SlideShare a Scribd company logo
1 of 103
Download to read offline
Geometrical Representation of
    Complex Numbers
Geometrical Representation of
        Complex Numbers
Complex numbers can be represented on the Argand Diagram as vectors.
Geometrical Representation of
        Complex Numbers
Complex numbers can be represented on the Argand Diagram as vectors.
                             y




                                            x
Geometrical Representation of
        Complex Numbers
Complex numbers can be represented on the Argand Diagram as vectors.
                             y
                                         z  x  iy


                                            x
Geometrical Representation of
        Complex Numbers
Complex numbers can be represented on the Argand Diagram as vectors.
                             y
                                         z  x  iy


                                            x
Geometrical Representation of
         Complex Numbers
Complex numbers can be represented on the Argand Diagram as vectors.
                             y
                                            z  x  iy


                                               x



The advantage of using vectors is that they can be moved around the
Argand Diagram
Geometrical Representation of
         Complex Numbers
Complex numbers can be represented on the Argand Diagram as vectors.
                             y
                                            z  x  iy


                                               x



The advantage of using vectors is that they can be moved around the
Argand Diagram
Geometrical Representation of
         Complex Numbers
Complex numbers can be represented on the Argand Diagram as vectors.
                             y
                                            z  x  iy


                                               x



The advantage of using vectors is that they can be moved around the
Argand Diagram
No matter where the vector is placed its length (modulus) and the angle
made with the x axis (argument) is constant
Geometrical Representation of
         Complex Numbers
Complex numbers can be represented on the Argand Diagram as vectors.
                             y
                                            z  x  iy
                                                         A vector always

                                               x           represents
                                                     HEAD minus TAIL


The advantage of using vectors is that they can be moved around the
Argand Diagram
No matter where the vector is placed its length (modulus) and the angle
made with the x axis (argument) is constant
Addition / Subtraction
Addition / Subtraction

            y




                         x
Addition / Subtraction

            y


                         z1

                              x
Addition / Subtraction

            y
                z2

                         z1

                              x
Addition / Subtraction

             y
                 z2

                         z1

                              x



To add two complex numbers, place the vectors “head to tail”
Addition / Subtraction
                                  z1  z2
             y
                 z2

                         z1

                              x



To add two complex numbers, place the vectors “head to tail”
Addition / Subtraction
                                  z1  z2
             y
                 z2

                         z1

                              x



To add two complex numbers, place the vectors “head to tail”
Addition / Subtraction
                                  z1  z2
             y
                 z2

                         z1

                              x



To add two complex numbers, place the vectors “head to tail”
To subtract two complex numbers, place the vectors “head to head” (or
add the negative vector)
Addition / Subtraction
                                    z1  z2
             y
                 z2

                           z1

                                x
                      z1  z2

To add two complex numbers, place the vectors “head to tail”
To subtract two complex numbers, place the vectors “head to head” (or
add the negative vector)
Addition / Subtraction
                                    z1  z2
             y
                 z2

                           z1

                                x
                      z1  z2

To add two complex numbers, place the vectors “head to tail”
To subtract two complex numbers, place the vectors “head to head” (or
add the negative vector)
Addition / Subtraction
                                    z1  z2
             y
                 z2
                                              NOTE :
                           z1                 the parallelogram formed by adding
                                              vectors has two diagonals;
                                x
                                              z1  z2 and z1  z2
                      z1  z2

To add two complex numbers, place the vectors “head to tail”
To subtract two complex numbers, place the vectors “head to head” (or
add the negative vector)
Addition / Subtraction
                                    z1  z2
             y
                 z2
                                              NOTE :
                           z1                 the parallelogram formed by adding
                                              vectors has two diagonals;
                                x
                                              z1  z2 and z1  z2
                      z1  z2

To add two complex numbers, place the vectors “head to tail”
To subtract two complex numbers, place the vectors “head to head” (or
add the negative vector)
Addition / Subtraction
                                     z1  z2
              y
                  z2
                                               NOTE :
                            z1                 the parallelogram formed by adding
                                               vectors has two diagonals;
                                 x
                                               z1  z2 and z1  z2
                       z1  z2

To add two complex numbers, place the vectors “head to tail”
To subtract two complex numbers, place the vectors “head to head” (or
add the negative vector)
                           Trianglar Inequality
 In any triangle a side will be shorter than the sum of the other two sides
Addition / Subtraction
                                     z1  z2
              y
                  z2
                                               NOTE :
                            z1                 the parallelogram formed by adding
                                               vectors has two diagonals;
                                 x
                                               z1  z2 and z1  z2
                       z1  z2

To add two complex numbers, place the vectors “head to tail”
To subtract two complex numbers, place the vectors “head to head” (or
add the negative vector)
                           Trianglar Inequality
 In any triangle a side will be shorter than the sum of the other two sides
                        In ABC; AC  AB  BC
Addition / Subtraction
                                     z1  z2
              y
                  z2
                                               NOTE :
                            z1                 the parallelogram formed by adding
                                               vectors has two diagonals;
                                 x
                                               z1  z2 and z1  z2
                       z1  z2

To add two complex numbers, place the vectors “head to tail”
To subtract two complex numbers, place the vectors “head to head” (or
add the negative vector)
                           Trianglar Inequality
 In any triangle a side will be shorter than the sum of the other two sides
                        In ABC; AC  AB  BC
                 (equality occurs when AC is a straight line)
Addition / Subtraction
                                     z1  z2
              y
                  z2
                                               NOTE :
                            z1                 the parallelogram formed by adding
                                               vectors has two diagonals;
                                 x
                                               z1  z2 and z1  z2
                       z1  z2

To add two complex numbers, place the vectors “head to tail”
To subtract two complex numbers, place the vectors “head to head” (or
add the negative vector)
                           Trianglar Inequality
 In any triangle a side will be shorter than the sum of the other two sides
                        In ABC; AC  AB  BC
                 (equality occurs when AC is a straight line)

                                 z1  z2  z1  z2
Addition
 If a point A represents z1 and point B
 represents z 2 then point C representing
  z1  z2 is such that the points OACB
 form a parallelogram.
Addition
 If a point A represents z1 and point B
 represents z 2 then point C representing
  z1  z2 is such that the points OACB
 form a parallelogram.



 Subtraction
 If a point D represents  z1
 and point E represents z2  z1
 then the points ODEB form a
 parallelogram.
 Note: AB  z2  z1
        arg z2  z1   
e.g.1995                     y

                   Q
                                           P

                               O            x
The diagram shows a complex plane with origin O.
The points P and Q represent the complex numbers z and w respectively.
Thus the length of PQ is z  w
i  Show that z  w  z  w
e.g.1995                     y

                   Q
                                           P

                               O            x
The diagram shows a complex plane with origin O.
The points P and Q represent the complex numbers z and w respectively.
Thus the length of PQ is z  w
i  Show that z  w  z  w
e.g.1995                     y

                   Q
                                           P

                               O            x
The diagram shows a complex plane with origin O.
The points P and Q represent the complex numbers z and w respectively.
Thus the length of PQ is z  w
i  Show that z  w  z  w
   The length of OP is z
e.g.1995                     y

                   Q
                                           P

                               O            x
The diagram shows a complex plane with origin O.
The points P and Q represent the complex numbers z and w respectively.
Thus the length of PQ is z  w
i  Show that z  w  z  w
  The length of OP is z
  The length of OQ is w
e.g.1995                     y

                   Q
                                           P

                               O            x
The diagram shows a complex plane with origin O.
The points P and Q represent the complex numbers z and w respectively.
Thus the length of PQ is z  w
i  Show that z  w  z  w
  The length of OP is z
  The length of OQ is w
  The length of PQ is z  w
e.g.1995                     y

                   Q
                                           P

                               O            x
The diagram shows a complex plane with origin O.
The points P and Q represent the complex numbers z and w respectively.
Thus the length of PQ is z  w
i  Show that z  w  z  w
  The length of OP is z
                            Using the triangula r inequality on OPQ
  The length of OQ is w
                                          zw  z  w
  The length of PQ is z  w
e.g.1995                      y

                    Q
                                              P

                               O            x
The diagram shows a complex plane with origin O.
The points P and Q represent the complex numbers z and w respectively.
Thus the length of PQ is z  w
i  Show that z  w  z  w
   The length of OP is z
                             Using the triangula r inequality on OPQ
   The length of OQ is w
                                           zw  z  w
   The length of PQ is z  w
(ii) Construct the point R representing z + w, What can be said about the
     quadrilateral OPRQ?
e.g.1995                    R y
                    Q
                                              P

                               O            x
The diagram shows a complex plane with origin O.
The points P and Q represent the complex numbers z and w respectively.
Thus the length of PQ is z  w
i  Show that z  w  z  w
   The length of OP is z
                             Using the triangula r inequality on OPQ
   The length of OQ is w
                                           zw  z  w
   The length of PQ is z  w
(ii) Construct the point R representing z + w, What can be said about the
     quadrilateral OPRQ?
e.g.1995                    R y
                    Q
                                              P

                               O            x
The diagram shows a complex plane with origin O.
The points P and Q represent the complex numbers z and w respectively.
Thus the length of PQ is z  w
i  Show that z  w  z  w
   The length of OP is z
                             Using the triangula r inequality on OPQ
   The length of OQ is w
                                           zw  z  w
   The length of PQ is z  w
(ii) Construct the point R representing z + w, What can be said about the
     quadrilateral OPRQ?
                       OPRQ is a parallelogram
w
iii  If z  w  z  w , what can be said about ?
                                                z
w
iii  If z  w  z  w , what can be said about ?
                                                z
          zw  zw
w
iii  If z  w  z  w , what can be said about ?
                                                z
          z  w  z  w i.e. diagonals in OPRQ are =
w
iii  If z  w  z  w , what can be said about ?
                                                z
          z  w  z  w i.e. diagonals in OPRQ are =
          OPRQ is a rectangle
w
iii  If z  w  z  w , what can be said about ?
                                                z
          z  w  z  w i.e. diagonals in OPRQ are =
          OPRQ is a rectangle
                         
       arg w  arg z 
                         2
w
iii  If z  w  z  w , what can be said about ?
                                                z
          z  w  z  w i.e. diagonals in OPRQ are =
          OPRQ is a rectangle
                         
       arg w  arg z 
                         2
                 w 
              arg 
                 z 2
w
iii  If z  w  z  w , what can be said about ?
                                                z
          z  w  z  w i.e. diagonals in OPRQ are =
          OPRQ is a rectangle
                         
       arg w  arg z 
                         2
                 w            w
                               is purely imaginary
              arg 
                 z 2           z
w
iii  If z  w  z  w , what can be said about ?
                                                z
          z  w  z  w i.e. diagonals in OPRQ are =
          OPRQ is a rectangle
                         
       arg w  arg z 
                         2
                w             w
                               is purely imaginary
             arg 
                z 2            z
Multiplication
w
iii  If z  w  z  w , what can be said about ?
                                                z
          z  w  z  w i.e. diagonals in OPRQ are =
          OPRQ is a rectangle
                         
       arg w  arg z 
                         2
                w             w
                               is purely imaginary
             arg 
                z 2            z
Multiplication
      z1 z2  z1 z2
w
iii  If z  w  z  w , what can be said about ?
                                                z
          z  w  z  w i.e. diagonals in OPRQ are =
          OPRQ is a rectangle
                         
       arg w  arg z 
                         2
                w             w
                               is purely imaginary
             arg 
                z 2            z
Multiplication
      z1 z2  z1 z2           arg z1 z2  arg z1  arg z2
w
iii  If z  w  z  w , what can be said about ?
                                                z
          z  w  z  w i.e. diagonals in OPRQ are =
          OPRQ is a rectangle
                         
       arg w  arg z 
                         2
                w                  w
                                    is purely imaginary
             arg 
                z 2                 z
Multiplication
      z1 z2  z1 z2               arg z1 z2  arg z1  arg z2

                 r1cis1  r2cis 2  r1r2cis1   2 
w
iii  If z  w  z  w , what can be said about ?
                                                z
          z  w  z  w i.e. diagonals in OPRQ are =
          OPRQ is a rectangle
                          
        arg w  arg z 
                          2
                w                   w
                                     is purely imaginary
             arg 
                z 2                  z
Multiplication
      z1 z2  z1 z2                arg z1 z2  arg z1  arg z2

                  r1cis1  r2cis 2  r1r2cis1   2 
 i.e. if we multiply z1 by z2 , the vector z1 is rotated anticlockwise by  2
    and its length is multiplied by r2
If we multiply z1 by cis the vector
OA will rotate by an angle of  in an
anti-clockwise direction. If we
multiply by rcis it will also multiply
the length of OA by a factor of r
If we multiply z1 by cis the vector
OA will rotate by an angle of  in an
anti-clockwise direction. If we
multiply by rcis it will also multiply
the length of OA by a factor of r

                   
Note: cos  i sin  i  iz1 will rotate OA anticlockwise 90 degrees.
         2       2
If we multiply z1 by cis the vector
OA will rotate by an angle of  in an
anti-clockwise direction. If we
multiply by rcis it will also multiply
the length of OA by a factor of r

                   
Note: cos  i sin  i  iz1 will rotate OA anticlockwise 90 degrees.
         2       2

                                                                 
           Multiplica tion by i is a rotation anticlockwise by
                                                                 2
If we multiply z1 by cis the vector
OA will rotate by an angle of  in an
anti-clockwise direction. If we
multiply by rcis it will also multiply
the length of OA by a factor of r

                   
Note: cos  i sin  i  iz1 will rotate OA anticlockwise 90 degrees.
         2       2

                                                                 
           Multiplica tion by i is a rotation anticlockwise by
                                                                 2


          REMEMBER:          A vector is HEAD minus TAIL
y
    B
               A 
C
O       D(1)    x
y                      DC  DA  i
    B
               A 
C
O       D(1)    x
y                       DC  DA  i
    B
                       C  1    1 i
               A 
C
O       D(1)    x
y                       DC  DA  i
    B
                       C  1    1 i
               A 
C                         C  1    1 i
O               x             1  i   i
        D(1)
y                        DC  DA  i
             B
                                C  1    1 i
                        A 
       C                           C  1    1 i
        O                x             1  i   i
                 D(1)


B  A  DC
y                        DC  DA  i
             B
                                C  1    1 i
                        A 
        C                          C  1    1 i
         O               x             1  i   i
                 D(1)


B  A  DC
B    C 1
y                          DC  DA  i
                B
                                     C  1    1 i
                             A 
          C                             C  1    1 i
            O                 x             1  i   i
                      D(1)


B  A  DC
B    C 1
B      1 i
   i  1  i  
y                          DC  DA  i
                B
                                     C  1    1 i
                             A 
          C                             C  1    1 i
            O                 x             1  i   i
                      D(1)


B  A  DC
B    C 1
B      1 i
   i  1  i  
      OR
y                          DC  DA  i
                B
                                     C  1    1 i
                             A 
          C                             C  1    1 i
            O                 x             1  i   i
                      D(1)


B  A  DC
B    C 1
B      1 i
   i  1  i  
      OR
B  C  DA
y                           DC  DA  i
                B
                                      C  1    1 i
                              A 
          C                              C  1    1 i
            O                  x             1  i   i
                      D(1)


B  A  DC
B    C 1
B      1 i
   i  1  i  
      OR
B  C  DA
B  1  i   i  (  1)
y                          DC  DA  i
                B
                                      C  1    1 i
                              A 
          C                              C  1    1 i
            O                  x             1  i   i
                       D(1)


B  A  DC
B    C 1
B      1 i
   i  1  i  
       OR
B  C  DA
B  1  i   i  (  1)
    i  1  i  
y                               DC  DA  i
                B
                                           C  1    1 i
                              A 
          C                                   C  1    1 i
            O                  x                  1  i   i
                       D(1)
                                      OR
B  A  DC
B    C 1
B      1 i
   i  1  i  
       OR
B  C  DA
B  1  i   i  (  1)
    i  1  i  
y                                        DC  DA  i
                B
                                                    C  1    1 i
                              A 
          C                                            C  1    1 i
            O                  x                           1  i   i
                       D(1)
                                         OR
                                               
B  A  DC                         DB  2cis        DA
                                               4
B    C 1
B      1 i
   i  1  i  
       OR
B  C  DA
B  1  i   i  (  1)
    i  1  i  
y                                        DC  DA  i
                B
                                                    C  1    1 i
                              A 
          C                                            C  1    1 i
            O                  x                           1  i   i
                       D(1)
                                         OR
                                               
B  A  DC                         DB  2cis        DA
                                               4
B    C 1                                        
                               B  1  2  cos  i sin  (  1)
B      1 i                            4       4
   i  1  i  
       OR
B  C  DA
B  1  i   i  (  1)
    i  1  i  
y                                        DC  DA  i
                B
                                                    C  1    1 i
                              A 
          C                                            C  1    1 i
            O                  x                           1  i   i
                       D(1)
                                         OR
                                               
B  A  DC                         DB  2cis        DA
                                               4
B    C 1                                             
                               B  1  2  cos  i sin  (  1)
B      1 i                                4        4
   i  1  i                 B  1  i  (  1)  1
       OR
B  C  DA
B  1  i   i  (  1)
    i  1  i  
y                                        DC  DA  i
                B
                                                    C  1    1 i
                              A 
          C                                            C  1    1 i
            O                  x                           1  i   i
                       D(1)
                                          OR
                                               
B  A  DC                         DB  2cis        DA
                                               4
B    C 1                                             
                               B  1  2  cos  i sin  (  1)
B      1 i                                4        4
   i  1  i                 B  1  i  (  1)  1
       OR                                1  i  i  1

B  C  DA
B  1  i   i  (  1)
    i  1  i  
y                                        DC  DA  i
                B
                                                    C  1    1 i
                              A 
          C                                               C  1    1 i
            O                  x                             1  i   i
                       D(1)
                                          OR
                                               
B  A  DC                         DB  2cis        DA
                                               4
B    C 1                                             
                               B  1  2  cos  i sin  (  1)
B      1 i                                4        4
   i  1  i                 B  1  i  (  1)  1
       OR                                1  i  i  1
                                       i  1  i  
B  C  DA
B  1  i   i  (  1)
    i  1  i  
e.g.2000        B
                            y
              C
                                  A 

                               O            x
In the Argand Diagram, OABC is a rectangle, where OC = 2OA.
The vertex A corresponds to the complex number 
e.g.2000        B
                              y
              C
                                    A 

                               O            x
In the Argand Diagram, OABC is a rectangle, where OC = 2OA.
The vertex A corresponds to the complex number 
i  What complex number corresponds to C?
e.g.2000        B
                              y
              C
                                    A 

                               O            x
In the Argand Diagram, OABC is a rectangle, where OC = 2OA.
The vertex A corresponds to the complex number 
i  What complex number corresponds to C?
   OC  OA  2i
e.g.2000        B
                              y
              C
                                    A 

                               O            x
In the Argand Diagram, OABC is a rectangle, where OC = 2OA.
The vertex A corresponds to the complex number 
i  What complex number corresponds to C?
   OC  OA  2i
    C  2i
e.g.2000         B
                               y
               C
                                      A 

                               O            x
In the Argand Diagram, OABC is a rectangle, where OC = 2OA.
The vertex A corresponds to the complex number 
i  What complex number corresponds to C?
     OC  OA  2i
       C  2i
(ii) What complex number corresponds to the point of intersection D of
     the diagonals OB and AC?
e.g.2000         B
                               y
               C
                                      A 

                               O            x
In the Argand Diagram, OABC is a rectangle, where OC = 2OA.
The vertex A corresponds to the complex number 
i  What complex number corresponds to C?
     OC  OA  2i
       C  2i
(ii) What complex number corresponds to the point of intersection D of
     the diagonals OB and AC?
 diagonals bisect in a rectangle
e.g.2000         B
                               y
               C
                                      A 

                               O            x
In the Argand Diagram, OABC is a rectangle, where OC = 2OA.
The vertex A corresponds to the complex number 
i  What complex number corresponds to C?
     OC  OA  2i
       C  2i
(ii) What complex number corresponds to the point of intersection D of
     the diagonals OB and AC?
 diagonals bisect in a rectangle
 D  midpoint of AC
e.g.2000         B
                               y
               C
                                      A 

                               O            x
In the Argand Diagram, OABC is a rectangle, where OC = 2OA.
The vertex A corresponds to the complex number 
i  What complex number corresponds to C?
     OC  OA  2i
       C  2i
(ii) What complex number corresponds to the point of intersection D of
     the diagonals OB and AC?
 diagonals bisect in a rectangle
 D  midpoint of AC
         AC
    D
           2
e.g.2000         B
                               y
               C
                                      A 

                               O            x
In the Argand Diagram, OABC is a rectangle, where OC = 2OA.
The vertex A corresponds to the complex number 
i  What complex number corresponds to C?
     OC  OA  2i
       C  2i
(ii) What complex number corresponds to the point of intersection D of
     the diagonals OB and AC?
                                             2i
 diagonals bisect in a rectangle      D
                                              2
 D  midpoint of AC
         AC
    D
           2
e.g.2000         B
                               y
               C
                                      A 

                               O            x
In the Argand Diagram, OABC is a rectangle, where OC = 2OA.
The vertex A corresponds to the complex number 
i  What complex number corresponds to C?
     OC  OA  2i
       C  2i
(ii) What complex number corresponds to the point of intersection D of
     the diagonals OB and AC?
                                             2i
 diagonals bisect in a rectangle      D
                                              2
 D  midpoint of AC
         AC                                1 
    D                               D    i 
           2                                2 
Examples
Examples




                
 OB  OA cis
                3
Examples




                  
 OB  OA cis
                  3
              
   B  1cis
              3
Examples




                  
 OB  OA cis
                  3
              
   B  1cis
        3
     1   3
   B     i
     2 2
Examples




                  
 OB  OA cis
                  3
              
   B  1cis
        3
     1   3
   B     i
     2 2


 OD  OB  i
Examples




                  
 OB  OA cis
                  3
              
   B  1cis
        3
     1   3
   B     i
     2 2


 OD  OB  i
   D  iB
Examples




                  
 OB  OA cis
                  3
              
   B  1cis
        3
     1   3
   B     i
     2 2


 OD  OB  i
   D  iB
        3 1
   D    i
       2 2
Examples




                  
 OB  OA cis
                  3
              
   B  1cis
        3
     1   3
   B     i
     2 2

                      C  B  OD
 OD  OB  i
   D  iB
        3 1
   D    i
       2 2
Examples




                  
 OB  OA cis
                  3
              
   B  1cis
        3
     1   3
   B     i
     2 2

                      C  B  OD
 OD  OB  i
                         1  3    3 1 
   D  iB             C    i   i
   D
        3 1
          i             2 2   2 2 
       2 2
Examples




                  
 OB  OA cis
                  3
              
   B  1cis
        3
     1   3
   B     i
     2 2

                      C  B  OD
 OD  OB  i
                         1    3      3 1 
   D  iB             C       i      i
   D
        3 1
          i             2 2   2 2 
       2 2               1  3  1  3 
                      C             i
                          2   2 
(i)   AP  AO  i
(i)     AP  AO  i
      P  A  i  O  A
(i)     AP  AO  i
      P  A  i  O  A
      P  z1  i0  z1 
(i)     AP  AO  i
      P  A  i  O  A
      P  z1  i0  z1 
          P  z1  iz1
(i)     AP  AO  i
      P  A  i  O  A
      P  z1  i0  z1 
          P  z1  iz1
          P  1  i z1
(i)     AP  AO  i
                             (ii)   QB  BO  i
      P  A  i  O  A
      P  z1  i0  z1 
          P  z1  iz1
          P  1  i z1
(i)     AP  AO  i
                             (ii)     QB  BO  i
      P  A  i  O  A           Q  B  i O  B 
      P  z1  i0  z1 
          P  z1  iz1
          P  1  i z1
(i)     AP  AO  i
                             (ii)     QB  BO  i
      P  A  i  O  A           Q  B  i O  B 
      P  z1  i0  z1              Q  B  iB
          P  z1  iz1
          P  1  i z1
(i)     AP  AO  i
                             (ii)     QB  BO  i
      P  A  i  O  A           Q  B  i O  B 
      P  z1  i0  z1              Q  B  iB
          P  z1  iz1                 Q  1  i z2
          P  1  i z1
(i)     AP  AO  i
                             (ii)     QB  BO  i
      P  A  i  O  A           Q  B  i O  B 
      P  z1  i0  z1              Q  B  iB
          P  z1  iz1                 Q  1  i z2    M
                                                            PQ
          P  1  i z1                                     2
(i)     AP  AO  i
                             (ii)     QB  BO  i
      P  A  i  O  A           Q  B  i O  B 
      P  z1  i0  z1              Q  B  iB
          P  z1  iz1                 Q  1  i z2     M
                                                                PQ
          P  1  i z1                                            2
                                                            1  i z1  1  i z2
                                                         M
                                                                       2
(i)     AP  AO  i
                             (ii)     QB  BO  i
      P  A  i  O  A           Q  B  i O  B 
      P  z1  i0  z1              Q  B  iB
          P  z1  iz1                 Q  1  i z2     M
                                                                  PQ
          P  1  i z1                                            2
                                                            1  i z1  1  i z2
                                                         M
                                                                       2
                                                              z1  z2    z1  z2 i
                                                         M
                                                                         2
Exercise 4K; 1 to 8, 11, 12, 13

      Exercise 4L; odd

   Terry Lee: Exercise 2.6

More Related Content

What's hot

Multiple integrals
Multiple integralsMultiple integrals
Multiple integrals
Tarun Gehlot
 
Point of inflection
Point of inflectionPoint of inflection
Point of inflection
Tarun Gehlot
 

What's hot (18)

Session 20
Session 20Session 20
Session 20
 
Lesson 1: Functions and their representations (slides)
Lesson 1: Functions and their representations (slides)Lesson 1: Functions and their representations (slides)
Lesson 1: Functions and their representations (slides)
 
Higham
HighamHigham
Higham
 
Lesson 1: Functions and their Representations
Lesson 1: Functions and their RepresentationsLesson 1: Functions and their Representations
Lesson 1: Functions and their Representations
 
Multiple integrals
Multiple integralsMultiple integrals
Multiple integrals
 
Lesson 2: A Catalog of Essential Functions (slides)
Lesson 2: A Catalog of Essential Functions (slides)Lesson 2: A Catalog of Essential Functions (slides)
Lesson 2: A Catalog of Essential Functions (slides)
 
Day 01
Day 01Day 01
Day 01
 
Integration
IntegrationIntegration
Integration
 
Lesson 1: Functions
Lesson 1: FunctionsLesson 1: Functions
Lesson 1: Functions
 
Business math
Business mathBusiness math
Business math
 
7.curves Further Mathematics Zimbabwe Zimsec Cambridge
7.curves   Further Mathematics Zimbabwe Zimsec Cambridge7.curves   Further Mathematics Zimbabwe Zimsec Cambridge
7.curves Further Mathematics Zimbabwe Zimsec Cambridge
 
Lesson 11: Implicit Differentiation
Lesson 11: Implicit DifferentiationLesson 11: Implicit Differentiation
Lesson 11: Implicit Differentiation
 
Lesson03 The Concept Of Limit 027 Slides
Lesson03   The Concept Of Limit 027 SlidesLesson03   The Concept Of Limit 027 Slides
Lesson03 The Concept Of Limit 027 Slides
 
Algo Final
Algo FinalAlgo Final
Algo Final
 
Partitions
PartitionsPartitions
Partitions
 
STUDY MATERIAL FOR IIT-JEE on Complex number
STUDY MATERIAL FOR IIT-JEE on Complex numberSTUDY MATERIAL FOR IIT-JEE on Complex number
STUDY MATERIAL FOR IIT-JEE on Complex number
 
Linear (in)dependence
Linear (in)dependenceLinear (in)dependence
Linear (in)dependence
 
Point of inflection
Point of inflectionPoint of inflection
Point of inflection
 

Viewers also liked

X2 T01 09 geometrical representation (2010)
X2 T01 09 geometrical representation (2010)X2 T01 09 geometrical representation (2010)
X2 T01 09 geometrical representation (2010)
Nigel Simmons
 
X2 t01 09 geometrical representation (2012)
X2 t01 09 geometrical representation (2012)X2 t01 09 geometrical representation (2012)
X2 t01 09 geometrical representation (2012)
Nigel Simmons
 
X2 T01 11 locus & complex nos 2 (2010)
X2 T01 11 locus & complex nos 2 (2010)X2 T01 11 locus & complex nos 2 (2010)
X2 T01 11 locus & complex nos 2 (2010)
Nigel Simmons
 
X2 T01 12 locus & complex nos 3 (2010)
X2 T01 12  locus & complex nos 3 (2010)X2 T01 12  locus & complex nos 3 (2010)
X2 T01 12 locus & complex nos 3 (2010)
Nigel Simmons
 
X2 t01 08 factorising complex expressions (2012)
X2 t01 08 factorising complex expressions (2012)X2 t01 08 factorising complex expressions (2012)
X2 t01 08 factorising complex expressions (2012)
Nigel Simmons
 
X2 T01 11 locus & complex numbers 2
X2 T01 11 locus & complex numbers 2X2 T01 11 locus & complex numbers 2
X2 T01 11 locus & complex numbers 2
Nigel Simmons
 

Viewers also liked (7)

X2 T01 09 geometrical representation (2010)
X2 T01 09 geometrical representation (2010)X2 T01 09 geometrical representation (2010)
X2 T01 09 geometrical representation (2010)
 
X2 t01 09 geometrical representation (2012)
X2 t01 09 geometrical representation (2012)X2 t01 09 geometrical representation (2012)
X2 t01 09 geometrical representation (2012)
 
X2 T01 11 locus & complex nos 2 (2010)
X2 T01 11 locus & complex nos 2 (2010)X2 T01 11 locus & complex nos 2 (2010)
X2 T01 11 locus & complex nos 2 (2010)
 
X2 T01 12 locus & complex nos 3 (2010)
X2 T01 12  locus & complex nos 3 (2010)X2 T01 12  locus & complex nos 3 (2010)
X2 T01 12 locus & complex nos 3 (2010)
 
X2 t01 08 factorising complex expressions (2012)
X2 t01 08 factorising complex expressions (2012)X2 t01 08 factorising complex expressions (2012)
X2 t01 08 factorising complex expressions (2012)
 
X2 T01 11 locus & complex numbers 2
X2 T01 11 locus & complex numbers 2X2 T01 11 locus & complex numbers 2
X2 T01 11 locus & complex numbers 2
 
Goodbye slideshare UPDATE
Goodbye slideshare UPDATEGoodbye slideshare UPDATE
Goodbye slideshare UPDATE
 

More from Nigel Simmons

12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)
Nigel Simmons
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)
Nigel Simmons
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)
Nigel Simmons
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)
Nigel Simmons
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)
Nigel Simmons
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)
Nigel Simmons
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)
Nigel Simmons
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)
Nigel Simmons
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)
Nigel Simmons
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)
Nigel Simmons
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)
Nigel Simmons
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)
Nigel Simmons
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)
Nigel Simmons
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)
Nigel Simmons
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)
Nigel Simmons
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)
Nigel Simmons
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)
Nigel Simmons
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)
Nigel Simmons
 
11 x1 t16 01 area under curve (2013)
11 x1 t16 01 area under curve (2013)11 x1 t16 01 area under curve (2013)
11 x1 t16 01 area under curve (2013)
Nigel Simmons
 

More from Nigel Simmons (20)

Goodbye slideshare
Goodbye slideshareGoodbye slideshare
Goodbye slideshare
 
12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)
 
11 x1 t16 01 area under curve (2013)
11 x1 t16 01 area under curve (2013)11 x1 t16 01 area under curve (2013)
11 x1 t16 01 area under curve (2013)
 

Recently uploaded

Seal of Good Local Governance (SGLG) 2024Final.pptx
Seal of Good Local Governance (SGLG) 2024Final.pptxSeal of Good Local Governance (SGLG) 2024Final.pptx
Seal of Good Local Governance (SGLG) 2024Final.pptx
negromaestrong
 
1029-Danh muc Sach Giao Khoa khoi 6.pdf
1029-Danh muc Sach Giao Khoa khoi  6.pdf1029-Danh muc Sach Giao Khoa khoi  6.pdf
1029-Danh muc Sach Giao Khoa khoi 6.pdf
QucHHunhnh
 

Recently uploaded (20)

Python Notes for mca i year students osmania university.docx
Python Notes for mca i year students osmania university.docxPython Notes for mca i year students osmania university.docx
Python Notes for mca i year students osmania university.docx
 
Sociology 101 Demonstration of Learning Exhibit
Sociology 101 Demonstration of Learning ExhibitSociology 101 Demonstration of Learning Exhibit
Sociology 101 Demonstration of Learning Exhibit
 
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
 
Seal of Good Local Governance (SGLG) 2024Final.pptx
Seal of Good Local Governance (SGLG) 2024Final.pptxSeal of Good Local Governance (SGLG) 2024Final.pptx
Seal of Good Local Governance (SGLG) 2024Final.pptx
 
How to Give a Domain for a Field in Odoo 17
How to Give a Domain for a Field in Odoo 17How to Give a Domain for a Field in Odoo 17
How to Give a Domain for a Field in Odoo 17
 
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
 
Third Battle of Panipat detailed notes.pptx
Third Battle of Panipat detailed notes.pptxThird Battle of Panipat detailed notes.pptx
Third Battle of Panipat detailed notes.pptx
 
PROCESS RECORDING FORMAT.docx
PROCESS      RECORDING        FORMAT.docxPROCESS      RECORDING        FORMAT.docx
PROCESS RECORDING FORMAT.docx
 
Introduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The BasicsIntroduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The Basics
 
Holdier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdfHoldier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdf
 
Micro-Scholarship, What it is, How can it help me.pdf
Micro-Scholarship, What it is, How can it help me.pdfMicro-Scholarship, What it is, How can it help me.pdf
Micro-Scholarship, What it is, How can it help me.pdf
 
ComPTIA Overview | Comptia Security+ Book SY0-701
ComPTIA Overview | Comptia Security+ Book SY0-701ComPTIA Overview | Comptia Security+ Book SY0-701
ComPTIA Overview | Comptia Security+ Book SY0-701
 
Mehran University Newsletter Vol-X, Issue-I, 2024
Mehran University Newsletter Vol-X, Issue-I, 2024Mehran University Newsletter Vol-X, Issue-I, 2024
Mehran University Newsletter Vol-X, Issue-I, 2024
 
Magic bus Group work1and 2 (Team 3).pptx
Magic bus Group work1and 2 (Team 3).pptxMagic bus Group work1and 2 (Team 3).pptx
Magic bus Group work1and 2 (Team 3).pptx
 
How to Create and Manage Wizard in Odoo 17
How to Create and Manage Wizard in Odoo 17How to Create and Manage Wizard in Odoo 17
How to Create and Manage Wizard in Odoo 17
 
Spatium Project Simulation student brief
Spatium Project Simulation student briefSpatium Project Simulation student brief
Spatium Project Simulation student brief
 
Accessible Digital Futures project (20/03/2024)
Accessible Digital Futures project (20/03/2024)Accessible Digital Futures project (20/03/2024)
Accessible Digital Futures project (20/03/2024)
 
Asian American Pacific Islander Month DDSD 2024.pptx
Asian American Pacific Islander Month DDSD 2024.pptxAsian American Pacific Islander Month DDSD 2024.pptx
Asian American Pacific Islander Month DDSD 2024.pptx
 
1029-Danh muc Sach Giao Khoa khoi 6.pdf
1029-Danh muc Sach Giao Khoa khoi  6.pdf1029-Danh muc Sach Giao Khoa khoi  6.pdf
1029-Danh muc Sach Giao Khoa khoi 6.pdf
 
Kodo Millet PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...
Kodo Millet  PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...Kodo Millet  PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...
Kodo Millet PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...
 

X2 T01 09 geometrical representation (2011)

  • 2. Geometrical Representation of Complex Numbers Complex numbers can be represented on the Argand Diagram as vectors.
  • 3. Geometrical Representation of Complex Numbers Complex numbers can be represented on the Argand Diagram as vectors. y x
  • 4. Geometrical Representation of Complex Numbers Complex numbers can be represented on the Argand Diagram as vectors. y z  x  iy x
  • 5. Geometrical Representation of Complex Numbers Complex numbers can be represented on the Argand Diagram as vectors. y z  x  iy x
  • 6. Geometrical Representation of Complex Numbers Complex numbers can be represented on the Argand Diagram as vectors. y z  x  iy x The advantage of using vectors is that they can be moved around the Argand Diagram
  • 7. Geometrical Representation of Complex Numbers Complex numbers can be represented on the Argand Diagram as vectors. y z  x  iy x The advantage of using vectors is that they can be moved around the Argand Diagram
  • 8. Geometrical Representation of Complex Numbers Complex numbers can be represented on the Argand Diagram as vectors. y z  x  iy x The advantage of using vectors is that they can be moved around the Argand Diagram No matter where the vector is placed its length (modulus) and the angle made with the x axis (argument) is constant
  • 9. Geometrical Representation of Complex Numbers Complex numbers can be represented on the Argand Diagram as vectors. y z  x  iy A vector always x represents HEAD minus TAIL The advantage of using vectors is that they can be moved around the Argand Diagram No matter where the vector is placed its length (modulus) and the angle made with the x axis (argument) is constant
  • 14. Addition / Subtraction y z2 z1 x To add two complex numbers, place the vectors “head to tail”
  • 15. Addition / Subtraction z1  z2 y z2 z1 x To add two complex numbers, place the vectors “head to tail”
  • 16. Addition / Subtraction z1  z2 y z2 z1 x To add two complex numbers, place the vectors “head to tail”
  • 17. Addition / Subtraction z1  z2 y z2 z1 x To add two complex numbers, place the vectors “head to tail” To subtract two complex numbers, place the vectors “head to head” (or add the negative vector)
  • 18. Addition / Subtraction z1  z2 y z2 z1 x z1  z2 To add two complex numbers, place the vectors “head to tail” To subtract two complex numbers, place the vectors “head to head” (or add the negative vector)
  • 19. Addition / Subtraction z1  z2 y z2 z1 x z1  z2 To add two complex numbers, place the vectors “head to tail” To subtract two complex numbers, place the vectors “head to head” (or add the negative vector)
  • 20. Addition / Subtraction z1  z2 y z2 NOTE : z1 the parallelogram formed by adding vectors has two diagonals; x z1  z2 and z1  z2 z1  z2 To add two complex numbers, place the vectors “head to tail” To subtract two complex numbers, place the vectors “head to head” (or add the negative vector)
  • 21. Addition / Subtraction z1  z2 y z2 NOTE : z1 the parallelogram formed by adding vectors has two diagonals; x z1  z2 and z1  z2 z1  z2 To add two complex numbers, place the vectors “head to tail” To subtract two complex numbers, place the vectors “head to head” (or add the negative vector)
  • 22. Addition / Subtraction z1  z2 y z2 NOTE : z1 the parallelogram formed by adding vectors has two diagonals; x z1  z2 and z1  z2 z1  z2 To add two complex numbers, place the vectors “head to tail” To subtract two complex numbers, place the vectors “head to head” (or add the negative vector) Trianglar Inequality In any triangle a side will be shorter than the sum of the other two sides
  • 23. Addition / Subtraction z1  z2 y z2 NOTE : z1 the parallelogram formed by adding vectors has two diagonals; x z1  z2 and z1  z2 z1  z2 To add two complex numbers, place the vectors “head to tail” To subtract two complex numbers, place the vectors “head to head” (or add the negative vector) Trianglar Inequality In any triangle a side will be shorter than the sum of the other two sides In ABC; AC  AB  BC
  • 24. Addition / Subtraction z1  z2 y z2 NOTE : z1 the parallelogram formed by adding vectors has two diagonals; x z1  z2 and z1  z2 z1  z2 To add two complex numbers, place the vectors “head to tail” To subtract two complex numbers, place the vectors “head to head” (or add the negative vector) Trianglar Inequality In any triangle a side will be shorter than the sum of the other two sides In ABC; AC  AB  BC (equality occurs when AC is a straight line)
  • 25. Addition / Subtraction z1  z2 y z2 NOTE : z1 the parallelogram formed by adding vectors has two diagonals; x z1  z2 and z1  z2 z1  z2 To add two complex numbers, place the vectors “head to tail” To subtract two complex numbers, place the vectors “head to head” (or add the negative vector) Trianglar Inequality In any triangle a side will be shorter than the sum of the other two sides In ABC; AC  AB  BC (equality occurs when AC is a straight line) z1  z2  z1  z2
  • 26. Addition If a point A represents z1 and point B represents z 2 then point C representing z1  z2 is such that the points OACB form a parallelogram.
  • 27. Addition If a point A represents z1 and point B represents z 2 then point C representing z1  z2 is such that the points OACB form a parallelogram. Subtraction If a point D represents  z1 and point E represents z2  z1 then the points ODEB form a parallelogram. Note: AB  z2  z1 arg z2  z1   
  • 28. e.g.1995 y Q P O x The diagram shows a complex plane with origin O. The points P and Q represent the complex numbers z and w respectively. Thus the length of PQ is z  w i  Show that z  w  z  w
  • 29. e.g.1995 y Q P O x The diagram shows a complex plane with origin O. The points P and Q represent the complex numbers z and w respectively. Thus the length of PQ is z  w i  Show that z  w  z  w
  • 30. e.g.1995 y Q P O x The diagram shows a complex plane with origin O. The points P and Q represent the complex numbers z and w respectively. Thus the length of PQ is z  w i  Show that z  w  z  w The length of OP is z
  • 31. e.g.1995 y Q P O x The diagram shows a complex plane with origin O. The points P and Q represent the complex numbers z and w respectively. Thus the length of PQ is z  w i  Show that z  w  z  w The length of OP is z The length of OQ is w
  • 32. e.g.1995 y Q P O x The diagram shows a complex plane with origin O. The points P and Q represent the complex numbers z and w respectively. Thus the length of PQ is z  w i  Show that z  w  z  w The length of OP is z The length of OQ is w The length of PQ is z  w
  • 33. e.g.1995 y Q P O x The diagram shows a complex plane with origin O. The points P and Q represent the complex numbers z and w respectively. Thus the length of PQ is z  w i  Show that z  w  z  w The length of OP is z Using the triangula r inequality on OPQ The length of OQ is w zw  z  w The length of PQ is z  w
  • 34. e.g.1995 y Q P O x The diagram shows a complex plane with origin O. The points P and Q represent the complex numbers z and w respectively. Thus the length of PQ is z  w i  Show that z  w  z  w The length of OP is z Using the triangula r inequality on OPQ The length of OQ is w zw  z  w The length of PQ is z  w (ii) Construct the point R representing z + w, What can be said about the quadrilateral OPRQ?
  • 35. e.g.1995 R y Q P O x The diagram shows a complex plane with origin O. The points P and Q represent the complex numbers z and w respectively. Thus the length of PQ is z  w i  Show that z  w  z  w The length of OP is z Using the triangula r inequality on OPQ The length of OQ is w zw  z  w The length of PQ is z  w (ii) Construct the point R representing z + w, What can be said about the quadrilateral OPRQ?
  • 36. e.g.1995 R y Q P O x The diagram shows a complex plane with origin O. The points P and Q represent the complex numbers z and w respectively. Thus the length of PQ is z  w i  Show that z  w  z  w The length of OP is z Using the triangula r inequality on OPQ The length of OQ is w zw  z  w The length of PQ is z  w (ii) Construct the point R representing z + w, What can be said about the quadrilateral OPRQ? OPRQ is a parallelogram
  • 37. w iii  If z  w  z  w , what can be said about ? z
  • 38. w iii  If z  w  z  w , what can be said about ? z zw  zw
  • 39. w iii  If z  w  z  w , what can be said about ? z z  w  z  w i.e. diagonals in OPRQ are =
  • 40. w iii  If z  w  z  w , what can be said about ? z z  w  z  w i.e. diagonals in OPRQ are = OPRQ is a rectangle
  • 41. w iii  If z  w  z  w , what can be said about ? z z  w  z  w i.e. diagonals in OPRQ are = OPRQ is a rectangle  arg w  arg z  2
  • 42. w iii  If z  w  z  w , what can be said about ? z z  w  z  w i.e. diagonals in OPRQ are = OPRQ is a rectangle  arg w  arg z  2 w  arg  z 2
  • 43. w iii  If z  w  z  w , what can be said about ? z z  w  z  w i.e. diagonals in OPRQ are = OPRQ is a rectangle  arg w  arg z  2 w  w  is purely imaginary arg  z 2 z
  • 44. w iii  If z  w  z  w , what can be said about ? z z  w  z  w i.e. diagonals in OPRQ are = OPRQ is a rectangle  arg w  arg z  2 w  w  is purely imaginary arg  z 2 z Multiplication
  • 45. w iii  If z  w  z  w , what can be said about ? z z  w  z  w i.e. diagonals in OPRQ are = OPRQ is a rectangle  arg w  arg z  2 w  w  is purely imaginary arg  z 2 z Multiplication z1 z2  z1 z2
  • 46. w iii  If z  w  z  w , what can be said about ? z z  w  z  w i.e. diagonals in OPRQ are = OPRQ is a rectangle  arg w  arg z  2 w  w  is purely imaginary arg  z 2 z Multiplication z1 z2  z1 z2 arg z1 z2  arg z1  arg z2
  • 47. w iii  If z  w  z  w , what can be said about ? z z  w  z  w i.e. diagonals in OPRQ are = OPRQ is a rectangle  arg w  arg z  2 w  w  is purely imaginary arg  z 2 z Multiplication z1 z2  z1 z2 arg z1 z2  arg z1  arg z2 r1cis1  r2cis 2  r1r2cis1   2 
  • 48. w iii  If z  w  z  w , what can be said about ? z z  w  z  w i.e. diagonals in OPRQ are = OPRQ is a rectangle  arg w  arg z  2 w  w  is purely imaginary arg  z 2 z Multiplication z1 z2  z1 z2 arg z1 z2  arg z1  arg z2 r1cis1  r2cis 2  r1r2cis1   2  i.e. if we multiply z1 by z2 , the vector z1 is rotated anticlockwise by  2 and its length is multiplied by r2
  • 49. If we multiply z1 by cis the vector OA will rotate by an angle of  in an anti-clockwise direction. If we multiply by rcis it will also multiply the length of OA by a factor of r
  • 50. If we multiply z1 by cis the vector OA will rotate by an angle of  in an anti-clockwise direction. If we multiply by rcis it will also multiply the length of OA by a factor of r   Note: cos  i sin  i  iz1 will rotate OA anticlockwise 90 degrees. 2 2
  • 51. If we multiply z1 by cis the vector OA will rotate by an angle of  in an anti-clockwise direction. If we multiply by rcis it will also multiply the length of OA by a factor of r   Note: cos  i sin  i  iz1 will rotate OA anticlockwise 90 degrees. 2 2  Multiplica tion by i is a rotation anticlockwise by 2
  • 52. If we multiply z1 by cis the vector OA will rotate by an angle of  in an anti-clockwise direction. If we multiply by rcis it will also multiply the length of OA by a factor of r   Note: cos  i sin  i  iz1 will rotate OA anticlockwise 90 degrees. 2 2  Multiplica tion by i is a rotation anticlockwise by 2 REMEMBER: A vector is HEAD minus TAIL
  • 53. y B A  C O D(1) x
  • 54. y DC  DA  i B A  C O D(1) x
  • 55. y DC  DA  i B C  1    1 i A  C O D(1) x
  • 56. y DC  DA  i B C  1    1 i A  C C  1    1 i O x  1  i   i D(1)
  • 57. y DC  DA  i B C  1    1 i A  C C  1    1 i O x  1  i   i D(1) B  A  DC
  • 58. y DC  DA  i B C  1    1 i A  C C  1    1 i O x  1  i   i D(1) B  A  DC B    C 1
  • 59. y DC  DA  i B C  1    1 i A  C C  1    1 i O x  1  i   i D(1) B  A  DC B    C 1 B      1 i  i  1  i  
  • 60. y DC  DA  i B C  1    1 i A  C C  1    1 i O x  1  i   i D(1) B  A  DC B    C 1 B      1 i  i  1  i   OR
  • 61. y DC  DA  i B C  1    1 i A  C C  1    1 i O x  1  i   i D(1) B  A  DC B    C 1 B      1 i  i  1  i   OR B  C  DA
  • 62. y DC  DA  i B C  1    1 i A  C C  1    1 i O x  1  i   i D(1) B  A  DC B    C 1 B      1 i  i  1  i   OR B  C  DA B  1  i   i  (  1)
  • 63. y DC  DA  i B C  1    1 i A  C C  1    1 i O x  1  i   i D(1) B  A  DC B    C 1 B      1 i  i  1  i   OR B  C  DA B  1  i   i  (  1)  i  1  i  
  • 64. y DC  DA  i B C  1    1 i A  C C  1    1 i O x  1  i   i D(1) OR B  A  DC B    C 1 B      1 i  i  1  i   OR B  C  DA B  1  i   i  (  1)  i  1  i  
  • 65. y DC  DA  i B C  1    1 i A  C C  1    1 i O x  1  i   i D(1) OR  B  A  DC DB  2cis  DA 4 B    C 1 B      1 i  i  1  i   OR B  C  DA B  1  i   i  (  1)  i  1  i  
  • 66. y DC  DA  i B C  1    1 i A  C C  1    1 i O x  1  i   i D(1) OR  B  A  DC DB  2cis  DA 4 B    C 1    B  1  2  cos  i sin  (  1) B      1 i  4 4  i  1  i   OR B  C  DA B  1  i   i  (  1)  i  1  i  
  • 67. y DC  DA  i B C  1    1 i A  C C  1    1 i O x  1  i   i D(1) OR  B  A  DC DB  2cis  DA 4 B    C 1    B  1  2  cos  i sin  (  1) B      1 i  4 4  i  1  i   B  1  i  (  1)  1 OR B  C  DA B  1  i   i  (  1)  i  1  i  
  • 68. y DC  DA  i B C  1    1 i A  C C  1    1 i O x  1  i   i D(1) OR  B  A  DC DB  2cis  DA 4 B    C 1    B  1  2  cos  i sin  (  1) B      1 i  4 4  i  1  i   B  1  i  (  1)  1 OR    1  i  i  1 B  C  DA B  1  i   i  (  1)  i  1  i  
  • 69. y DC  DA  i B C  1    1 i A  C C  1    1 i O x  1  i   i D(1) OR  B  A  DC DB  2cis  DA 4 B    C 1    B  1  2  cos  i sin  (  1) B      1 i  4 4  i  1  i   B  1  i  (  1)  1 OR    1  i  i  1  i  1  i   B  C  DA B  1  i   i  (  1)  i  1  i  
  • 70. e.g.2000 B y C A  O x In the Argand Diagram, OABC is a rectangle, where OC = 2OA. The vertex A corresponds to the complex number 
  • 71. e.g.2000 B y C A  O x In the Argand Diagram, OABC is a rectangle, where OC = 2OA. The vertex A corresponds to the complex number  i  What complex number corresponds to C?
  • 72. e.g.2000 B y C A  O x In the Argand Diagram, OABC is a rectangle, where OC = 2OA. The vertex A corresponds to the complex number  i  What complex number corresponds to C? OC  OA  2i
  • 73. e.g.2000 B y C A  O x In the Argand Diagram, OABC is a rectangle, where OC = 2OA. The vertex A corresponds to the complex number  i  What complex number corresponds to C? OC  OA  2i C  2i
  • 74. e.g.2000 B y C A  O x In the Argand Diagram, OABC is a rectangle, where OC = 2OA. The vertex A corresponds to the complex number  i  What complex number corresponds to C? OC  OA  2i C  2i (ii) What complex number corresponds to the point of intersection D of the diagonals OB and AC?
  • 75. e.g.2000 B y C A  O x In the Argand Diagram, OABC is a rectangle, where OC = 2OA. The vertex A corresponds to the complex number  i  What complex number corresponds to C? OC  OA  2i C  2i (ii) What complex number corresponds to the point of intersection D of the diagonals OB and AC? diagonals bisect in a rectangle
  • 76. e.g.2000 B y C A  O x In the Argand Diagram, OABC is a rectangle, where OC = 2OA. The vertex A corresponds to the complex number  i  What complex number corresponds to C? OC  OA  2i C  2i (ii) What complex number corresponds to the point of intersection D of the diagonals OB and AC? diagonals bisect in a rectangle  D  midpoint of AC
  • 77. e.g.2000 B y C A  O x In the Argand Diagram, OABC is a rectangle, where OC = 2OA. The vertex A corresponds to the complex number  i  What complex number corresponds to C? OC  OA  2i C  2i (ii) What complex number corresponds to the point of intersection D of the diagonals OB and AC? diagonals bisect in a rectangle  D  midpoint of AC AC D 2
  • 78. e.g.2000 B y C A  O x In the Argand Diagram, OABC is a rectangle, where OC = 2OA. The vertex A corresponds to the complex number  i  What complex number corresponds to C? OC  OA  2i C  2i (ii) What complex number corresponds to the point of intersection D of the diagonals OB and AC?   2i diagonals bisect in a rectangle D 2  D  midpoint of AC AC D 2
  • 79. e.g.2000 B y C A  O x In the Argand Diagram, OABC is a rectangle, where OC = 2OA. The vertex A corresponds to the complex number  i  What complex number corresponds to C? OC  OA  2i C  2i (ii) What complex number corresponds to the point of intersection D of the diagonals OB and AC?   2i diagonals bisect in a rectangle D 2  D  midpoint of AC AC 1  D  D    i  2 2 
  • 81. Examples  OB  OA cis 3
  • 82. Examples  OB  OA cis 3  B  1cis 3
  • 83. Examples  OB  OA cis 3  B  1cis 3 1 3 B  i 2 2
  • 84. Examples  OB  OA cis 3  B  1cis 3 1 3 B  i 2 2 OD  OB  i
  • 85. Examples  OB  OA cis 3  B  1cis 3 1 3 B  i 2 2 OD  OB  i D  iB
  • 86. Examples  OB  OA cis 3  B  1cis 3 1 3 B  i 2 2 OD  OB  i D  iB 3 1 D  i 2 2
  • 87. Examples  OB  OA cis 3  B  1cis 3 1 3 B  i 2 2 C  B  OD OD  OB  i D  iB 3 1 D  i 2 2
  • 88. Examples  OB  OA cis 3  B  1cis 3 1 3 B  i 2 2 C  B  OD OD  OB  i 1 3   3 1  D  iB C   i  i D 3 1  i 2 2   2 2  2 2
  • 89. Examples  OB  OA cis 3  B  1cis 3 1 3 B  i 2 2 C  B  OD OD  OB  i 1 3   3 1  D  iB C   i  i D 3 1  i 2 2   2 2  2 2 1  3  1  3  C   i  2   2 
  • 90.
  • 91. (i) AP  AO  i
  • 92. (i) AP  AO  i P  A  i  O  A
  • 93. (i) AP  AO  i P  A  i  O  A P  z1  i0  z1 
  • 94. (i) AP  AO  i P  A  i  O  A P  z1  i0  z1  P  z1  iz1
  • 95. (i) AP  AO  i P  A  i  O  A P  z1  i0  z1  P  z1  iz1 P  1  i z1
  • 96. (i) AP  AO  i (ii) QB  BO  i P  A  i  O  A P  z1  i0  z1  P  z1  iz1 P  1  i z1
  • 97. (i) AP  AO  i (ii) QB  BO  i P  A  i  O  A Q  B  i O  B  P  z1  i0  z1  P  z1  iz1 P  1  i z1
  • 98. (i) AP  AO  i (ii) QB  BO  i P  A  i  O  A Q  B  i O  B  P  z1  i0  z1  Q  B  iB P  z1  iz1 P  1  i z1
  • 99. (i) AP  AO  i (ii) QB  BO  i P  A  i  O  A Q  B  i O  B  P  z1  i0  z1  Q  B  iB P  z1  iz1 Q  1  i z2 P  1  i z1
  • 100. (i) AP  AO  i (ii) QB  BO  i P  A  i  O  A Q  B  i O  B  P  z1  i0  z1  Q  B  iB P  z1  iz1 Q  1  i z2 M PQ P  1  i z1 2
  • 101. (i) AP  AO  i (ii) QB  BO  i P  A  i  O  A Q  B  i O  B  P  z1  i0  z1  Q  B  iB P  z1  iz1 Q  1  i z2 M PQ P  1  i z1 2 1  i z1  1  i z2 M 2
  • 102. (i) AP  AO  i (ii) QB  BO  i P  A  i  O  A Q  B  i O  B  P  z1  i0  z1  Q  B  iB P  z1  iz1 Q  1  i z2 M PQ P  1  i z1 2 1  i z1  1  i z2 M 2  z1  z2    z1  z2 i M 2
  • 103. Exercise 4K; 1 to 8, 11, 12, 13 Exercise 4L; odd Terry Lee: Exercise 2.6