SlideShare a Scribd company logo
1 of 98
Download to read offline
Harder Extension 1
   Circle Geometry
Harder Extension 1
                Circle Geometry
Converse Circle Theorems
Harder Extension 1
                Circle Geometry
Converse Circle Theorems
(1) The circle whose diameter is the hypotenuse of a right angled
    triangle passes through the third vertex.
Harder Extension 1
                Circle Geometry
Converse Circle Theorems
(1) The circle whose diameter is the hypotenuse of a right angled
    triangle passes through the third vertex.
          C


  A                 B
Harder Extension 1
                Circle Geometry
Converse Circle Theorems
(1) The circle whose diameter is the hypotenuse of a right angled
    triangle passes through the third vertex.
          C
                          ABC are concyclic with AB diameter

  A                 B
Harder Extension 1
                Circle Geometry
Converse Circle Theorems
(1) The circle whose diameter is the hypotenuse of a right angled
    triangle passes through the third vertex.
          C
                          ABC are concyclic with AB diameter
                                 in a semicircle  90 
                                                       

  A                 B
Harder Extension 1
                Circle Geometry
Converse Circle Theorems
(1) The circle whose diameter is the hypotenuse of a right angled
    triangle passes through the third vertex.
          C
                          ABC are concyclic with AB diameter
                                 in a semicircle  90 
                                                       

   A                  B
(2) If an interval AB subtends the same angle at two points P and Q on
     the same side of AB, then A,B,P,Q are concyclic.
Harder Extension 1
                Circle Geometry
Converse Circle Theorems
(1) The circle whose diameter is the hypotenuse of a right angled
    triangle passes through the third vertex.
          C
                          ABC are concyclic with AB diameter
                                 in a semicircle  90 
                                                       

   A                  B
(2) If an interval AB subtends the same angle at two points P and Q on
     the same side of AB, then A,B,P,Q are concyclic.
       P            Q
              

  A                  B
Harder Extension 1
                Circle Geometry
Converse Circle Theorems
(1) The circle whose diameter is the hypotenuse of a right angled
    triangle passes through the third vertex.
          C
                          ABC are concyclic with AB diameter
                                 in a semicircle  90 
                                                       

   A                  B
(2) If an interval AB subtends the same angle at two points P and Q on
     the same side of AB, then A,B,P,Q are concyclic.
       P            Q
                            ABQP is a cyclic quadrilateral

  A                  B
Harder Extension 1
                Circle Geometry
Converse Circle Theorems
(1) The circle whose diameter is the hypotenuse of a right angled
    triangle passes through the third vertex.
          C
                          ABC are concyclic with AB diameter
                                 in a semicircle  90 
                                                       

   A                  B
(2) If an interval AB subtends the same angle at two points P and Q on
     the same side of AB, then A,B,P,Q are concyclic.
       P            Q
                            ABQP is a cyclic quadrilateral
                                s in same segment are  
   A                   B
(3) If a pair of opposite angles in a quadrilateral are supplementary (or
     if an exterior angle equals the opposite interior angle) then the
     quadrilateral is cyclic.
(3) If a pair of opposite angles in a quadrilateral are supplementary (or
     if an exterior angle equals the opposite interior angle) then the
     quadrilateral is cyclic.


The Four Centres Of A Triangle
(3) If a pair of opposite angles in a quadrilateral are supplementary (or
     if an exterior angle equals the opposite interior angle) then the
     quadrilateral is cyclic.


The Four Centres Of A Triangle
(1) The angle bisectors of the vertices are concurrent at the incentre
    which is the centre of the incircle, tangent to all three sides.
(3) If a pair of opposite angles in a quadrilateral are supplementary (or
     if an exterior angle equals the opposite interior angle) then the
     quadrilateral is cyclic.


The Four Centres Of A Triangle
(1) The angle bisectors of the vertices are concurrent at the incentre
    which is the centre of the incircle, tangent to all three sides.
(3) If a pair of opposite angles in a quadrilateral are supplementary (or
     if an exterior angle equals the opposite interior angle) then the
     quadrilateral is cyclic.


The Four Centres Of A Triangle
(1) The angle bisectors of the vertices are concurrent at the incentre
    which is the centre of the incircle, tangent to all three sides.

                                        
                                         
               incentre
                                    
(3) If a pair of opposite angles in a quadrilateral are supplementary (or
     if an exterior angle equals the opposite interior angle) then the
     quadrilateral is cyclic.


The Four Centres Of A Triangle
(1) The angle bisectors of the vertices are concurrent at the incentre
    which is the centre of the incircle, tangent to all three sides.

                                        
                                         
               incentre                           incircle
                                    
(2) The perpendicular bisectors of the sides are concurrent at the
    circumcentre which is the centre of the circumcircle, passing
    through all three vertices.
(2) The perpendicular bisectors of the sides are concurrent at the
    circumcentre which is the centre of the circumcircle, passing
    through all three vertices.
(2) The perpendicular bisectors of the sides are concurrent at the
    circumcentre which is the centre of the circumcircle, passing
    through all three vertices.




       circumcentre
(2) The perpendicular bisectors of the sides are concurrent at the
    circumcentre which is the centre of the circumcircle, passing
    through all three vertices.




       circumcentre
                                                 circumcircle
(2) The perpendicular bisectors of the sides are concurrent at the
    circumcentre which is the centre of the circumcircle, passing
    through all three vertices.




       circumcentre
                                                 circumcircle
(3) The medians are concurrent at the centroid, and the centroid trisects
    each median.
(2) The perpendicular bisectors of the sides are concurrent at the
    circumcentre which is the centre of the circumcircle, passing
    through all three vertices.




       circumcentre
                                                 circumcircle
(3) The medians are concurrent at the centroid, and the centroid trisects
    each median.
(2) The perpendicular bisectors of the sides are concurrent at the
    circumcentre which is the centre of the circumcircle, passing
    through all three vertices.




       circumcentre
                                                 circumcircle
(3) The medians are concurrent at the centroid, and the centroid trisects
    each median.




            centroid
(4) The altitudes are concurrent at the orthocentre.
(4) The altitudes are concurrent at the orthocentre.
(4) The altitudes are concurrent at the orthocentre.




            orthocentre
(4) The altitudes are concurrent at the orthocentre.




            orthocentre
Interaction Between Geometry & Trigonometry
(4) The altitudes are concurrent at the orthocentre.




            orthocentre
Interaction Between Geometry & Trigonometry
            a     b     c
                           diameter if circumcircle
          sin A sin B sin C
(4) The altitudes are concurrent at the orthocentre.




            orthocentre
Interaction Between Geometry & Trigonometry
               a     b     c
                              diameter if circumcircle
             sin A sin B sin C
Proof:            A



                          B


         C
(4) The altitudes are concurrent at the orthocentre.




            orthocentre
Interaction Between Geometry & Trigonometry
               a     b     c
                              diameter if circumcircle
             sin A sin B sin C
Proof:            A
                      P


                 O        B


         C
(4) The altitudes are concurrent at the orthocentre.




            orthocentre
Interaction Between Geometry & Trigonometry
               a     b     c
                              diameter if circumcircle
             sin A sin B sin C
Proof:            A            A  P          in same segment 
                      P


                 O        B


         C
(4) The altitudes are concurrent at the orthocentre.




            orthocentre
Interaction Between Geometry & Trigonometry
               a     b     c
                              diameter if circumcircle
             sin A sin B sin C
Proof:            A              A  P        in same segment 
                      P
                              sin A  sin P


                 O        B


         C
(4) The altitudes are concurrent at the orthocentre.




            orthocentre
Interaction Between Geometry & Trigonometry
               a     b     c
                              diameter if circumcircle
             sin A sin B sin C
Proof:            A              A  P        in same segment 
                      P
                              sin A  sin P
                              PBC  90
                 O        B


         C
(4) The altitudes are concurrent at the orthocentre.




            orthocentre
Interaction Between Geometry & Trigonometry
               a     b     c
                              diameter if circumcircle
             sin A sin B sin C
Proof:            A              A  P        in same segment 
                      P
                              sin A  sin P
                              PBC  90        in semicircle  90 
                                                                    


                 O        B


         C
(4) The altitudes are concurrent at the orthocentre.




            orthocentre
Interaction Between Geometry & Trigonometry
               a     b     c
                              diameter if circumcircle
             sin A sin B sin C
Proof:            A            A  P          in same segment 
                      P
                            sin A  sin P
                            PBC  90          in semicircle  90 
                                                                    

                              BC
                 O        B       sin P
                              PC

         C
(4) The altitudes are concurrent at the orthocentre.




            orthocentre
Interaction Between Geometry & Trigonometry
               a     b     c
                              diameter if circumcircle
             sin A sin B sin C
Proof:            A            A  P          in same segment 
                      P
                            sin A  sin P
                            PBC  90          in semicircle  90 
                                                                    

                               BC
                 O        B         sin P
                               PC
                              BC
                                    PC
         C                   sin P
(4) The altitudes are concurrent at the orthocentre.




            orthocentre
Interaction Between Geometry & Trigonometry
               a     b     c
                              diameter if circumcircle
             sin A sin B sin C
Proof:            A            A  P          in same segment 
                      P
                            sin A  sin P
                            PBC  90          in semicircle  90 
                                                                    

                               BC
                 O        B         sin P
                               PC
                              BC                          BC
                                    PC            PC 
                             sin P                       sin A
         C
e.g. (1990)




In the diagram, AB is a fixed chord of a circle, P a variable point in the
circle and AC and BD are perpendicular to BP and AP respectively.
e.g. (1990)




In the diagram, AB is a fixed chord of a circle, P a variable point in the
circle and AC and BD are perpendicular to BP and AP respectively.
(i) Show that ABCD is a cyclic quadrilateral on a circle with AB as
    diameter.
e.g. (1990)




In the diagram, AB is a fixed chord of a circle, P a variable point in the
circle and AC and BD are perpendicular to BP and AP respectively.
(i) Show that ABCD is a cyclic quadrilateral on a circle with AB as
    diameter.
    BDA  ACB  90
e.g. (1990)




In the diagram, AB is a fixed chord of a circle, P a variable point in the
circle and AC and BD are perpendicular to BP and AP respectively.
(i) Show that ABCD is a cyclic quadrilateral on a circle with AB as
    diameter.
    BDA  ACB  90                      given 
e.g. (1990)




In the diagram, AB is a fixed chord of a circle, P a variable point in the
circle and AC and BD are perpendicular to BP and AP respectively.
(i) Show that ABCD is a cyclic quadrilateral on a circle with AB as
    diameter.
   BDA  ACB  90                       given 
   ABCD is a cyclic quadrilateral
e.g. (1990)




In the diagram, AB is a fixed chord of a circle, P a variable point in the
circle and AC and BD are perpendicular to BP and AP respectively.
(i) Show that ABCD is a cyclic quadrilateral on a circle with AB as
    diameter.
   BDA  ACB  90                       given 
   ABCD is a cyclic quadrilateral         s in same segment are 
e.g. (1990)




In the diagram, AB is a fixed chord of a circle, P a variable point in the
circle and AC and BD are perpendicular to BP and AP respectively.
(i) Show that ABCD is a cyclic quadrilateral on a circle with AB as
    diameter.
   BDA  ACB  90                        given 
   ABCD is a cyclic quadrilateral          s in same segment are 
  AB is diameter as  in semicircle  90
(ii) Show that triangles PCD and APB are similar
(ii) Show that triangles PCD and APB are similar
      APB  DPC
(ii) Show that triangles PCD and APB are similar
      APB  DPC                       common s 
(ii) Show that triangles PCD and APB are similar
      APB  DPC                       common s 
      PDC  PBA
(ii) Show that triangles PCD and APB are similar
      APB  DPC                       common s 
      PDC  PBA                       exterior cyclic quadrilateral
(ii) Show that triangles PCD and APB are similar
      APB  DPC                       common s 
      PDC  PBA                       exterior cyclic quadrilateral
     PDC ||| PBA
(ii) Show that triangles PCD and APB are similar
      APB  DPC                       common s 
      PDC  PBA                       exterior cyclic quadrilateral
     PDC ||| PBA                     equiangular 
(iii) Show that as P varies, the segment CD has constant length.
P                                               P




  A                B                              C                D
(iii) Show that as P varies, the segment CD has constant length.
P                                               P




  A                B                              C                D
(iii) Show that as P varies, the segment CD has constant length.
          CD PC
              
          AB AP
P                                                   P




  A                  B                             C                     D
(iii) Show that as P varies, the segment CD has constant length.
          CD PC
                                         ratio of sides in ||| s 
          AB AP
P                                                   P




  A                  B                             C                     D
(iii) Show that as P varies, the segment CD has constant length.
          CD PC
                                         ratio of sides in ||| s 
          AB AP
          PC
In PCA,       cos P
          AP
P                                                   P




  A                  B                             C                     D
(iii) Show that as P varies, the segment CD has constant length.
          CD PC
                                         ratio of sides in ||| s 
          AB AP
          PC
In PCA,       cos P
          AP
          CD
              cos P
          AB
P                                                   P




  A                  B                             C                     D
(iii) Show that as P varies, the segment CD has constant length.
          CD PC
                                         ratio of sides in ||| s 
          AB AP
          PC
In PCA,       cos P
          AP
          CD
              cos P
          AB
          CD  AB cos P
P                                                   P




  A                  B                             C                     D
(iii) Show that as P varies, the segment CD has constant length.
          CD PC
                                         ratio of sides in ||| s 
          AB AP
          PC
In PCA,       cos P
          AP
          CD
              cos P
          AB
          CD  AB cos P
    Now, P is constant
P                                                 P




  A                 B                              C                   D
(iii) Show that as P varies, the segment CD has constant length.
          CD PC
                                         ratio of sides in ||| s 
          AB AP
          PC
In PCA,       cos P
          AP
          CD
              cos P
          AB
          CD  AB cos P
    Now, P is constant                   s in same segment are 
P                                                 P




  A                 B                              C                   D
(iii) Show that as P varies, the segment CD has constant length.
          CD PC
                                         ratio of sides in ||| s 
           AB AP
          PC
In PCA,       cos P
          AP
          CD
              cos P
           AB
          CD  AB cos P
    Now, P is constant                   s in same segment are 
         and AB is fixed
P                                                 P




  A                 B                              C                   D
(iii) Show that as P varies, the segment CD has constant length.
          CD PC
                                         ratio of sides in ||| s 
           AB AP
          PC
In PCA,       cos P
          AP
          CD
              cos P
           AB
          CD  AB cos P
    Now, P is constant                   s in same segment are 
         and AB is fixed                  given 
P                                                 P




  A                 B                              C                   D
(iii) Show that as P varies, the segment CD has constant length.
          CD PC
                                         ratio of sides in ||| s 
           AB AP
          PC
In PCA,       cos P
          AP
          CD
              cos P
           AB
          CD  AB cos P
    Now, P is constant                   s in same segment are 
         and AB is fixed                  given 
       CD is constant
(iv) Find the locus of the midpoint of CD.
(iv) Find the locus of the midpoint of CD.
   ABCD is a cyclic quadrilateral with AB diameter.
       D             C


  A                       B
(iv) Find the locus of the midpoint of CD.
   ABCD is a cyclic quadrilateral with AB diameter.
            M
     D             C            Let M be the midpoint of CD


  A                       B
(iv) Find the locus of the midpoint of CD.
   ABCD is a cyclic quadrilateral with AB diameter.
            M
     D             C            Let M be the midpoint of CD
                                O is the midpoint of AB

  A                       B
             O
(iv) Find the locus of the midpoint of CD.
   ABCD is a cyclic quadrilateral with AB diameter.
            M
     D             C            Let M be the midpoint of CD
                                O is the midpoint of AB
                                OM is constant
  A                       B
             O
(iv) Find the locus of the midpoint of CD.
   ABCD is a cyclic quadrilateral with AB diameter.
            M
     D             C            Let M be the midpoint of CD
                                O is the midpoint of AB
                                OM is constant
  A
             O
                          B
                                chords are equidistant from the centre
(iv) Find the locus of the midpoint of CD.
   ABCD is a cyclic quadrilateral with AB diameter.
            M
     D             C            Let M be the midpoint of CD
                                  O is the midpoint of AB
                                  OM is constant
  A
             O
                          B
                                  chords are equidistant from the centre
 M is a fixed distance from O
(iv) Find the locus of the midpoint of CD.
   ABCD is a cyclic quadrilateral with AB diameter.
            M
     D             C            Let M be the midpoint of CD
                                  O is the midpoint of AB
                                  OM is constant
  A
             O
                          B
                                  chords are equidistant from the centre
 M is a fixed distance from O
  OM 2  OC 2  MC 2
(iv) Find the locus of the midpoint of CD.
   ABCD is a cyclic quadrilateral with AB diameter.
            M
     D             C            Let M be the midpoint of CD
                                  O is the midpoint of AB
                                  OM is constant
  A
             O
                          B
                                  chords are equidistant from the centre
 M is a fixed distance from O
  OM 2  OC 2  MC 2
                 2             2
         1      1         
         AB    AB cos P 
         2      2         
         1         1
        AB  AB 2 cos 2 P
              2

         4         4
         1
        AB 2 sin 2 P
         4
(iv) Find the locus of the midpoint of CD.
   ABCD is a cyclic quadrilateral with AB diameter.
            M
     D             C            Let M be the midpoint of CD
                                  O is the midpoint of AB
                                  OM is constant
  A
             O
                          B
                                  chords are equidistant from the centre
 M is a fixed distance from O
  OM 2  OC 2  MC 2
                 2             2
         1      1         
         AB    AB cos P 
         2      2         
         1         1
        AB  AB 2 cos 2 P
              2

         4         4
         1
        AB 2 sin 2 P
         4
         1
  OM  AB sin P
         2
(iv) Find the locus of the midpoint of CD.
   ABCD is a cyclic quadrilateral with AB diameter.
            M
     D             C            Let M be the midpoint of CD
                                  O is the midpoint of AB
                                  OM is constant
  A
             O
                          B
                                  chords are equidistant from the centre
 M is a fixed distance from O              locus is circle, centre O
  OM 2  OC 2  MC 2                                     1
                 2             2             and radius  AB sin P
         1      1         
         AB    AB cos P                            2
         2      2         
         1         1
        AB  AB 2 cos 2 P
              2

         4         4
         1
        AB 2 sin 2 P
         4
         1
  OM  AB sin P
         2
2008 Extension 2 Question 7b)




In the diagram, the points P, Q and R lie on a circle. The tangent at P
and the secant QR intersect at T. The bisector of PQR meets QR at S
so that QPS  RPS   . The intervals RS, SQ and PT have lengths
a, b and c respectively.
2008 Extension 2 Question 7b)




In the diagram, the points P, Q and R lie on a circle. The tangent at P
and the secant QR intersect at T. The bisector of PQR meets QR at S
so that QPS  RPS   . The intervals RS, SQ and PT have lengths
a, b and c respectively.
(i) Show that TSP  TPS
2008 Extension 2 Question 7b)




In the diagram, the points P, Q and R lie on a circle. The tangent at P
and the secant QR intersect at T. The bisector of PQR meets QR at S
so that QPS  RPS   . The intervals RS, SQ and PT have lengths
a, b and c respectively.
(i) Show that TSP  TPS
   RQP  RPT
2008 Extension 2 Question 7b)




In the diagram, the points P, Q and R lie on a circle. The tangent at P
and the secant QR intersect at T. The bisector of PQR meets QR at S
so that QPS  RPS   . The intervals RS, SQ and PT have lengths
a, b and c respectively.
(i) Show that TSP  TPS
   RQP  RPT                           alternate segment theorem 
2008 Extension 2 Question 7b)




In the diagram, the points P, Q and R lie on a circle. The tangent at P
and the secant QR intersect at T. The bisector of PQR meets QR at S
so that QPS  RPS   . The intervals RS, SQ and PT have lengths
a, b and c respectively.
(i) Show that TSP  TPS
   RQP  RPT                           alternate segment theorem 
   TSP  RQP  SPQ
2008 Extension 2 Question 7b)




In the diagram, the points P, Q and R lie on a circle. The tangent at P
and the secant QR intersect at T. The bisector of PQR meets QR at S
so that QPS  RPS   . The intervals RS, SQ and PT have lengths
a, b and c respectively.
(i) Show that TSP  TPS
   RQP  RPT                           alternate segment theorem 
   TSP  RQP  SPQ                    exterior ,SPQ 
2008 Extension 2 Question 7b)




In the diagram, the points P, Q and R lie on a circle. The tangent at P
and the secant QR intersect at T. The bisector of PQR meets QR at S
so that QPS  RPS   . The intervals RS, SQ and PT have lengths
a, b and c respectively.
(i) Show that TSP  TPS
   RQP  RPT                           alternate segment theorem 
   TSP  RQP  SPQ                    exterior ,SPQ 
   TSP  RPT  
SPT  RPT  
SPT  RPT      common 
SPT  RPT      common 
SPT  TSP
SPT  RPT                    common 
SPT  TSP
                         1 1 1
 (ii ) Hence show that     
                         a b c
SPT  RPT                    common 
SPT  TSP
                         1 1 1
 (ii ) Hence show that     
                         a b c
SPT  RPT                                 common 
SPT  TSP
                         1 1 1
 (ii ) Hence show that     
                         a b c
                                 TPS is isosceles
SPT  RPT                                        common 
SPT  TSP
                         1 1 1
 (ii ) Hence show that     
                         a b c
                                 TPS is isosceles

           SPT  RPT  




                 2 = 's 
SPT  RPT                                        common 
SPT  TSP
                         1 1 1
 (ii ) Hence show that     
                         a b c
                                 TPS is isosceles         2 = 's 



           SPT  RPT  
SPT  RPT                                        common 
SPT  TSP
                         1 1 1
 (ii ) Hence show that     
                         a b c
                                 TPS is isosceles         2 = 's 
                                  ST  c



           SPT  RPT  
SPT  RPT                                        common 
SPT  TSP
                         1 1 1
 (ii ) Hence show that     
                         a b c
                                 TPS is isosceles           2 = 's 
                                  ST  c           = sides in isosceles  


           SPT  RPT  
SPT  RPT                                        common 
SPT  TSP
                         1 1 1
 (ii ) Hence show that     
                         a b c
                                 TPS is isosceles           2 = 's 
                                  ST  c           = sides in isosceles  
                             PT 2  QT  RT


           SPT  RPT  
SPT  RPT                                        common 
SPT  TSP
                         1 1 1
 (ii ) Hence show that     
                         a b c
                                 TPS is isosceles           2 = 's 
                                  ST  c           = sides in isosceles  
                             PT 2  QT  RT
                              square of tangents=products of intercepts 
           SPT  RPT  
SPT  RPT                                        common 
SPT  TSP
                         1 1 1
 (ii ) Hence show that     
                         a b c
                                 TPS is isosceles           2 = 's 
                                  ST  c           = sides in isosceles  
                              PT 2  QT  RT
                            square of tangents=products of intercepts 
           SPT  RPT                c 2   c  b  c  a 
SPT  RPT                                        common 
SPT  TSP
                         1 1 1
 (ii ) Hence show that     
                         a b c
                                 TPS is isosceles           2 = 's 
                                  ST  c           = sides in isosceles  
                              PT 2  QT  RT
                            square of tangents=products of intercepts 
           SPT  RPT                c 2   c  b  c  a 
                                           c 2  c 2  ac  bc  ab
SPT  RPT                                        common 
SPT  TSP
                         1 1 1
 (ii ) Hence show that     
                         a b c
                                 TPS is isosceles           2 = 's 
                                  ST  c           = sides in isosceles  
                              PT 2  QT  RT
                            square of tangents=products of intercepts 
           SPT  RPT                c 2   c  b  c  a 
                                           c 2  c 2  ac  bc  ab
                                           bc  ac  ab
SPT  RPT                                        common 
SPT  TSP
                         1 1 1
 (ii ) Hence show that     
                         a b c
                                 TPS is isosceles           2 = 's 
                                  ST  c           = sides in isosceles  
                              PT 2  QT  RT
                            square of tangents=products of intercepts 
           SPT  RPT                c 2   c  b  c  a 
                                           c 2  c 2  ac  bc  ab
                                           bc  ac  ab
                                            1 1 1
                                              
                                            a b c
SPT  RPT                                        common 
SPT  TSP
                         1 1 1
 (ii ) Hence show that     
                         a b c
                                 TPS is isosceles           2 = 's 
                                  ST  c           = sides in isosceles  
                              PT 2  QT  RT
                            square of tangents=products of intercepts 
           SPT  RPT                c 2   c  b  c  a 
                                           c 2  c 2  ac  bc  ab
                                           bc  ac  ab
         Past HSC Papers                    1 1 1
                                              
                                            a b c
          Exercise 10C*

More Related Content

What's hot

areas of triangles and parallelograms
areas of triangles and parallelogramsareas of triangles and parallelograms
areas of triangles and parallelogramsAkshitBhateja
 
R.TANUJ Maths Triangles for Class IX
R.TANUJ Maths Triangles for Class IXR.TANUJ Maths Triangles for Class IX
R.TANUJ Maths Triangles for Class IXTanuj Rajkumar
 
Area of triangles and IIgm
Area of triangles and IIgmArea of triangles and IIgm
Area of triangles and IIgmHaniesh Juneja
 
GE 4.3 proving triangles congruent 12-2
GE 4.3 proving triangles congruent   12-2GE 4.3 proving triangles congruent   12-2
GE 4.3 proving triangles congruent 12-2bbarch
 
Spherical trigonometry
Spherical trigonometrySpherical trigonometry
Spherical trigonometrySolo Hermelin
 
Mathematical Analysis of Spherical Triangle (Spherical Trigonometry by H.C. R...
Mathematical Analysis of Spherical Triangle (Spherical Trigonometry by H.C. R...Mathematical Analysis of Spherical Triangle (Spherical Trigonometry by H.C. R...
Mathematical Analysis of Spherical Triangle (Spherical Trigonometry by H.C. R...Harish Chandra Rajpoot
 
Triangles class 9 Introduction 2
Triangles class 9 Introduction 2Triangles class 9 Introduction 2
Triangles class 9 Introduction 2Kanchan Shende
 
Geometry unit 4.6
Geometry unit 4.6Geometry unit 4.6
Geometry unit 4.6Mark Ryder
 

What's hot (14)

Triangles
TrianglesTriangles
Triangles
 
areas of triangles and parallelograms
areas of triangles and parallelogramsareas of triangles and parallelograms
areas of triangles and parallelograms
 
R.TANUJ Maths Triangles for Class IX
R.TANUJ Maths Triangles for Class IXR.TANUJ Maths Triangles for Class IX
R.TANUJ Maths Triangles for Class IX
 
Area of triangles and IIgm
Area of triangles and IIgmArea of triangles and IIgm
Area of triangles and IIgm
 
GE 4.3 proving triangles congruent 12-2
GE 4.3 proving triangles congruent   12-2GE 4.3 proving triangles congruent   12-2
GE 4.3 proving triangles congruent 12-2
 
Spherical trigonometry
Spherical trigonometrySpherical trigonometry
Spherical trigonometry
 
Maths sa 2 synopsis
Maths sa 2 synopsisMaths sa 2 synopsis
Maths sa 2 synopsis
 
Mathematical Analysis of Spherical Triangle (Spherical Trigonometry by H.C. R...
Mathematical Analysis of Spherical Triangle (Spherical Trigonometry by H.C. R...Mathematical Analysis of Spherical Triangle (Spherical Trigonometry by H.C. R...
Mathematical Analysis of Spherical Triangle (Spherical Trigonometry by H.C. R...
 
Triangles class 9 Introduction 2
Triangles class 9 Introduction 2Triangles class 9 Introduction 2
Triangles class 9 Introduction 2
 
Triangle
TriangleTriangle
Triangle
 
Gch8 l2
Gch8 l2Gch8 l2
Gch8 l2
 
Geometry unit 4.6
Geometry unit 4.6Geometry unit 4.6
Geometry unit 4.6
 
Slideshare
SlideshareSlideshare
Slideshare
 
spherical triangles
spherical trianglesspherical triangles
spherical triangles
 

Viewers also liked

12X1 T04 02 growth & decay (2011)
12X1 T04 02 growth & decay (2011)12X1 T04 02 growth & decay (2011)
12X1 T04 02 growth & decay (2011)Nigel Simmons
 
X2 T07 07 other graphs (2011)
X2 T07 07 other graphs (2011)X2 T07 07 other graphs (2011)
X2 T07 07 other graphs (2011)Nigel Simmons
 
11X1 T12 03 parametric coordinates (2011)
11X1 T12 03 parametric coordinates (2011)11X1 T12 03 parametric coordinates (2011)
11X1 T12 03 parametric coordinates (2011)Nigel Simmons
 
11X1 T13 01 definitions & chord theorems (2011)
11X1 T13 01 definitions & chord theorems (2011)11X1 T13 01 definitions & chord theorems (2011)
11X1 T13 01 definitions & chord theorems (2011)Nigel Simmons
 
12X1 T03 03 differentiating trig (2011)
12X1 T03 03 differentiating trig (2011)12X1 T03 03 differentiating trig (2011)
12X1 T03 03 differentiating trig (2011)Nigel Simmons
 
11X1 T07 08 products to sums etc (2011)
11X1 T07 08 products to sums etc (2011)11X1 T07 08 products to sums etc (2011)
11X1 T07 08 products to sums etc (2011)Nigel Simmons
 
X2 T04 04 reduction formula (2011)
X2 T04 04 reduction formula (2011)X2 T04 04 reduction formula (2011)
X2 T04 04 reduction formula (2011)Nigel Simmons
 
11X1 T14 02 geometric series (2011)
11X1 T14 02 geometric series (2011)11X1 T14 02 geometric series (2011)
11X1 T14 02 geometric series (2011)Nigel Simmons
 
X2 T06 05 conical pendulum (2011)
X2 T06 05 conical pendulum (2011)X2 T06 05 conical pendulum (2011)
X2 T06 05 conical pendulum (2011)Nigel Simmons
 
11X1 T07 03 angle between two lines (2011)
11X1 T07 03 angle between two lines (2011)11X1 T07 03 angle between two lines (2011)
11X1 T07 03 angle between two lines (2011)Nigel Simmons
 
11X1 T02 07 sketching graphs [2011]
11X1 T02 07 sketching graphs [2011]11X1 T02 07 sketching graphs [2011]
11X1 T02 07 sketching graphs [2011]Nigel Simmons
 
X2 T03 06 chord of contact & properties [2011]
X2 T03 06 chord of contact & properties [2011]X2 T03 06 chord of contact & properties [2011]
X2 T03 06 chord of contact & properties [2011]Nigel Simmons
 
11X1 T10 04 concavity (2011)
11X1 T10 04 concavity (2011)11X1 T10 04 concavity (2011)
11X1 T10 04 concavity (2011)Nigel Simmons
 
11X1 T08 02 triangle theorems (2011)
11X1 T08 02 triangle theorems (2011)11X1 T08 02 triangle theorems (2011)
11X1 T08 02 triangle theorems (2011)Nigel Simmons
 
X2 T01 07 nth roots of unity (2011)
X2 T01 07 nth roots of unity (2011)X2 T01 07 nth roots of unity (2011)
X2 T01 07 nth roots of unity (2011)Nigel Simmons
 
11X1 T01 05 cubics (2011)
11X1 T01 05 cubics (2011)11X1 T01 05 cubics (2011)
11X1 T01 05 cubics (2011)Nigel Simmons
 
11X1 T01 09 completing the square (2011)
11X1 T01 09 completing the square (2011)11X1 T01 09 completing the square (2011)
11X1 T01 09 completing the square (2011)Nigel Simmons
 
11X1 T14 10 mathematical induction 3 (2011)
11X1 T14 10 mathematical induction 3 (2011)11X1 T14 10 mathematical induction 3 (2011)
11X1 T14 10 mathematical induction 3 (2011)Nigel Simmons
 
11X1 T15 02 sketching polynomials (2011)
11X1 T15 02 sketching polynomials (2011)11X1 T15 02 sketching polynomials (2011)
11X1 T15 02 sketching polynomials (2011)Nigel Simmons
 
11 x1 t02 04 rationalising the denominator (2012)
11 x1 t02 04 rationalising the denominator (2012)11 x1 t02 04 rationalising the denominator (2012)
11 x1 t02 04 rationalising the denominator (2012)Nigel Simmons
 

Viewers also liked (20)

12X1 T04 02 growth & decay (2011)
12X1 T04 02 growth & decay (2011)12X1 T04 02 growth & decay (2011)
12X1 T04 02 growth & decay (2011)
 
X2 T07 07 other graphs (2011)
X2 T07 07 other graphs (2011)X2 T07 07 other graphs (2011)
X2 T07 07 other graphs (2011)
 
11X1 T12 03 parametric coordinates (2011)
11X1 T12 03 parametric coordinates (2011)11X1 T12 03 parametric coordinates (2011)
11X1 T12 03 parametric coordinates (2011)
 
11X1 T13 01 definitions & chord theorems (2011)
11X1 T13 01 definitions & chord theorems (2011)11X1 T13 01 definitions & chord theorems (2011)
11X1 T13 01 definitions & chord theorems (2011)
 
12X1 T03 03 differentiating trig (2011)
12X1 T03 03 differentiating trig (2011)12X1 T03 03 differentiating trig (2011)
12X1 T03 03 differentiating trig (2011)
 
11X1 T07 08 products to sums etc (2011)
11X1 T07 08 products to sums etc (2011)11X1 T07 08 products to sums etc (2011)
11X1 T07 08 products to sums etc (2011)
 
X2 T04 04 reduction formula (2011)
X2 T04 04 reduction formula (2011)X2 T04 04 reduction formula (2011)
X2 T04 04 reduction formula (2011)
 
11X1 T14 02 geometric series (2011)
11X1 T14 02 geometric series (2011)11X1 T14 02 geometric series (2011)
11X1 T14 02 geometric series (2011)
 
X2 T06 05 conical pendulum (2011)
X2 T06 05 conical pendulum (2011)X2 T06 05 conical pendulum (2011)
X2 T06 05 conical pendulum (2011)
 
11X1 T07 03 angle between two lines (2011)
11X1 T07 03 angle between two lines (2011)11X1 T07 03 angle between two lines (2011)
11X1 T07 03 angle between two lines (2011)
 
11X1 T02 07 sketching graphs [2011]
11X1 T02 07 sketching graphs [2011]11X1 T02 07 sketching graphs [2011]
11X1 T02 07 sketching graphs [2011]
 
X2 T03 06 chord of contact & properties [2011]
X2 T03 06 chord of contact & properties [2011]X2 T03 06 chord of contact & properties [2011]
X2 T03 06 chord of contact & properties [2011]
 
11X1 T10 04 concavity (2011)
11X1 T10 04 concavity (2011)11X1 T10 04 concavity (2011)
11X1 T10 04 concavity (2011)
 
11X1 T08 02 triangle theorems (2011)
11X1 T08 02 triangle theorems (2011)11X1 T08 02 triangle theorems (2011)
11X1 T08 02 triangle theorems (2011)
 
X2 T01 07 nth roots of unity (2011)
X2 T01 07 nth roots of unity (2011)X2 T01 07 nth roots of unity (2011)
X2 T01 07 nth roots of unity (2011)
 
11X1 T01 05 cubics (2011)
11X1 T01 05 cubics (2011)11X1 T01 05 cubics (2011)
11X1 T01 05 cubics (2011)
 
11X1 T01 09 completing the square (2011)
11X1 T01 09 completing the square (2011)11X1 T01 09 completing the square (2011)
11X1 T01 09 completing the square (2011)
 
11X1 T14 10 mathematical induction 3 (2011)
11X1 T14 10 mathematical induction 3 (2011)11X1 T14 10 mathematical induction 3 (2011)
11X1 T14 10 mathematical induction 3 (2011)
 
11X1 T15 02 sketching polynomials (2011)
11X1 T15 02 sketching polynomials (2011)11X1 T15 02 sketching polynomials (2011)
11X1 T15 02 sketching polynomials (2011)
 
11 x1 t02 04 rationalising the denominator (2012)
11 x1 t02 04 rationalising the denominator (2012)11 x1 t02 04 rationalising the denominator (2012)
11 x1 t02 04 rationalising the denominator (2012)
 

Similar to X2 T08 01 circle geometry

X2 t08 01 circle geometry (2013)
X2 t08 01 circle geometry (2013)X2 t08 01 circle geometry (2013)
X2 t08 01 circle geometry (2013)Nigel Simmons
 
11 x1 t13 04 converse theorems (2013)
11 x1 t13 04 converse theorems (2013)11 x1 t13 04 converse theorems (2013)
11 x1 t13 04 converse theorems (2013)Nigel Simmons
 
11X1 T07 04 converse theorems
11X1 T07 04 converse theorems11X1 T07 04 converse theorems
11X1 T07 04 converse theoremsNigel Simmons
 
11X1 T13 04 converse theorems (2011)
11X1 T13 04 converse theorems (2011)11X1 T13 04 converse theorems (2011)
11X1 T13 04 converse theorems (2011)Nigel Simmons
 
11 x1 t13 04 converse theorems (2012)
11 x1 t13 04 converse theorems (2012)11 x1 t13 04 converse theorems (2012)
11 x1 t13 04 converse theorems (2012)Nigel Simmons
 
Math unit33 congruence and similarity
Math unit33 congruence and similarityMath unit33 congruence and similarity
Math unit33 congruence and similarityeLearningJa
 
11 X1 T06 03 Congruent Triangles
11 X1 T06 03 Congruent Triangles11 X1 T06 03 Congruent Triangles
11 X1 T06 03 Congruent TrianglesNigel Simmons
 
11X1 T07 01 definitions & chord theorems
11X1 T07 01 definitions & chord theorems11X1 T07 01 definitions & chord theorems
11X1 T07 01 definitions & chord theoremsNigel Simmons
 
Putter King Education - Math (Level 3)
Putter King Education - Math (Level 3)Putter King Education - Math (Level 3)
Putter King Education - Math (Level 3)putterking
 
Triangles and its all types
Triangles and its all typesTriangles and its all types
Triangles and its all typesmirabubakar1
 
Triangles X CLASS CBSE NCERT
Triangles X CLASS CBSE NCERTTriangles X CLASS CBSE NCERT
Triangles X CLASS CBSE NCERTavin2611
 
Project report on maths
Project report on mathsProject report on maths
Project report on mathsvineeta yadav
 
Maths Circle PPT Class10
Maths Circle PPT Class10Maths Circle PPT Class10
Maths Circle PPT Class10Abhey Gupta
 

Similar to X2 T08 01 circle geometry (20)

X2 t08 01 circle geometry (2013)
X2 t08 01 circle geometry (2013)X2 t08 01 circle geometry (2013)
X2 t08 01 circle geometry (2013)
 
11 x1 t13 04 converse theorems (2013)
11 x1 t13 04 converse theorems (2013)11 x1 t13 04 converse theorems (2013)
11 x1 t13 04 converse theorems (2013)
 
11X1 T07 04 converse theorems
11X1 T07 04 converse theorems11X1 T07 04 converse theorems
11X1 T07 04 converse theorems
 
11X1 T13 04 converse theorems (2011)
11X1 T13 04 converse theorems (2011)11X1 T13 04 converse theorems (2011)
11X1 T13 04 converse theorems (2011)
 
11 x1 t13 04 converse theorems (2012)
11 x1 t13 04 converse theorems (2012)11 x1 t13 04 converse theorems (2012)
11 x1 t13 04 converse theorems (2012)
 
Modern Geometry Topics
Modern Geometry TopicsModern Geometry Topics
Modern Geometry Topics
 
Math unit33 congruence and similarity
Math unit33 congruence and similarityMath unit33 congruence and similarity
Math unit33 congruence and similarity
 
11 X1 T06 03 Congruent Triangles
11 X1 T06 03 Congruent Triangles11 X1 T06 03 Congruent Triangles
11 X1 T06 03 Congruent Triangles
 
Pythagorean theorem
Pythagorean theoremPythagorean theorem
Pythagorean theorem
 
11X1 T07 01 definitions & chord theorems
11X1 T07 01 definitions & chord theorems11X1 T07 01 definitions & chord theorems
11X1 T07 01 definitions & chord theorems
 
Putter King Education - Math (Level 3)
Putter King Education - Math (Level 3)Putter King Education - Math (Level 3)
Putter King Education - Math (Level 3)
 
Triangles and its all types
Triangles and its all typesTriangles and its all types
Triangles and its all types
 
Triangles X CLASS CBSE NCERT
Triangles X CLASS CBSE NCERTTriangles X CLASS CBSE NCERT
Triangles X CLASS CBSE NCERT
 
Triangles
TrianglesTriangles
Triangles
 
Project report on maths
Project report on mathsProject report on maths
Project report on maths
 
Triangles
TrianglesTriangles
Triangles
 
Chapter activity plus-in-mathematics-10
Chapter activity plus-in-mathematics-10Chapter activity plus-in-mathematics-10
Chapter activity plus-in-mathematics-10
 
C1 g9-s1-t7-2
C1 g9-s1-t7-2C1 g9-s1-t7-2
C1 g9-s1-t7-2
 
Maths Circle PPT Class10
Maths Circle PPT Class10Maths Circle PPT Class10
Maths Circle PPT Class10
 
Archimedes and geometry
Archimedes and geometryArchimedes and geometry
Archimedes and geometry
 

More from Nigel Simmons

Goodbye slideshare UPDATE
Goodbye slideshare UPDATEGoodbye slideshare UPDATE
Goodbye slideshare UPDATENigel Simmons
 
12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)Nigel Simmons
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)Nigel Simmons
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)Nigel Simmons
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)Nigel Simmons
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)Nigel Simmons
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)Nigel Simmons
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)Nigel Simmons
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)Nigel Simmons
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)Nigel Simmons
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)Nigel Simmons
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)Nigel Simmons
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)Nigel Simmons
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)Nigel Simmons
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)Nigel Simmons
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)Nigel Simmons
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)Nigel Simmons
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)Nigel Simmons
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)Nigel Simmons
 

More from Nigel Simmons (20)

Goodbye slideshare UPDATE
Goodbye slideshare UPDATEGoodbye slideshare UPDATE
Goodbye slideshare UPDATE
 
Goodbye slideshare
Goodbye slideshareGoodbye slideshare
Goodbye slideshare
 
12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)
 

Recently uploaded

Scanning the Internet for External Cloud Exposures via SSL Certs
Scanning the Internet for External Cloud Exposures via SSL CertsScanning the Internet for External Cloud Exposures via SSL Certs
Scanning the Internet for External Cloud Exposures via SSL CertsRizwan Syed
 
Science&tech:THE INFORMATION AGE STS.pdf
Science&tech:THE INFORMATION AGE STS.pdfScience&tech:THE INFORMATION AGE STS.pdf
Science&tech:THE INFORMATION AGE STS.pdfjimielynbastida
 
Artificial intelligence in the post-deep learning era
Artificial intelligence in the post-deep learning eraArtificial intelligence in the post-deep learning era
Artificial intelligence in the post-deep learning eraDeakin University
 
Install Stable Diffusion in windows machine
Install Stable Diffusion in windows machineInstall Stable Diffusion in windows machine
Install Stable Diffusion in windows machinePadma Pradeep
 
Key Features Of Token Development (1).pptx
Key  Features Of Token  Development (1).pptxKey  Features Of Token  Development (1).pptx
Key Features Of Token Development (1).pptxLBM Solutions
 
"LLMs for Python Engineers: Advanced Data Analysis and Semantic Kernel",Oleks...
"LLMs for Python Engineers: Advanced Data Analysis and Semantic Kernel",Oleks..."LLMs for Python Engineers: Advanced Data Analysis and Semantic Kernel",Oleks...
"LLMs for Python Engineers: Advanced Data Analysis and Semantic Kernel",Oleks...Fwdays
 
Are Multi-Cloud and Serverless Good or Bad?
Are Multi-Cloud and Serverless Good or Bad?Are Multi-Cloud and Serverless Good or Bad?
Are Multi-Cloud and Serverless Good or Bad?Mattias Andersson
 
Build your next Gen AI Breakthrough - April 2024
Build your next Gen AI Breakthrough - April 2024Build your next Gen AI Breakthrough - April 2024
Build your next Gen AI Breakthrough - April 2024Neo4j
 
Bluetooth Controlled Car with Arduino.pdf
Bluetooth Controlled Car with Arduino.pdfBluetooth Controlled Car with Arduino.pdf
Bluetooth Controlled Car with Arduino.pdfngoud9212
 
Understanding the Laravel MVC Architecture
Understanding the Laravel MVC ArchitectureUnderstanding the Laravel MVC Architecture
Understanding the Laravel MVC ArchitecturePixlogix Infotech
 
Advanced Test Driven-Development @ php[tek] 2024
Advanced Test Driven-Development @ php[tek] 2024Advanced Test Driven-Development @ php[tek] 2024
Advanced Test Driven-Development @ php[tek] 2024Scott Keck-Warren
 
#StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024
#StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024#StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024
#StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024BookNet Canada
 
Enhancing Worker Digital Experience: A Hands-on Workshop for Partners
Enhancing Worker Digital Experience: A Hands-on Workshop for PartnersEnhancing Worker Digital Experience: A Hands-on Workshop for Partners
Enhancing Worker Digital Experience: A Hands-on Workshop for PartnersThousandEyes
 
Benefits Of Flutter Compared To Other Frameworks
Benefits Of Flutter Compared To Other FrameworksBenefits Of Flutter Compared To Other Frameworks
Benefits Of Flutter Compared To Other FrameworksSoftradix Technologies
 
Snow Chain-Integrated Tire for a Safe Drive on Winter Roads
Snow Chain-Integrated Tire for a Safe Drive on Winter RoadsSnow Chain-Integrated Tire for a Safe Drive on Winter Roads
Snow Chain-Integrated Tire for a Safe Drive on Winter RoadsHyundai Motor Group
 
Integration and Automation in Practice: CI/CD in Mule Integration and Automat...
Integration and Automation in Practice: CI/CD in Mule Integration and Automat...Integration and Automation in Practice: CI/CD in Mule Integration and Automat...
Integration and Automation in Practice: CI/CD in Mule Integration and Automat...Patryk Bandurski
 
My Hashitalk Indonesia April 2024 Presentation
My Hashitalk Indonesia April 2024 PresentationMy Hashitalk Indonesia April 2024 Presentation
My Hashitalk Indonesia April 2024 PresentationRidwan Fadjar
 

Recently uploaded (20)

Scanning the Internet for External Cloud Exposures via SSL Certs
Scanning the Internet for External Cloud Exposures via SSL CertsScanning the Internet for External Cloud Exposures via SSL Certs
Scanning the Internet for External Cloud Exposures via SSL Certs
 
Science&tech:THE INFORMATION AGE STS.pdf
Science&tech:THE INFORMATION AGE STS.pdfScience&tech:THE INFORMATION AGE STS.pdf
Science&tech:THE INFORMATION AGE STS.pdf
 
Artificial intelligence in the post-deep learning era
Artificial intelligence in the post-deep learning eraArtificial intelligence in the post-deep learning era
Artificial intelligence in the post-deep learning era
 
Install Stable Diffusion in windows machine
Install Stable Diffusion in windows machineInstall Stable Diffusion in windows machine
Install Stable Diffusion in windows machine
 
The transition to renewables in India.pdf
The transition to renewables in India.pdfThe transition to renewables in India.pdf
The transition to renewables in India.pdf
 
Hot Sexy call girls in Panjabi Bagh 🔝 9953056974 🔝 Delhi escort Service
Hot Sexy call girls in Panjabi Bagh 🔝 9953056974 🔝 Delhi escort ServiceHot Sexy call girls in Panjabi Bagh 🔝 9953056974 🔝 Delhi escort Service
Hot Sexy call girls in Panjabi Bagh 🔝 9953056974 🔝 Delhi escort Service
 
Key Features Of Token Development (1).pptx
Key  Features Of Token  Development (1).pptxKey  Features Of Token  Development (1).pptx
Key Features Of Token Development (1).pptx
 
"LLMs for Python Engineers: Advanced Data Analysis and Semantic Kernel",Oleks...
"LLMs for Python Engineers: Advanced Data Analysis and Semantic Kernel",Oleks..."LLMs for Python Engineers: Advanced Data Analysis and Semantic Kernel",Oleks...
"LLMs for Python Engineers: Advanced Data Analysis and Semantic Kernel",Oleks...
 
Are Multi-Cloud and Serverless Good or Bad?
Are Multi-Cloud and Serverless Good or Bad?Are Multi-Cloud and Serverless Good or Bad?
Are Multi-Cloud and Serverless Good or Bad?
 
Build your next Gen AI Breakthrough - April 2024
Build your next Gen AI Breakthrough - April 2024Build your next Gen AI Breakthrough - April 2024
Build your next Gen AI Breakthrough - April 2024
 
Bluetooth Controlled Car with Arduino.pdf
Bluetooth Controlled Car with Arduino.pdfBluetooth Controlled Car with Arduino.pdf
Bluetooth Controlled Car with Arduino.pdf
 
Understanding the Laravel MVC Architecture
Understanding the Laravel MVC ArchitectureUnderstanding the Laravel MVC Architecture
Understanding the Laravel MVC Architecture
 
E-Vehicle_Hacking_by_Parul Sharma_null_owasp.pptx
E-Vehicle_Hacking_by_Parul Sharma_null_owasp.pptxE-Vehicle_Hacking_by_Parul Sharma_null_owasp.pptx
E-Vehicle_Hacking_by_Parul Sharma_null_owasp.pptx
 
Advanced Test Driven-Development @ php[tek] 2024
Advanced Test Driven-Development @ php[tek] 2024Advanced Test Driven-Development @ php[tek] 2024
Advanced Test Driven-Development @ php[tek] 2024
 
#StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024
#StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024#StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024
#StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024
 
Enhancing Worker Digital Experience: A Hands-on Workshop for Partners
Enhancing Worker Digital Experience: A Hands-on Workshop for PartnersEnhancing Worker Digital Experience: A Hands-on Workshop for Partners
Enhancing Worker Digital Experience: A Hands-on Workshop for Partners
 
Benefits Of Flutter Compared To Other Frameworks
Benefits Of Flutter Compared To Other FrameworksBenefits Of Flutter Compared To Other Frameworks
Benefits Of Flutter Compared To Other Frameworks
 
Snow Chain-Integrated Tire for a Safe Drive on Winter Roads
Snow Chain-Integrated Tire for a Safe Drive on Winter RoadsSnow Chain-Integrated Tire for a Safe Drive on Winter Roads
Snow Chain-Integrated Tire for a Safe Drive on Winter Roads
 
Integration and Automation in Practice: CI/CD in Mule Integration and Automat...
Integration and Automation in Practice: CI/CD in Mule Integration and Automat...Integration and Automation in Practice: CI/CD in Mule Integration and Automat...
Integration and Automation in Practice: CI/CD in Mule Integration and Automat...
 
My Hashitalk Indonesia April 2024 Presentation
My Hashitalk Indonesia April 2024 PresentationMy Hashitalk Indonesia April 2024 Presentation
My Hashitalk Indonesia April 2024 Presentation
 

X2 T08 01 circle geometry

  • 1. Harder Extension 1 Circle Geometry
  • 2. Harder Extension 1 Circle Geometry Converse Circle Theorems
  • 3. Harder Extension 1 Circle Geometry Converse Circle Theorems (1) The circle whose diameter is the hypotenuse of a right angled triangle passes through the third vertex.
  • 4. Harder Extension 1 Circle Geometry Converse Circle Theorems (1) The circle whose diameter is the hypotenuse of a right angled triangle passes through the third vertex. C A B
  • 5. Harder Extension 1 Circle Geometry Converse Circle Theorems (1) The circle whose diameter is the hypotenuse of a right angled triangle passes through the third vertex. C ABC are concyclic with AB diameter A B
  • 6. Harder Extension 1 Circle Geometry Converse Circle Theorems (1) The circle whose diameter is the hypotenuse of a right angled triangle passes through the third vertex. C ABC are concyclic with AB diameter  in a semicircle  90   A B
  • 7. Harder Extension 1 Circle Geometry Converse Circle Theorems (1) The circle whose diameter is the hypotenuse of a right angled triangle passes through the third vertex. C ABC are concyclic with AB diameter  in a semicircle  90   A B (2) If an interval AB subtends the same angle at two points P and Q on the same side of AB, then A,B,P,Q are concyclic.
  • 8. Harder Extension 1 Circle Geometry Converse Circle Theorems (1) The circle whose diameter is the hypotenuse of a right angled triangle passes through the third vertex. C ABC are concyclic with AB diameter  in a semicircle  90   A B (2) If an interval AB subtends the same angle at two points P and Q on the same side of AB, then A,B,P,Q are concyclic. P Q   A B
  • 9. Harder Extension 1 Circle Geometry Converse Circle Theorems (1) The circle whose diameter is the hypotenuse of a right angled triangle passes through the third vertex. C ABC are concyclic with AB diameter  in a semicircle  90   A B (2) If an interval AB subtends the same angle at two points P and Q on the same side of AB, then A,B,P,Q are concyclic. P Q   ABQP is a cyclic quadrilateral A B
  • 10. Harder Extension 1 Circle Geometry Converse Circle Theorems (1) The circle whose diameter is the hypotenuse of a right angled triangle passes through the third vertex. C ABC are concyclic with AB diameter  in a semicircle  90   A B (2) If an interval AB subtends the same angle at two points P and Q on the same side of AB, then A,B,P,Q are concyclic. P Q   ABQP is a cyclic quadrilateral s in same segment are   A B
  • 11. (3) If a pair of opposite angles in a quadrilateral are supplementary (or if an exterior angle equals the opposite interior angle) then the quadrilateral is cyclic.
  • 12. (3) If a pair of opposite angles in a quadrilateral are supplementary (or if an exterior angle equals the opposite interior angle) then the quadrilateral is cyclic. The Four Centres Of A Triangle
  • 13. (3) If a pair of opposite angles in a quadrilateral are supplementary (or if an exterior angle equals the opposite interior angle) then the quadrilateral is cyclic. The Four Centres Of A Triangle (1) The angle bisectors of the vertices are concurrent at the incentre which is the centre of the incircle, tangent to all three sides.
  • 14. (3) If a pair of opposite angles in a quadrilateral are supplementary (or if an exterior angle equals the opposite interior angle) then the quadrilateral is cyclic. The Four Centres Of A Triangle (1) The angle bisectors of the vertices are concurrent at the incentre which is the centre of the incircle, tangent to all three sides.
  • 15. (3) If a pair of opposite angles in a quadrilateral are supplementary (or if an exterior angle equals the opposite interior angle) then the quadrilateral is cyclic. The Four Centres Of A Triangle (1) The angle bisectors of the vertices are concurrent at the incentre which is the centre of the incircle, tangent to all three sides.     incentre 
  • 16. (3) If a pair of opposite angles in a quadrilateral are supplementary (or if an exterior angle equals the opposite interior angle) then the quadrilateral is cyclic. The Four Centres Of A Triangle (1) The angle bisectors of the vertices are concurrent at the incentre which is the centre of the incircle, tangent to all three sides.     incentre incircle 
  • 17. (2) The perpendicular bisectors of the sides are concurrent at the circumcentre which is the centre of the circumcircle, passing through all three vertices.
  • 18. (2) The perpendicular bisectors of the sides are concurrent at the circumcentre which is the centre of the circumcircle, passing through all three vertices.
  • 19. (2) The perpendicular bisectors of the sides are concurrent at the circumcentre which is the centre of the circumcircle, passing through all three vertices. circumcentre
  • 20. (2) The perpendicular bisectors of the sides are concurrent at the circumcentre which is the centre of the circumcircle, passing through all three vertices. circumcentre circumcircle
  • 21. (2) The perpendicular bisectors of the sides are concurrent at the circumcentre which is the centre of the circumcircle, passing through all three vertices. circumcentre circumcircle (3) The medians are concurrent at the centroid, and the centroid trisects each median.
  • 22. (2) The perpendicular bisectors of the sides are concurrent at the circumcentre which is the centre of the circumcircle, passing through all three vertices. circumcentre circumcircle (3) The medians are concurrent at the centroid, and the centroid trisects each median.
  • 23. (2) The perpendicular bisectors of the sides are concurrent at the circumcentre which is the centre of the circumcircle, passing through all three vertices. circumcentre circumcircle (3) The medians are concurrent at the centroid, and the centroid trisects each median. centroid
  • 24. (4) The altitudes are concurrent at the orthocentre.
  • 25. (4) The altitudes are concurrent at the orthocentre.
  • 26. (4) The altitudes are concurrent at the orthocentre. orthocentre
  • 27. (4) The altitudes are concurrent at the orthocentre. orthocentre Interaction Between Geometry & Trigonometry
  • 28. (4) The altitudes are concurrent at the orthocentre. orthocentre Interaction Between Geometry & Trigonometry a b c    diameter if circumcircle sin A sin B sin C
  • 29. (4) The altitudes are concurrent at the orthocentre. orthocentre Interaction Between Geometry & Trigonometry a b c    diameter if circumcircle sin A sin B sin C Proof: A B C
  • 30. (4) The altitudes are concurrent at the orthocentre. orthocentre Interaction Between Geometry & Trigonometry a b c    diameter if circumcircle sin A sin B sin C Proof: A P O B C
  • 31. (4) The altitudes are concurrent at the orthocentre. orthocentre Interaction Between Geometry & Trigonometry a b c    diameter if circumcircle sin A sin B sin C Proof: A A  P  in same segment  P O B C
  • 32. (4) The altitudes are concurrent at the orthocentre. orthocentre Interaction Between Geometry & Trigonometry a b c    diameter if circumcircle sin A sin B sin C Proof: A A  P  in same segment  P sin A  sin P O B C
  • 33. (4) The altitudes are concurrent at the orthocentre. orthocentre Interaction Between Geometry & Trigonometry a b c    diameter if circumcircle sin A sin B sin C Proof: A A  P  in same segment  P sin A  sin P PBC  90 O B C
  • 34. (4) The altitudes are concurrent at the orthocentre. orthocentre Interaction Between Geometry & Trigonometry a b c    diameter if circumcircle sin A sin B sin C Proof: A A  P  in same segment  P sin A  sin P PBC  90  in semicircle  90   O B C
  • 35. (4) The altitudes are concurrent at the orthocentre. orthocentre Interaction Between Geometry & Trigonometry a b c    diameter if circumcircle sin A sin B sin C Proof: A A  P  in same segment  P sin A  sin P PBC  90  in semicircle  90   BC O B  sin P PC C
  • 36. (4) The altitudes are concurrent at the orthocentre. orthocentre Interaction Between Geometry & Trigonometry a b c    diameter if circumcircle sin A sin B sin C Proof: A A  P  in same segment  P sin A  sin P PBC  90  in semicircle  90   BC O B  sin P PC BC  PC C sin P
  • 37. (4) The altitudes are concurrent at the orthocentre. orthocentre Interaction Between Geometry & Trigonometry a b c    diameter if circumcircle sin A sin B sin C Proof: A A  P  in same segment  P sin A  sin P PBC  90  in semicircle  90   BC O B  sin P PC BC BC  PC  PC  sin P sin A C
  • 38. e.g. (1990) In the diagram, AB is a fixed chord of a circle, P a variable point in the circle and AC and BD are perpendicular to BP and AP respectively.
  • 39. e.g. (1990) In the diagram, AB is a fixed chord of a circle, P a variable point in the circle and AC and BD are perpendicular to BP and AP respectively. (i) Show that ABCD is a cyclic quadrilateral on a circle with AB as diameter.
  • 40. e.g. (1990) In the diagram, AB is a fixed chord of a circle, P a variable point in the circle and AC and BD are perpendicular to BP and AP respectively. (i) Show that ABCD is a cyclic quadrilateral on a circle with AB as diameter. BDA  ACB  90
  • 41. e.g. (1990) In the diagram, AB is a fixed chord of a circle, P a variable point in the circle and AC and BD are perpendicular to BP and AP respectively. (i) Show that ABCD is a cyclic quadrilateral on a circle with AB as diameter. BDA  ACB  90 given 
  • 42. e.g. (1990) In the diagram, AB is a fixed chord of a circle, P a variable point in the circle and AC and BD are perpendicular to BP and AP respectively. (i) Show that ABCD is a cyclic quadrilateral on a circle with AB as diameter. BDA  ACB  90 given   ABCD is a cyclic quadrilateral
  • 43. e.g. (1990) In the diagram, AB is a fixed chord of a circle, P a variable point in the circle and AC and BD are perpendicular to BP and AP respectively. (i) Show that ABCD is a cyclic quadrilateral on a circle with AB as diameter. BDA  ACB  90 given   ABCD is a cyclic quadrilateral s in same segment are 
  • 44. e.g. (1990) In the diagram, AB is a fixed chord of a circle, P a variable point in the circle and AC and BD are perpendicular to BP and AP respectively. (i) Show that ABCD is a cyclic quadrilateral on a circle with AB as diameter. BDA  ACB  90 given   ABCD is a cyclic quadrilateral s in same segment are  AB is diameter as  in semicircle  90
  • 45. (ii) Show that triangles PCD and APB are similar
  • 46. (ii) Show that triangles PCD and APB are similar APB  DPC
  • 47. (ii) Show that triangles PCD and APB are similar APB  DPC common s 
  • 48. (ii) Show that triangles PCD and APB are similar APB  DPC common s  PDC  PBA
  • 49. (ii) Show that triangles PCD and APB are similar APB  DPC common s  PDC  PBA exterior cyclic quadrilateral
  • 50. (ii) Show that triangles PCD and APB are similar APB  DPC common s  PDC  PBA exterior cyclic quadrilateral  PDC ||| PBA
  • 51. (ii) Show that triangles PCD and APB are similar APB  DPC common s  PDC  PBA exterior cyclic quadrilateral  PDC ||| PBA equiangular 
  • 52. (iii) Show that as P varies, the segment CD has constant length.
  • 53. P P A B C D (iii) Show that as P varies, the segment CD has constant length.
  • 54. P P A B C D (iii) Show that as P varies, the segment CD has constant length. CD PC  AB AP
  • 55. P P A B C D (iii) Show that as P varies, the segment CD has constant length. CD PC  ratio of sides in ||| s  AB AP
  • 56. P P A B C D (iii) Show that as P varies, the segment CD has constant length. CD PC  ratio of sides in ||| s  AB AP PC In PCA,  cos P AP
  • 57. P P A B C D (iii) Show that as P varies, the segment CD has constant length. CD PC  ratio of sides in ||| s  AB AP PC In PCA,  cos P AP CD   cos P AB
  • 58. P P A B C D (iii) Show that as P varies, the segment CD has constant length. CD PC  ratio of sides in ||| s  AB AP PC In PCA,  cos P AP CD   cos P AB CD  AB cos P
  • 59. P P A B C D (iii) Show that as P varies, the segment CD has constant length. CD PC  ratio of sides in ||| s  AB AP PC In PCA,  cos P AP CD   cos P AB CD  AB cos P Now, P is constant
  • 60. P P A B C D (iii) Show that as P varies, the segment CD has constant length. CD PC  ratio of sides in ||| s  AB AP PC In PCA,  cos P AP CD   cos P AB CD  AB cos P Now, P is constant s in same segment are 
  • 61. P P A B C D (iii) Show that as P varies, the segment CD has constant length. CD PC  ratio of sides in ||| s  AB AP PC In PCA,  cos P AP CD   cos P AB CD  AB cos P Now, P is constant s in same segment are  and AB is fixed
  • 62. P P A B C D (iii) Show that as P varies, the segment CD has constant length. CD PC  ratio of sides in ||| s  AB AP PC In PCA,  cos P AP CD   cos P AB CD  AB cos P Now, P is constant s in same segment are  and AB is fixed given 
  • 63. P P A B C D (iii) Show that as P varies, the segment CD has constant length. CD PC  ratio of sides in ||| s  AB AP PC In PCA,  cos P AP CD   cos P AB CD  AB cos P Now, P is constant s in same segment are  and AB is fixed given  CD is constant
  • 64. (iv) Find the locus of the midpoint of CD.
  • 65. (iv) Find the locus of the midpoint of CD. ABCD is a cyclic quadrilateral with AB diameter. D C A B
  • 66. (iv) Find the locus of the midpoint of CD. ABCD is a cyclic quadrilateral with AB diameter. M D C Let M be the midpoint of CD A B
  • 67. (iv) Find the locus of the midpoint of CD. ABCD is a cyclic quadrilateral with AB diameter. M D C Let M be the midpoint of CD O is the midpoint of AB A B O
  • 68. (iv) Find the locus of the midpoint of CD. ABCD is a cyclic quadrilateral with AB diameter. M D C Let M be the midpoint of CD O is the midpoint of AB OM is constant A B O
  • 69. (iv) Find the locus of the midpoint of CD. ABCD is a cyclic quadrilateral with AB diameter. M D C Let M be the midpoint of CD O is the midpoint of AB OM is constant A O B  chords are equidistant from the centre
  • 70. (iv) Find the locus of the midpoint of CD. ABCD is a cyclic quadrilateral with AB diameter. M D C Let M be the midpoint of CD O is the midpoint of AB OM is constant A O B  chords are equidistant from the centre  M is a fixed distance from O
  • 71. (iv) Find the locus of the midpoint of CD. ABCD is a cyclic quadrilateral with AB diameter. M D C Let M be the midpoint of CD O is the midpoint of AB OM is constant A O B  chords are equidistant from the centre  M is a fixed distance from O OM 2  OC 2  MC 2
  • 72. (iv) Find the locus of the midpoint of CD. ABCD is a cyclic quadrilateral with AB diameter. M D C Let M be the midpoint of CD O is the midpoint of AB OM is constant A O B  chords are equidistant from the centre  M is a fixed distance from O OM 2  OC 2  MC 2 2 2 1  1    AB    AB cos P  2  2  1 1  AB  AB 2 cos 2 P 2 4 4 1  AB 2 sin 2 P 4
  • 73. (iv) Find the locus of the midpoint of CD. ABCD is a cyclic quadrilateral with AB diameter. M D C Let M be the midpoint of CD O is the midpoint of AB OM is constant A O B  chords are equidistant from the centre  M is a fixed distance from O OM 2  OC 2  MC 2 2 2 1  1    AB    AB cos P  2  2  1 1  AB  AB 2 cos 2 P 2 4 4 1  AB 2 sin 2 P 4 1 OM  AB sin P 2
  • 74. (iv) Find the locus of the midpoint of CD. ABCD is a cyclic quadrilateral with AB diameter. M D C Let M be the midpoint of CD O is the midpoint of AB OM is constant A O B  chords are equidistant from the centre  M is a fixed distance from O  locus is circle, centre O OM 2  OC 2  MC 2 1 2 2 and radius  AB sin P 1  1    AB    AB cos P  2 2  2  1 1  AB  AB 2 cos 2 P 2 4 4 1  AB 2 sin 2 P 4 1 OM  AB sin P 2
  • 75. 2008 Extension 2 Question 7b) In the diagram, the points P, Q and R lie on a circle. The tangent at P and the secant QR intersect at T. The bisector of PQR meets QR at S so that QPS  RPS   . The intervals RS, SQ and PT have lengths a, b and c respectively.
  • 76. 2008 Extension 2 Question 7b) In the diagram, the points P, Q and R lie on a circle. The tangent at P and the secant QR intersect at T. The bisector of PQR meets QR at S so that QPS  RPS   . The intervals RS, SQ and PT have lengths a, b and c respectively. (i) Show that TSP  TPS
  • 77. 2008 Extension 2 Question 7b) In the diagram, the points P, Q and R lie on a circle. The tangent at P and the secant QR intersect at T. The bisector of PQR meets QR at S so that QPS  RPS   . The intervals RS, SQ and PT have lengths a, b and c respectively. (i) Show that TSP  TPS RQP  RPT
  • 78. 2008 Extension 2 Question 7b) In the diagram, the points P, Q and R lie on a circle. The tangent at P and the secant QR intersect at T. The bisector of PQR meets QR at S so that QPS  RPS   . The intervals RS, SQ and PT have lengths a, b and c respectively. (i) Show that TSP  TPS RQP  RPT  alternate segment theorem 
  • 79. 2008 Extension 2 Question 7b) In the diagram, the points P, Q and R lie on a circle. The tangent at P and the secant QR intersect at T. The bisector of PQR meets QR at S so that QPS  RPS   . The intervals RS, SQ and PT have lengths a, b and c respectively. (i) Show that TSP  TPS RQP  RPT  alternate segment theorem  TSP  RQP  SPQ
  • 80. 2008 Extension 2 Question 7b) In the diagram, the points P, Q and R lie on a circle. The tangent at P and the secant QR intersect at T. The bisector of PQR meets QR at S so that QPS  RPS   . The intervals RS, SQ and PT have lengths a, b and c respectively. (i) Show that TSP  TPS RQP  RPT  alternate segment theorem  TSP  RQP  SPQ  exterior ,SPQ 
  • 81. 2008 Extension 2 Question 7b) In the diagram, the points P, Q and R lie on a circle. The tangent at P and the secant QR intersect at T. The bisector of PQR meets QR at S so that QPS  RPS   . The intervals RS, SQ and PT have lengths a, b and c respectively. (i) Show that TSP  TPS RQP  RPT  alternate segment theorem  TSP  RQP  SPQ  exterior ,SPQ  TSP  RPT  
  • 82. SPT  RPT  
  • 83. SPT  RPT    common 
  • 84. SPT  RPT    common  SPT  TSP
  • 85. SPT  RPT    common  SPT  TSP 1 1 1 (ii ) Hence show that   a b c
  • 86. SPT  RPT    common  SPT  TSP 1 1 1 (ii ) Hence show that   a b c
  • 87. SPT  RPT    common  SPT  TSP 1 1 1 (ii ) Hence show that   a b c TPS is isosceles
  • 88. SPT  RPT    common  SPT  TSP 1 1 1 (ii ) Hence show that   a b c TPS is isosceles SPT  RPT    2 = 's 
  • 89. SPT  RPT    common  SPT  TSP 1 1 1 (ii ) Hence show that   a b c TPS is isosceles  2 = 's  SPT  RPT  
  • 90. SPT  RPT    common  SPT  TSP 1 1 1 (ii ) Hence show that   a b c TPS is isosceles  2 = 's   ST  c SPT  RPT  
  • 91. SPT  RPT    common  SPT  TSP 1 1 1 (ii ) Hence show that   a b c TPS is isosceles  2 = 's   ST  c  = sides in isosceles   SPT  RPT  
  • 92. SPT  RPT    common  SPT  TSP 1 1 1 (ii ) Hence show that   a b c TPS is isosceles  2 = 's   ST  c  = sides in isosceles   PT 2  QT  RT SPT  RPT  
  • 93. SPT  RPT    common  SPT  TSP 1 1 1 (ii ) Hence show that   a b c TPS is isosceles  2 = 's   ST  c  = sides in isosceles   PT 2  QT  RT  square of tangents=products of intercepts  SPT  RPT  
  • 94. SPT  RPT    common  SPT  TSP 1 1 1 (ii ) Hence show that   a b c TPS is isosceles  2 = 's   ST  c  = sides in isosceles   PT 2  QT  RT  square of tangents=products of intercepts  SPT  RPT   c 2   c  b  c  a 
  • 95. SPT  RPT    common  SPT  TSP 1 1 1 (ii ) Hence show that   a b c TPS is isosceles  2 = 's   ST  c  = sides in isosceles   PT 2  QT  RT  square of tangents=products of intercepts  SPT  RPT   c 2   c  b  c  a  c 2  c 2  ac  bc  ab
  • 96. SPT  RPT    common  SPT  TSP 1 1 1 (ii ) Hence show that   a b c TPS is isosceles  2 = 's   ST  c  = sides in isosceles   PT 2  QT  RT  square of tangents=products of intercepts  SPT  RPT   c 2   c  b  c  a  c 2  c 2  ac  bc  ab bc  ac  ab
  • 97. SPT  RPT    common  SPT  TSP 1 1 1 (ii ) Hence show that   a b c TPS is isosceles  2 = 's   ST  c  = sides in isosceles   PT 2  QT  RT  square of tangents=products of intercepts  SPT  RPT   c 2   c  b  c  a  c 2  c 2  ac  bc  ab bc  ac  ab 1 1 1   a b c
  • 98. SPT  RPT    common  SPT  TSP 1 1 1 (ii ) Hence show that   a b c TPS is isosceles  2 = 's   ST  c  = sides in isosceles   PT 2  QT  RT  square of tangents=products of intercepts  SPT  RPT   c 2   c  b  c  a  c 2  c 2  ac  bc  ab bc  ac  ab Past HSC Papers 1 1 1   a b c Exercise 10C*