Odd & Even Functions
(1) Even   f  x   f  x 
Odd & Even Functions
(1) Even        f  x   f  x 
           a                 a

            f  x dx  2 f  x dx
           a                0
Odd & Even Functions
(1) Even                       f  x   f  x 
                          a                 a

                           f  x dx  2 f  x dx
                          a                0
                            ca                     ca
 NOTE: horizontal shift
                               f  x  c dx  2  f  x  c dx
                              ca                    c
Odd & Even Functions
(1) Even                       f  x   f  x 
                          a                 a

                           f  x dx  2 f  x dx
                          a                0
                            ca                      ca
 NOTE: horizontal shift
                               f  x  c dx  2  f  x  c dx
                              ca                     c

(2) Odd                       f  x    f  x 
Odd & Even Functions
(1) Even                        f  x   f  x 
                           a                 a

                           f  x dx  2 f  x dx
                          a                 0
                            ca                       ca
 NOTE: horizontal shift
                                f  x  c dx  2  f  x  c dx
                               ca                     c

(2) Odd                        f  x    f  x 
                          a

                           f  x dx  0
                          a
Odd & Even Functions
(1) Even                        f  x   f  x 
                          a                  a

                           f  x dx  2 f  x dx
                          a                 0
                            ca                      ca
 NOTE: horizontal shift
                               f  x  c dx  2  f  x  c dx
                              ca                     c

(2) Odd                       f  x    f  x 
                          a

                           f  x dx  0
                          a
                          ca
 NOTE: horizontal shift
                            f  x  c dx  0
                          ca
Odd & Even Functions
(1) Even                        f  x   f  x 
                          a                  a

                           f  x dx  2 f  x dx
                          a                 0
                            ca                      ca
 NOTE: horizontal shift
                               f  x  c dx  2  f  x  c dx
                              ca                     c

(2) Odd                       f  x    f  x 
                          a

                           f  x dx  0
                          a
                          ca
 NOTE: horizontal shift
                            f  x  c dx  0
                          ca
                    a                a

                    f  x dx   f a  x dx
(3)
                    0                0
a

          f a  x dx
Proof:
         0
a

          f a  x dx
Proof:                     u ax
         0                du  dx
a

          f a  x dx
Proof:                     u ax
         0                du  dx
                          x  0, u  a
                          x  a, u  0
a

          f a  x dx
Proof:                     u ax
         0   0            du  dx
            f u du   x  0, u  a
             a
                          x  a, u  0
a

          f a  x dx
Proof:                     u ax
         0       0        du  dx
            f u du   x  0, u  a
                 a
             a            x  a, u  0
           f u du
             0
a

          f a  x dx
Proof:                     u ax
         0       0        du  dx
            f u du   x  0, u  a
                 a
             a            x  a, u  0
           f u du
             0
             a
           f  x dx
             0
a

          f a  x dx
Proof:                                     u ax
         0       0                        du  dx
            f u du                   x  0, u  a
                 a
             a                            x  a, u  0
           f u du
             0
             a
           f  x dx
             0




                            odd  odd  even
                           odd  even  odd
                          even  even  even
1
e.g. i   sin 3 xdx
        1
1
e.g. i   sin 3 xdx   odd function 3  odd function
        1
1
e.g. i   sin 3 xdx  0   odd function 3  odd function
       1
1
e.g. i   sin 3 xdx  0   odd function 3  odd function
       1



       1
   ii  x 2 1  xdx
       0
1
e.g. i   sin 3 xdx  0       odd function 3  odd function
       1



       1                    1

   ii  x 2 1  xdx   1  x 2 xdx
       0                    0
1
e.g. i   sin 3 xdx  0            odd function 3  odd function
       1



       1                     1

   ii  x 2 1  xdx   1  x 2 xdx
       0                     0
                             1
                                 1      3   5
                                               
                               x  2 x  x dx
                                
                                   2     2   2

                              0               
1
e.g. i   sin 3 xdx  0             odd function 3  odd function
       1



       1                     1

   ii  x 2 1  xdx   1  x 2 xdx
       0                     0
                             1
                                 1      3   5
                                               
                               x  2 x  x dx
                                
                                   2     2   2

                              0               
                                                7 1
                             2   3
                                  4   2  5
                             x  x  x 
                                  2       2     2

                             3   5   7 0
1
e.g. i   sin 3 xdx  0             odd function 3  odd function
       1



       1                     1

   ii  x 2 1  xdx   1  x 2 xdx
       0                     0
                             1
                                 1      3   5
                                               
                               x  2 x  x dx
                                
                                   2     2   2

                              0               
                                                7 1
                             2   3
                                  4   2  5
                             x  x  x 
                                  2       2     2

                             3   5   7 0

                              2 4 2
                               0
                              3 5 7
                              16
                            
                              105
Exercise 2I; 1 bdf, 2 ace, 3

    Exercise 2J; 42, 44

     The 100 (not 78)

X2 T05 08 odd and even functions (2010)

  • 1.
    Odd & EvenFunctions (1) Even f  x   f  x 
  • 2.
    Odd & EvenFunctions (1) Even f  x   f  x  a a  f  x dx  2 f  x dx a 0
  • 3.
    Odd & EvenFunctions (1) Even f  x   f  x  a a  f  x dx  2 f  x dx a 0 ca ca NOTE: horizontal shift  f  x  c dx  2  f  x  c dx ca c
  • 4.
    Odd & EvenFunctions (1) Even f  x   f  x  a a  f  x dx  2 f  x dx a 0 ca ca NOTE: horizontal shift  f  x  c dx  2  f  x  c dx ca c (2) Odd f  x    f  x 
  • 5.
    Odd & EvenFunctions (1) Even f  x   f  x  a a  f  x dx  2 f  x dx a 0 ca ca NOTE: horizontal shift  f  x  c dx  2  f  x  c dx ca c (2) Odd f  x    f  x  a  f  x dx  0 a
  • 6.
    Odd & EvenFunctions (1) Even f  x   f  x  a a  f  x dx  2 f  x dx a 0 ca ca NOTE: horizontal shift  f  x  c dx  2  f  x  c dx ca c (2) Odd f  x    f  x  a  f  x dx  0 a ca NOTE: horizontal shift  f  x  c dx  0 ca
  • 7.
    Odd & EvenFunctions (1) Even f  x   f  x  a a  f  x dx  2 f  x dx a 0 ca ca NOTE: horizontal shift  f  x  c dx  2  f  x  c dx ca c (2) Odd f  x    f  x  a  f  x dx  0 a ca NOTE: horizontal shift  f  x  c dx  0 ca a a  f  x dx   f a  x dx (3) 0 0
  • 8.
    a  f a  x dx Proof: 0
  • 9.
    a  f a  x dx Proof: u ax 0 du  dx
  • 10.
    a  f a  x dx Proof: u ax 0 du  dx x  0, u  a x  a, u  0
  • 11.
    a  f a  x dx Proof: u ax 0 0 du  dx    f u du x  0, u  a a x  a, u  0
  • 12.
    a  f a  x dx Proof: u ax 0 0 du  dx    f u du x  0, u  a a a x  a, u  0   f u du 0
  • 13.
    a  f a  x dx Proof: u ax 0 0 du  dx    f u du x  0, u  a a a x  a, u  0   f u du 0 a   f  x dx 0
  • 14.
    a  f a  x dx Proof: u ax 0 0 du  dx    f u du x  0, u  a a a x  a, u  0   f u du 0 a   f  x dx 0 odd  odd  even odd  even  odd even  even  even
  • 15.
    1 e.g. i  sin 3 xdx 1
  • 16.
    1 e.g. i  sin 3 xdx odd function 3  odd function 1
  • 17.
    1 e.g. i  sin 3 xdx  0 odd function 3  odd function 1
  • 18.
    1 e.g. i  sin 3 xdx  0 odd function 3  odd function 1 1 ii  x 2 1  xdx 0
  • 19.
    1 e.g. i  sin 3 xdx  0 odd function 3  odd function 1 1 1 ii  x 2 1  xdx   1  x 2 xdx 0 0
  • 20.
    1 e.g. i  sin 3 xdx  0 odd function 3  odd function 1 1 1 ii  x 2 1  xdx   1  x 2 xdx 0 0 1  1 3 5     x  2 x  x dx  2 2 2 0 
  • 21.
    1 e.g. i  sin 3 xdx  0 odd function 3  odd function 1 1 1 ii  x 2 1  xdx   1  x 2 xdx 0 0 1  1 3 5     x  2 x  x dx  2 2 2 0  7 1 2 3 4 2  5  x  x  x  2 2 2 3 5 7 0
  • 22.
    1 e.g. i  sin 3 xdx  0 odd function 3  odd function 1 1 1 ii  x 2 1  xdx   1  x 2 xdx 0 0 1  1 3 5     x  2 x  x dx  2 2 2 0  7 1 2 3 4 2  5  x  x  x  2 2 2 3 5 7 0 2 4 2    0 3 5 7 16  105
  • 23.
    Exercise 2I; 1bdf, 2 ace, 3 Exercise 2J; 42, 44 The 100 (not 78)