να μετρήσουμε, και στο άλλο βάζουμε διαδοχικά σταθμά. Όταν ισορροπήσει, προσθέτουμε τις μάζες των σταθμών και προκύπτει η μάζα του αντικειμένου.
  • 5. Φ Πείραμα 2 (Βαθμονόμηση ελατηρίου) Διαθέτουμε ένα ελατήριο, ένα χάρακα και σταθμά γνωστής μάζας. Τοποθετούμε το μηδέν του χάρακα στην άκρη του ελατηρίου που κρέμεται από σταθερό σημείο. Τοποθετούμε διαδοχικά γνωστά σταθμά και σημειώνουμε σε πίνακα τις τιμές μάζας και επιμήκυνσης. Στο τέλος, κάνουμε ένα διάγραμμα με τις τιμές αυτές. Παρατηρούμε ότι η μάζα είναι ανάλογη της επιμήκυνσης. Πείραμα 3 (Υπολογισμός άγνωστης μάζας από το διάγραμμα) Διαθέτουμε το ελατήριο του προηγούμενο πειράματος, ένα χάρακα και μία πλαστελίνη άγνωστης μάζας. Για να υπολογίσουμε την άγνωστη μάζα της πλαστελίνης, μετράμε την επιμήκυνση και ανατρέχουμε στο διάγραμμα βαθμονόμησης του ελατηρίου για να βρούμε τη μάζα που αντιστοιχεί στην επιμήκυνση αυτή. Χρησιμότητα διαγραμμάτων Η σχεδίαση διαγραμμάτων είναι χρήσιμη γιατί γνωρίζοντας τιμές του ενός από τα φυσικά μεγέθη που αναπαρίστανται, μπορούμε να βρούμε τις τιμές και του άλλου. Ασκήσεις α) Κάνοντας το πείραμα 2 πήραμε τις διπλανές τιμές. Να σχεδιάσετε το διάγραμμα επιμήκυνσης - μάζας. Με βάση αυτό το διάγραμμα να βρείτε πόση μάζα έχει ένα σώμα που έχει επιμήκυνση 7 εκατοστά. β) Να υπολογίσετε πόσο βάρος έχει ένα σώμα μάζας 150g στη Γη. ΜΑΖΑ m (γραμ.) ΕΠΙΜΗΚΥΝΣΗ ΔL (εκατ.) 0 0 100 5 200 10 300 15 400 20 500 25
  • 6. Φ 4 ΜΕΤΡΗΣΗ ΟΓΚΟΥ Όγκος Όγκο ενός σώματος ονομάζουμε το πόσο χώρο καταλαμβάνει. Μονάδα μέτρησης του όγκου Η διεθνής μονάδα μέτρησης του όγκου είναι το κυβικό μέτρο (m3 ). Το κυβικό μέτρο είναι ο όγκος ενός κύβου ακμής 1m. Συνεπώς, η μονάδα μέτρησης του όγκου εκφράζεται μέσω της μονάδας του μήκους. Υποδιαιρέσεις και Πολλαπλάσια του κυβικού μέτρου ** Υποπολλαπλάσια του κυβικού μέτρου είναι τα :  Κυβικό δεκατόμετρο : 1 dm3 = 1 L  Κυβικό εκατοστόμετρο : 1 cm3 = 1mL  Κυβικό χιλιοστόμετρο : 1 mm3 Συνήθως, ως μονάδα μέτρησης των υγρών χρησιμοποιούμε το λίτρο. Το λίτρο (L) ισούται με ένα κυβικό δεκατόμετρο, δηλαδή είναι ο όγκος ενός κύβου ακμής 1dm. Όργανο μέτρησης του όγκου Για τη μέτρηση του όγκου των υγρών χρησιμοποιούμε τον ογκομετρικό κύλινδρο. Ο ογκομετρικός κύλινδρος είναι ένα βαθμονομημένο κυλινδρικό δοχείο. Πείραμα 1 (Μέτρηση χωρητικότητας δοχείου) Διαθέτουμε ένα δοχείο, έναν ογκομετρικό και υγρό. Για να μετρήσουμε τη χωρητικότητα του δοχείου, το γεμίζουμε με υγρό, κατόπιν το αδειάζουμε στον ογκομετρικό και σημειώνουμε τη στάθμη. Πείραμα 2 (Μέτρηση όγκου στερεού) Διαθέτουμε ένα στερεό και έναν ογκομετρικό κύλινδρο με υγρό. Σημειώνουμε τη στάθμη του υγρού και μετά προσθέτουμε το στερεό και ξανασημειώνουμε τη στάθμη. Ο όγκος του σώματος θα ισούται με τη διαφορά της τελικής μείον την αρχική στάθμη. Ασκήσεις α)Να σημειώσετε τον όγκο του υγρού σε κάθε ογκομετρικό κύλινδρο. β)Να υπολογίσετε τον όγκο της πέτρας του σχήματος.
  • 7. Φ 5 ΜΕΤΡΗΣΗ ΠΥΚΝΟΤΗΤΑΣ Πυκνότητα Πυκνότητα (d) ενός υλικού ορίζεται ως το πηλίκο της μάζας ενός σώματος από το υλικό αυτό προς τον όγκο του. Για να την υπολογίσουμε, διαιρούμε τη μάζα του σώματος με τον όγκο του: 𝜋𝜐𝜅𝜈ό𝜏𝜂𝜏𝛼 = 𝜇ά𝜁𝛼 ό𝛾𝜅𝜊𝜍 ή συμβολικά : m d V = Η πυκνότητα εξαρτάται μόνο από το υλικό του σώματος. Έτσι δεν εξαρτάται από το σχήμα, το μέγεθος ή την ποσότητά του. Π.χ. Είτε πάρουμε μία σιδηροδοκό είτε ένα ρίνισμα σιδήρου, η πυκνότητα θα είναι η ίδια και χαρακτηριστική του σιδήρου. Μονάδα μέτρησης της πυκνότητας Εάν η μάζα μετρηθεί σε κιλά και ο όγκος σε κυβικά μέτρα, τότε η διεθνής μονάδα μέτρησης της πυκνότητας, με βάση τον παραπάνω τύπο, θα είναι το κιλό ανα κυβικό μέτρο (1 Kg/m3 ). Άλλες μονάδες μπορεί να είναι το g/L, g/mL κλπ. Πείραμα 1 (Μέτρηση πυκνότητας υγρού σώματος) Διαθέτουμε ένα ζυγό, έναν ογκομετρικό κύλινδρο και ένα δοχείο με υγρό. Πρώτα, τοποθετούμε τον άδειο ογκομετρικό στο ζυγό και μετράμε τη μάζα του. Βάζουμε το υγρό στον ογκομετρικό και υπολογίζουμε τη μάζα του υγρού αφαιρώντας τη μάζα του ογκομετρικού. Στη συνέχεια, μετράμε τη στάθμη του για να βρούμε τον όγκο του και τέλος, διαιρούμε τη μάζα με τον όγκο για να βρούμε την πυκνότητά του. Πείραμα 2 (Μέτρηση πυκνότητας στερεού σώματος) Διαθέτουμε ένα ζυγό, έναν ογκομετρικό κύλινδρο με νερό και ένα στερεό σώμα. Τοποθετούμε το σώμα στο ζυγό και μετράμε τη μάζα του. Στη συνέχεια, τοποθετούμε το σώμα στον ογκομετρικό και μετράμε πόσο ανυψώθηκε η στάθμη του νερού για να βρούμε τον όγκο του. Τέλος, διαιρούμε τη μάζα με τον όγκο για να βρούμε την πυκνότητά του. Ασκήσεις α)Εάν η μάζα όλων των υγρών είναι 42g, να υπολογίσετε την πυκνότητα του καθενός. β)Να υπολογίσετε την πυκνότητα της πέτρας εάν γνωρίζετε ότι η μάζα της είναι 200g..
  • 8. Φ 6 ΜΕΤΡΗΣΕΙΣ ΘΕΡΜΟΚΡΑΣΙΑΣ – Η ΒΑΘΜΟΝΟΜΗΣΗ Θερμοκρασία Θερμοκρασία είναι το φυσικό μέγεθος που μας δείχνει πόσο θερμό ή ψυχρό είναι ένα σώμα. Μονάδα μέτρησης Η μονάδα μέτρησης της θερμοκρασίας που χρησιμοποιούμε είναι ο βαθμός Κελσίου (°C). Η διεθνής, όμως μονάδα μέτρησης είναι ο βαθμός Κέλβιν (Κ). Όργανο μέτρησης Όργανο μέτρησης είναι το θερμόμετρο. Φυσικές σταθερές Δύο φυσικές σταθερές, είναι οι δύο γνωστές θερμοκρασίες είναι για το καθαρό νερό: 0°C: Το νερό συνυπάρχει σε στερεή και υγρή κατάσταση. Λιώνει ο πάγος αν ανεβαίνει η θερμοκρασία, ή στερεοποιείται το υγρό νερό όταν κατεβαίνει. 100°C: Το νερό συνυπάρχει σε υγρή και αέρια μορφή. Το νερό βράζει εάν ανεβαίνει η θερμοκρασία, ή ο αέρας υγροποιείται εάν κατεβαίνει. Πείραμα (Βαθμονόμηση θερμομέτρου) Διαθέτουμε ένα θερμόμετρο χωρίς γραμμές, ένα πυρίμαχο δοχείο, μία εστία θέρμανσης, νερό και πάγο. Για να βαθμονομήσουμε το θερμόμετρο, πρέπει να σχεδιάσουμε πάνω του μία κλίμακα. Αρκεί να σημειώσουμε δύο γνωστές θερμοκρασίες και μετά να το χωρίσουμε σε ίσα τμήματα. Βάζουμε το θερμόμετρο σε πάγο που λιώνει και σημειώνουμε τους 0°C. Μετά το βάζουμε σε νερό που βράζει και σημειώνουμε τους 100°C. Τέλος, χωρίζουμε την απόστασή τους σε 100 ίσα τμήματα. Σφάλματα Κατά την ανάγνωση της θερμοκρασίας πρέπει να έχουμε τη στάθμη του θερμόμετρου στο ύψος των ματιών μας και να το κρατάμε σε απόσταση. Θα πάρουμε λάθος μέτρηση αν: α) το κοιτάζουμε από ψηλά (θα μετρήσουμε μεγαλύτερη θερμοκρασία) β) το κοιτάζουμε από χαμηλά (θα μετρήσουμε μικρότερη θερμοκρασία) γ) το κρατάμε κοντά μας (το σώμα και η ανάσα μας ανεβάζουν τη θερμοκρασία). Άσκηση Να βαθμονομήσετε το θερμόμετρο της παρακάτω εικόνας. Νερό με πάγο Νερό με υδρατμούς Υποδιαιρέσεις
  • 9. Φ 7 ΑΠΟ ΤΗ ΘΕΡΜΟΤΗΤΑ ΣΤΗ ΘΕΡΜΟΚΡΑΣΙΑ– Η ΘΕΡΜΙΚΗ ΙΣΟΡΡΟΠΙΑ Θερμική ενέργεια Θερμική ενέργεια ενός σώματος ονομάζουμε το σύνολο της κινητικής ενέργειας των σωματιδίων του, λόγω των συνεχών και τυχαίων κινήσεών τους. Θερμότητα Θερμότητα ονομάζουμε την ενέργεια που ρέει από ένα θερμότερο σώμα σε ένα ψυχρότερο, λόγω της διαφοράς θερμοκρασίας τους. Μονάδα μέτρησης Η διεθνής μονάδα μέτρησης της θερμότητας και της θερμικής ενέργειας είναι το Τζάουλ (J) Θερμική ισορροπία Όταν δύο σώματα είναι σε θερμική επαφή, η θερμότητα φεύγει από το θερμότερο, το οποίο ψύχεται και πηγαίνει στο ψυχρότερο, το οποίο θερμαίνεται, μέχρι να αποκτήσουν ίση θερμοκρασία. Τα σώματα λέμε ότι βρίσκονται σε θερμική ισορροπία όταν βρίσκονται στην ίδια θερμοκρασία. Θερμοκρασία και μικρόκοσμος Όσο αυξάνεται η θερμοκρασία ενός σώματος, τα σωματίδιά του κινούνται εντονότερα. Αυξάνεται λοιπόν και η θερμική ενέργεια του σώματος. Όσο μειώνεται η θερμοκρασία του, τα σωματίδια κινούνται πιο αργά, αλλά δε σταματούν. H θερμική ενέργειά του μειώνεται αλλά δε μηδενίζεται. Πείραμα (Θερμική ισορροπία) Έχουμε δύο θερμόμετρα οινοπνεύματος, ένα πυρίμαχο δοχείο (πυρέξ) και ένα ακόμα μεγαλύτερο από αυτό δοχείο, νερό και μία εστία θέρμανσης. Βάζουμε νερό και ένα θερμόμετρο στο κάθε δοχείο και θερμαίνουμε το πυρίμαχο δοχείο στην εστία. Στη συνέχεια, βάζουμε το δοχείο με το ζεστό νερό μέσα στο δοχείο με το κρύο νερό. Σημειώνουμε τις θερμοκρασίες των δύο δοχείων ανά λεπτό σε πίνακα και σχεδιάζουμε το διάγραμμα θερμοκρασίας χρόνου και για τα δύο δοχεία. Παρατηρούμε ότι η θερμοκρασία του θερμού νερού μειώνεται συνεχώς ενώ η θερμοκρασία του ψυχρού νερού αυξάνεται διαρκώς. Αυτό συνεχίζεται μέχρι να έρθουν σε θερμική ισορροπία, δηλαδή μέχρι να έχουν την ίδια θερμοκρασία. Παραδείγματα θερμικής ισορροπίας στην καθημερινή ζωή -ένα παγάκι λιώνει σε ένα αναψυκτικό ενώ το αναψυκτικό παγώνει. -ένα ζεστό τσάι σε ένα κρύο δωμάτιο ψύχεται μέχρι να αποκτήσει την ίδια θερμοκρασία με το δωμάτιο. -το θερμόμετρο που βάζουμε στο σώμα μας θερμαίνεται μέχρι που αποκτά τη θερμοκρασία του σώματός μας. -το κουτάλι που μπαίνει στην καυτή σούπα θερμαίνεται και αποκτά τη θερμοκρασία της σούπας. –το χέρι που ακουμπά μεταλλικό πόμολο ψύχεται ενώ το πόμολο θερμαίνεται. Άσκηση Με το παραπάνω πείραμα πήραμε τις διπλανές τιμές. Να σχεδιάσετε το διάγραμμα για το θερμό και το κρύο νερό σε σχέση με το χρόνο, στο ίδιο διάγραμμα. Χρόνος (λεπτά) Θερμοκρασία θερμού νερού(°C) Θερμοκρασία κρύου νερού (°C) 0 100 0 5 60 15 10 40 20 15 30 23 20 25 25 25 25 25
  • 10. Φ 8 ΤΟ ΗΛΕΚΤΡΙΚΟ ΒΡΑΧΥ-ΚΥΚΛΩΜΑ– ΚΙΝΔΥΝΟΙ ΚΑΙ «ΑΣΦΑΛΕΙΑ» Πηγή Πηγή σε ένα κύκλωμα μπορεί να είναι μία μπαταρία, ένα δυναμό, ένα φωτοστοιχείο κλπ. Σχήμα μπαταρίας Οι μπαταρίες ανάλογα με το σχήμα τους έχουν συγκεκριμένη τάση. πχ. η μπαταρία αυτοκινήτου έχει 12V. Βραχυκύκλωμα Εάν οι δύο πόλοι μίας πηγής συνδεθούν με αγωγό πολύ μικρής αντίστασης, περνάει πολύ ρεύμα και το κύκλωμα υπερθερμαίνεται. Τότε λέμε ότι έχουμε βραχυκύκλωμα. Ασφάλεια Για να αποφευχθεί το βραχυκύκλωμα, βάζουμε στο κύκλωμα μία ασφάλεια ώστε εάν περάσει πολύ ρεύμα, με τη θέρμανση να λιώσει πρώτα αυτή και να ανοίξει (διακοπεί) το κύκλωμα. Επικίνδυνες ενέργειες για βραχυκύκλωμα - Η σύνδεση ηλεκτρικού καλωδίου στην πρίζα με βρεγμένα χέρια. - Το κάρφωμα μεταλλικού καρφιού στον τοίχο, ακριβώς πάνω από την πρίζα. - H επισκευή ηλεκτρικής συσκευής όσο είναι στην πρίζα. - Το πέταγμα χαρταετού κοντά σε ηλεκτροφόρα καλώδια. 9 ΑΠΟ ΤΟΝ ΗΛΕΚΤΡΙΣΜΟ ΣΤΟΝ ΜΑΓΝΗΤΙΣΜΟ – ΕΝΑΣ ΗΛΕΚΤΡΙΚΟΣ (ΙΔΙΟ-) ΚΙΝΗΤΗΡΑΣ Ηλεκτρικός κινητήρας O ηλεκτρικός κινητήρας είναι μία συσκευή που μετατρέπει την ηλεκτρική ενέργεια σε μηχανική. Μέρη κινητήρα Ο κινητήρας αποτελείται κατά βάση από ένα πηνίο (ρότορας) μέσα στο μαγνητικό πεδίο ενός μαγνήτη (στάτορας). Λειτουργία κινητήρα Όταν το πηνίο διαρρέεται από ρεύμα, δέχεται δυνάμεις από το μαγνήτη, που το κάνουν να περιστρέφεται. Εφαρμογές Ηλεκτρικό κινητήρα μπορεί να έχουν τα ηλεκτρικά υποβρύχια, οι ανεμιστήρες, τα τρόλεϊ, τα ηλεκτρικά αυτοκίνητα, το ρολόι με μπαταρία κ.ο.κ. Χαρακτηριστικά του κινητήρα Τα απαραίτητα στοιχεία για κάθε ηλεκτροκινητήρα είναι: 1. Η απαιτούμενη τάση για την τροφοδοσία του σε βολτ (V). 2. Το είδος της απαιτούμενης τάσης, συνεχές (DC) ή εναλλασσόμενο ρεύμα (~ ή AC), και στη 2η περίπτωση, μονοφασικό (1PH) ή τριφασικό (3PH). 3. Η συχνότητα του εναλλασσόμενου ρεύματος, σε Χερτζ (Hertz). 4. Η ισχύς του κινητήρα σε Βατ ή ίππους (W ή HP). 5. Η ένταση του ρεύματος σε αμπέρ (Α) που διαρρέει τον κινητήρα. 6. Η αποκτώμενη ταχύτητα περιστροφής του άξονα του κινητήρα σε στροφές ανά λεπτό (RPM).
  • 11. Φ 10 ΑΠΟ ΤΟ ΜΑΓΝΗΤΙΣΜΟ ΣΤΟΝ ΗΛΕΚΤΡΙΣΜΟ – ΜΙΑ ΗΛΕΚΤΡΙΚΗ (ΙΔΙΟ-) ΓΕΝΝΗΤΡΙΑ Ηλεκτρική γεννήτρια Η ηλεκτρική γεννήτρια είναι μία συσκευή που μετατρέπει τη μηχανική ενέργεια σε ηλεκτρική. Είναι το αντίστροφο του κινητήρα. Μέρη γεννήτριας Η γεννήτρια έχει τα ίδια μέρη με τον κινητήρα. Αποτελείται από ένα πηνίο στο μαγνητικό πεδίο ενός μαγνήτη. Λειτουργία γεννήτριας Όταν το πηνίο περιστρέφεται στο μαγνητικό πεδίο του μαγνήτη, λόγω του φαινομένου της επαγωγής διαρρέεται από ρεύμα. Το ίδιο συμβαίνει και όταν ο μαγνήτης περιστρέφεται. Εφαρμογές Ηλεκτρική γεννήτρια μπορεί να συναντήσουμε σε ένα ατμοηλεκτρικό εργοστάσιο, σε ένα υδροηλεκτρικό εργοστάσιο, σε μία ανεμογεννήτρια, στο δυναμό του ποδηλάτου κ.ο.κ. Οικολογία και γεννήτριες Όταν η μηχανική ενέργεια προκύπτει από ανανεώσιμες πηγές, η χρήση της γεννήτριας είναι οικολογική, όπως  στο υδροηλεκτρικό εργοστάσιο (δυναμική ενέργεια νερού)  στην ανεμογεννήτρια (αιολική ενέργεια)  στο δυναμό ποδηλάτου (κινητική ενέργεια ρόδας) Όταν απαιτείται η κατανάλωση φυσικών πόρων δεν είναι οικολογική ούτε οικονομική, όπως στο ατμοηλεκτρικό εργοστάσιο, όπου απαιτείται η καύση γαιανθράκων. Χαρακτηριστικά της γεννήτριας Κάποια στοιχεία για τη γεννήτρια είναι: 1. Η τάση που βγάζει σε βολτ (V). 2. Η συχνότητα του εναλλασσόμενου ρεύματος, σε Χερτζ (Hertz). 3. Η ταχύτητα περιστροφής του άξονα του κινητήρα σε στροφές ανά λεπτό (RPM).
  • 12. Φ 11 ΤΟ ΔΙΕΘΝΕΣ ΣΥΣΤΗΜΑ ΜΟΝΑΔΩΝ Θεμελιώδη μεγέθη Τα φυσικά μεγέθη που δεν ορίζονται με τη βοήθεια άλλων φυσικών μεγεθών, αλλά άμεσα από τη διαίσθησή μας ονομάζονται θεμελιώδη και είναι το μήκος ℓ (length), η μάζα m (mass) και ο χρόνος t (time). Παράγωγα μεγέθη Παράγωγα μεγέθη είναι αυτά που ορίζονται με απλές μαθηματικές σχέσεις από τα θεμελιώδη. Παραδείγματα είναι το εμβαδόν, ο όγκος και η πυκνότητα. Διεθνές σύστημα μονάδων S.I. Το σύστημα μονάδων μέτρησης των θεμελιωδών και των παράγωγων μεγεθών αποτελεί το Διεθνές Σύστημα Μονάδων S.I. Μονάδες θεμελιωδών μεγεθών Τα θεμελιώδη μεγέθη είναι μόνο 7 και οι μονάδες τους είναι: ΜΕΓΕΘΟΣ ΜΟΝΑΔΕΣ ΜΕΤΡΗΣΗΣ ΟΝΟΜΑΣΙΑ ΣΥΜΒΟΛΟ ΟΝΟΜΑΣΙΑ ΣΥΜΒΟΛΟ Μήκος ℓ Μέτρο m Μάζα m Χιλιόγραμμο Kg Χρόνος t Δευτερόλεπτο s Θερμοκρασία T Βαθμός Kelvin K Ένταση Ηλεκτρικού Ρεύματος I Αμπέρ A Ποσότητα ύλης n mol mol Φωτεινή ένταση Ι ν Κηρίο (candela) cd Μονάδες παράγωγων μεγεθών Τα παράγωγα μεγέθη δεν έχουν έτοιμες μονάδες στο S.I. αλλά οι μονάδες τους προκύπτουν από τις μονάδες των θεμελιωδών, μέσω των μαθηματικών σχέσεων που τα συνδέουν. Τα παράγωγα μεγέθη που συναντάμε φέτος με τις μονάδες τους: Μέγεθος Σχέση Μονάδα μέτρησης Όγκος V=(Μήκος)3 m3 (κυβικό μέτρο) Πυκνότητα 𝑑 = 𝑚 𝑉 𝑘𝑔 𝑚3 (κιλό ανά κυβικό μέτρο) Βάρος B=mg Ν (Newton) Ενέργεια E J (Joule)