SlideShare a Scribd company logo
1 of 70
Download to read offline
Factorising Complex
    Expressions
Factorising Complex
       Expressions
If a polynomial’s coefficients are all real then the roots will appear
in complex conjugate pairs.
Factorising Complex
       Expressions
If a polynomial’s coefficients are all real then the roots will appear
in complex conjugate pairs.
Every polynomial of degree n can be;
Factorising Complex
       Expressions
If a polynomial’s coefficients are all real then the roots will appear
in complex conjugate pairs.
Every polynomial of degree n can be;
• factorised as a mixture of quadratic and linear factors over the
  real field
Factorising Complex
       Expressions
If a polynomial’s coefficients are all real then the roots will appear
in complex conjugate pairs.
Every polynomial of degree n can be;
• factorised as a mixture of quadratic and linear factors over the
  real field
• factorised to n linear factors over the complex field
Factorising Complex
       Expressions
If a polynomial’s coefficients are all real then the roots will appear
in complex conjugate pairs.
Every polynomial of degree n can be;
• factorised as a mixture of quadratic and linear factors over the
  real field
• factorised to n linear factors over the complex field
NOTE: odd ordered polynomials must have a real root
Factorising Complex
         Expressions
If a polynomial’s coefficients are all real then the roots will appear
in complex conjugate pairs.
 Every polynomial of degree n can be;
 • factorised as a mixture of quadratic and linear factors over the
   real field
 • factorised to n linear factors over the complex field
 NOTE: odd ordered polynomials must have a real root

e.g . i  x 2  2 x  2
Factorising Complex
         Expressions
If a polynomial’s coefficients are all real then the roots will appear
in complex conjugate pairs.
 Every polynomial of degree n can be;
 • factorised as a mixture of quadratic and linear factors over the
   real field
 • factorised to n linear factors over the complex field
 NOTE: odd ordered polynomials must have a real root

e.g . i  x 2  2 x  2   x  12  1
Factorising Complex
         Expressions
If a polynomial’s coefficients are all real then the roots will appear
in complex conjugate pairs.
 Every polynomial of degree n can be;
 • factorised as a mixture of quadratic and linear factors over the
   real field
 • factorised to n linear factors over the complex field
 NOTE: odd ordered polynomials must have a real root

e.g . i  x 2  2 x  2   x  12  1
                          x  1  i  x  1  i 
ii  z 4  z 2  12  0
ii  z 4  z 2  12  0
    z   2
              3z 2  4   0
ii  z 4  z 2  12  0
    z  3z  4  0
      2        2


    z  3 z  3z  4  0
                           2
ii  z 4  z 2  12  0
    z  3z  4  0
      2        2


    z  3 z  3z  4  0
                           2
                                 factorised over Real numbers
ii  z 4  z 2  12  0
    z  3z  4  0
      2        2


    z  3 z  3z  4  0
                           2
                                           factorised over Real numbers
   z  3 z  3 z  2i  z  2i   0
ii  z 4  z 2  12  0
    z  3z  4  0
      2        2


    z  3 z  3z  4  0
                           2
                                           factorised over Real numbers
   z  3 z  3 z  2i  z  2i   0 factorised over Complex numbers
ii  z 4  z 2  12  0
    z  3z  4  0
      2        2


    z  3 z  3z  4  0
                           2
                                           factorised over Real numbers
   z  3 z  3 z  2i  z  2i   0 factorised over Complex numbers
          z   3 or z  2i
ii  z 4  z 2  12  0
    z  3z  4  0
      2        2


    z  3 z  3z  4  0
                           2
                                           factorised over Real numbers
   z  3 z  3 z  2i  z  2i   0 factorised over Complex numbers
         z   3 or z  2i
iii  Factorise 2 x 3  3x 2  8 x  5
ii  z 4  z 2  12  0
    z  3z  4  0
      2        2


    z  3 z  3z  4  0
                           2
                                           factorised over Real numbers
   z  3 z  3 z  2i  z  2i   0 factorised over Complex numbers
          z   3 or z  2i
iii  Factorise 2 x 3  3x 2  8 x  5
       as it is a cubic it must have a real factor
ii  z 4  z 2  12  0
    z  3z  4  0
      2        2


    z  3 z  3z  4  0
                           2
                                           factorised over Real numbers
   z  3 z  3 z  2i  z  2i   0 factorised over Complex numbers
          z   3 or z  2i
iii  Factorise 2 x 3  3x 2  8 x  5
       as it is a cubic it must have a real factor
                       3           2
    1  1                1          1
 P    2    3    8    5
    2  2                2          2
                 1 3
               45
                 4 4
            0
ii  z 4  z 2  12  0
    z  3z  4  0
      2        2


    z  3 z  3z  4  0
                           2
                                           factorised over Real numbers
   z  3 z  3 z  2i  z  2i   0 factorised over Complex numbers
          z   3 or z  2i
iii  Factorise 2 x 3  3x 2  8 x  5
       as it is a cubic it must have a real factor
                       3           2
    1  1                 1          1
 P    2    3    8    5
    2  2                 2          2
                 1 3
               45
                 4 4
            0
 2 x 3  3 x 2  8 x  5  2 x  1x 2  2 x  5
ii  z 4  z 2  12  0
    z  3z  4  0
      2        2


    z  3 z  3z  4  0
                           2
                                           factorised over Real numbers
   z  3 z  3 z  2i  z  2i   0 factorised over Complex numbers
          z   3 or z  2i
iii  Factorise 2 x 3  3x 2  8 x  5
       as it is a cubic it must have a real factor
                       3           2
    1  1                 1          1
 P    2    3    8    5
    2  2                 2          2
                 1 3
               45
                 4 4
            0
 2 x 3  3 x 2  8 x  5  2 x  1x 2  2 x  5
                                     
                            2 x  1  x  1  4
                                             2
                                                      
ii  z 4  z 2  12  0
    z  3z  4  0
      2        2


    z  3 z  3z  4  0
                           2
                                           factorised over Real numbers
   z  3 z  3 z  2i  z  2i   0 factorised over Complex numbers
          z   3 or z  2i
iii  Factorise 2 x 3  3x 2  8 x  5
       as it is a cubic it must have a real factor
                       3           2
    1  1                 1          1
 P    2    3    8    5
    2  2                 2          2
                 1 3
               45
                 4 4
            0
 2 x 3  3 x 2  8 x  5  2 x  1x 2  2 x  5
                                       
                            2 x  1  x  1  4
                                               2
                                                     
                            2 x  1 x  1  2i  x  1  2i 
iv  z 5  z 4  z 3  z 2  z  1  0
iv  z 5  z 4  z 3  z 2  z  1  0
      Now z 6  1   z  1z 5  z 4  z 3  z 2  z  1
iv  z 5  z 4  z 3  z 2  z  1  0
      Now z 6  1   z  1z 5  z 4  z 3  z 2  z  1
    And z 6  1  0 has solutions;
             2 k 
    z  cis        k  0, 1, 2,3
             6 
iv  z 5  z 4  z 3  z 2  z  1  0
      Now z 6  1   z  1z 5  z 4  z 3  z 2  z  1
    And z 6  1  0 has solutions;
             2 k 
    z  cis        k  0, 1, 2,3
             6 
    z5  z4  z3  z2 1  0
iv  z 5  z 4  z 3  z 2  z  1  0
      Now z 6  1   z  1z 5  z 4  z 3  z 2  z  1
    And z 6  1  0 has solutions;
             2 k 
    z  cis        k  0, 1, 2,3
             6 
    z5  z4  z3  z2 1  0

   z  1z 5  z 4  z 3  z 2  1
                                      0
                 z  1
iv  z 5  z 4  z 3  z 2  z  1  0
      Now z 6  1   z  1z 5  z 4  z 3  z 2  z  1
    And z 6  1  0 has solutions;
             2 k 
    z  cis        k  0, 1, 2,3
             6 
    z5  z4  z3  z2 1  0

   z  1z 5  z 4  z 3  z 2  1
                                      0
                 z  1
               z 6  1  0, z  1
iv  z 5  z 4  z 3  z 2  z  1  0
      Now z 6  1   z  1z 5  z 4  z 3  z 2  z  1
    And z 6  1  0 has solutions;
             2 k 
    z  cis        k  0, 1, 2,3
             6 
    z5  z4  z3  z2 1  0

   z  1z 5  z 4  z 3  z 2  1
                                      0
                 z  1
            z 6  1  0, z  1
                         2          2
  z  cis , cis  , cis        , cis     , cis
         3         3        3           3
iv  z 5  z 4  z 3  z 2  z  1  0
      Now z 6  1   z  1z 5  z 4  z 3  z 2  z  1
    And z 6  1  0 has solutions;
             2 k 
    z  cis        k  0, 1, 2,3
             6 
    z5  z4  z3  z2 1  0

   z  1z 5  z 4  z 3  z 2  1
                                      0
                 z  1
            z 6  1  0, z  1
                         2          2
  z  cis , cis  , cis        , cis      , cis
         3         3        3           3
      1    3 1         3      1      3      1     3
  z         i,        i,          i,         i, 1
      2 2 2 2                 2 2           2 2
v 1996 HSC
                2          2
    Let   cos      i sin
                 9           9
a) Show that  k is a solution of z 9  1  0, where k is an integer
v 1996 HSC
                2          2
    Let   cos      i sin
                 9           9
a) Show that  k is a solution of z 9  1  0, where k is an integer
   z9  1
v 1996 HSC
                 2          2
    Let   cos       i sin
                   9          9
a) Show that  k is a solution of z 9  1  0, where k is an integer
   z9  1
              2k 
    z  cis 
             9       k  0,1,2,3,4,5,6,7,8
                 
v 1996 HSC
                   2          2
    Let   cos         i sin
                     9          9
a) Show that  k is a solution of z 9  1  0, where k is an integer
   z9  1
               2k 
     z  cis 
              9        k  0,1,2,3,4,5,6,7,8
                  
              2
                    k

    z  cis 
                 
               9 
v 1996 HSC
                   2          2
    Let   cos         i sin
                     9          9
a) Show that  k is a solution of z 9  1  0, where k is an integer
   z9  1
               2k 
     z  cis 
              9        k  0,1,2,3,4,5,6,7,8
                  
              2
                    k

    z  cis 
                 
               9 
    z  k
v 1996 HSC
                   2          2
    Let   cos         i sin
                     9          9
a) Show that  k is a solution of z 9  1  0, where k is an integer
   z9  1
               2k 
     z  cis 
              9        k  0,1,2,3,4,5,6,7,8
                  
              2
                    k

    z  cis 
                 
               9 
    z  k
b) Prove that    2   3   4   5   6   7   8  1
v 1996 HSC
                   2          2
    Let   cos         i sin
                     9          9
a) Show that  k is a solution of z 9  1  0, where k is an integer
   z9  1
               2k 
     z  cis 
              9        k  0,1,2,3,4,5,6,7,8
                  
              2
                    k

    z  cis 
                 
               9 
    z  k
b) Prove that    2   3   4   5   6   7   8  1
                  z9 1  0
v 1996 HSC
                   2          2
    Let   cos         i sin
                     9          9
a) Show that  k is a solution of z 9  1  0, where k is an integer
   z9  1
               2k 
     z  cis 
              9        k  0,1,2,3,4,5,6,7,8
                  
              2
                    k

    z  cis 
                 
               9 
    z  k
b) Prove that    2   3   4   5   6   7   8  1
                  z9 1  0
   1     2   3   4   5   6   7   8  0
v 1996 HSC
                   2          2
    Let   cos         i sin
                     9          9
a) Show that  k is a solution of z 9  1  0, where k is an integer
   z9  1
               2k 
     z  cis 
              9        k  0,1,2,3,4,5,6,7,8
                  
              2
                    k

    z  cis 
                 
               9 
    z  k
b) Prove that    2   3   4   5   6   7   8  1
                  z9 1  0
   1     2   3   4   5   6   7   8  0 sum of roots 
v 1996 HSC
                   2          2
    Let   cos         i sin
                     9          9
a) Show that  k is a solution of z 9  1  0, where k is an integer
   z9  1
               2k 
     z  cis 
              9        k  0,1,2,3,4,5,6,7,8
                  
              2
                    k

    z  cis 
                 
               9 
    z  k
b) Prove that    2   3   4   5   6   7   8  1
                  z9 1  0
   1     2   3   4   5   6   7   8  0 sum of roots 
         2   3   4   5   6   7   8  1
       2   4 1
c) Hence show that cos cos cos   
                      9    9    9 8
  2   4 1
c) Hence show that cos cos cos   
                      9    9    9 8
                       A B       A B 
 sin A  sin B  2sin        cos       
                        2          2 
  2   4 1
c) Hence show that cos cos cos   
                      9    9    9 8
                       A B       A B    (2 sine half sum
 sin A  sin B  2sin        cos       
                        2          2       cos half diff)
  2   4 1
c) Hence show that cos cos cos   
                      9    9    9 8
                       A B       A B    (2 sine half sum
 sin A  sin B  2sin        cos       
                        2          2       cos half diff)
                      A  B  cos A  B 
cos A  cos B  2 cos                  
                        2   2 
  2   4 1
c) Hence show that cos cos cos   
                      9    9    9 8
                       A B       A B    (2 sine half sum
 sin A  sin B  2sin        cos       
                        2          2       cos half diff)
                      A  B  cos A  B 
cos A  cos B  2 cos
                                              (2 cos half sum
                                        
                        2   2                cos half diff)
  2   4 1
c) Hence show that cos cos cos   
                      9    9    9 8
                       A B       A B    (2 sine half sum
 sin A  sin B  2sin        cos       
                        2          2       cos half diff)
                      A  B  cos A  B 
cos A  cos B  2 cos
                                              (2 cos half sum
                                        
                        2   2                cos half diff)

                       A B   A B 
cos A  cos B  2sin        sin   
                        2   2 
  2   4 1
c) Hence show that cos cos cos   
                      9    9    9 8
                       A B       A B      (2 sine half sum
 sin A  sin B  2sin        cos       
                        2          2         cos half diff)
                      A  B  cos A  B 
cos A  cos B  2 cos
                                                (2 cos half sum
                                        
                        2   2                  cos half diff)

                       A B   A B        (minus 2 sine half sum
cos A  cos B  2sin        sin   
                        2   2                 sine half diff)
  2   4 1
c) Hence show that cos cos cos   
                      9    9    9 8
                       A B       A B            (2 sine half sum
 sin A  sin B  2sin        cos       
                        2          2               cos half diff)
                      A  B  cos A  B 
cos A  cos B  2 cos
                                                      (2 cos half sum
                                        
                        2   2                        cos half diff)

                       A B   A B             (minus 2 sine half sum
cos A  cos B  2sin        sin   
                        2   2                      sine half diff)
             2   3   4   5   6   7   8  1
  2   4 1
c) Hence show that cos cos cos   
                      9    9    9 8
                       A B       A B            (2 sine half sum
 sin A  sin B  2sin        cos       
                        2          2               cos half diff)
                      A  B  cos A  B 
cos A  cos B  2 cos
                                                      (2 cos half sum
                                        
                        2   2                        cos half diff)

                       A B   A B             (minus 2 sine half sum
cos A  cos B  2sin        sin   
                        2   2                      sine half diff)
             2   3   4   5   6   7   8  1
 roots appear in conjugate pairs
  2   4 1
c) Hence show that cos cos cos   
                      9    9    9 8
                       A B       A B            (2 sine half sum
 sin A  sin B  2sin        cos       
                        2          2               cos half diff)
                      A  B  cos A  B 
cos A  cos B  2 cos
                                                      (2 cos half sum
                                        
                        2   2                        cos half diff)

                       A B   A B             (minus 2 sine half sum
cos A  cos B  2sin        sin   
                        2   2                      sine half diff)
             2   3   4   5   6   7   8  1
 roots appear in conjugate pairs
                 2         4        6        8
           2cos       2cos     2cos     2cos     1
                  9          9         9         9
  2   4 1
c) Hence show that cos cos cos   
                      9    9    9 8
                       A B       A B            (2 sine half sum
 sin A  sin B  2sin        cos       
                        2          2               cos half diff)
                      A  B  cos A  B 
cos A  cos B  2 cos
                                                      (2 cos half sum
                                        
                        2   2                        cos half diff)

                       A B   A B             (minus 2 sine half sum
cos A  cos B  2sin        sin   
                        2   2                      sine half diff)
             2   3   4   5   6   7   8  1
 roots appear in conjugate pairs
                 2         4           6        8
           2cos       2cos       2cos      2cos      1
                   9          9           9         9
                  2       4         6       8     1
             cos      cos       cos     cos    
                   9        9          9        9     2
  2   4 1
c) Hence show that cos cos cos   
                      9    9    9 8
                       A B       A B            (2 sine half sum
 sin A  sin B  2sin        cos       
                        2          2               cos half diff)
                      A  B  cos A  B 
cos A  cos B  2 cos
                                                      (2 cos half sum
                                        
                        2   2                        cos half diff)

                       A B   A B             (minus 2 sine half sum
cos A  cos B  2sin        sin   
                        2   2                      sine half diff)
             2   3   4   5   6   7   8  1
 roots appear in conjugate pairs
                 2         4           6         8
           2cos       2cos       2cos       2cos      1
                   9          9           9          9
                  2       4         6        8     1
             cos      cos       cos      cos    
                   9        9          9         9     2
                      3                7           1
                 2cos cos  2cos             cos  
                       9      9           9      9     2
3         7        1
2cos cos  2cos    cos  
     9  9        9    9    2
3         7        1
2cos cos  2cos    cos  
     9  9        9    9    2
            3       7      1
    cos  cos     cos      
       9      9        9      4
3         7        1
2cos cos  2cos    cos  
     9  9        9    9    2
            3       7      1
    cos  cos     cos      
       9      9        9      4
             5   2    1
     cos  2cos cos    
        9      9    9    4
3         7        1
2cos cos  2cos    cos  
     9  9        9    9    2
            3       7         1
    cos  cos     cos         
       9      9        9         4
             5   2    1
     cos  2cos cos    
        9      9    9    4
                      2     5    1
       cos       cos      cos    
             9          9      9    8
3         7        1
2cos cos  2cos    cos  
     9  9        9    9    2
            3       7          1
    cos  cos     cos          
       9      9        9          4
             5   2    1
     cos  2cos cos    
        9      9    9    4
                      2     5    1
       cos       cos      cos    
             9          9      9    8
                        5         4
          But cos            cos
                         9          9
3         7        1
2cos cos  2cos    cos  
     9  9        9    9    2
            3       7         1
    cos  cos     cos         
       9      9        9         4
             5   2    1
     cos  2cos cos    
        9      9    9    4
                      2     5    1
       cos       cos      cos    
             9          9      9    8
                 5          4
          But cos      cos
                  9           9
               2      4      1
       cos cos     cos    
           9     9       9      8
3         7        1
2cos cos  2cos    cos  
     9  9        9    9    2
            3       7         1
    cos  cos     cos         
       9      9        9         4
             5   2    1
     cos  2cos cos    
        9      9    9    4
                      2     5    1
       cos       cos      cos    
             9          9      9    8
                 5          4
          But cos      cos
                  9           9
               2      4      1
       cos cos     cos    
           9     9       9      8
               2      4 1
        cos cos     cos     
            9    9       9 8
OR
z9 1
  z  1 z     z   8  z   2  z   7  z   3  z   6  z   4  z   5 
OR
z9 1
  z  1 z     z   8  z   2  z   7  z   3  z   6  z   4  z   5 

                       2                  4      
  z  1  z 2  2cos    z  1 z 2  2cos    z  1
                        9                   9      
                  2        6         2        8       
                  z  2cos     z  1 z  2cos      z  1
                            9                   9       
OR
z9 1
  z  1 z     z   8  z   2  z   7  z   3  z   6  z   4  z   5 

                         2                     4       
  z  1  z 2  2cos       z  1 z 2  2cos       z  1
                          9                      9       
                  2            6          2         8       
                  z  2cos           z  1 z  2cos      z  1
                                 9                    9       
            2            2          2          4       
  z  1  z  2cos         z  1 z  2cos        z  1
                          9                      9       
                                             8      
                  z 2  z  1  z 2  2cos
                                              9
                                                 z  1
                                                      
OR
z9 1
  z  1 z     z   8  z   2  z   7  z   3  z   6  z   4  z   5 

                         2                     4       
  z  1  z 2  2cos       z  1 z 2  2cos       z  1
                          9                      9       
                  2            6          2         8       
                  z  2cos           z  1 z  2cos      z  1
                                 9                    9       
            2            2          2          4       
  z  1  z  2cos         z  1 z  2cos        z  1
                          9                      9       
                                             8      
                  z 2  z  1  z 2  2cos
                                              9
                                                 z  1
                                                      
  Let z  i
OR
z9 1
  z  1 z     z   8  z   2  z   7  z   3  z   6  z   4  z   5 

                         2                     4       
  z  1  z 2  2cos       z  1 z 2  2cos       z  1
                          9                      9       
                  2            6          2         8       
                  z  2cos           z  1 z  2cos      z  1
                                 9                    9       
            2            2          2          4       
  z  1  z  2cos         z  1 z  2cos        z  1
                          9                      9       
                                             8      
                  z 2  z  1  z 2  2cos
                                              9
                                                 z  1
                                                      
  Let z  i
                                 2            4                    8    
       i 9  1   i  1  2cos      i  2cos       i   i   2cos      i
                                  9             9                     9    
       2            4                   8    
i  1   i  1  2cos
9
                              i  2cos      i   i   2cos      i
                         9             9                    9    
       2            4                   8    
i  1   i  1  2cos
9
                              i  2cos      i   i   2cos      i
                         9             9                    9    
                           2       4      8 
 i  1  i  i  1  2cos
          4
                                2cos     2cos 
                            9        9       9 
       2            4                   8    
i  1   i  1  2cos
9
                              i  2cos      i   i   2cos      i
                         9             9                    9    
                           2       4      8 
 i  1  i  i  1  2cos
          4
                                2cos     2cos 
                            9        9       9 
               2       4     8
   1  8cos       cos     cos
                9        9      9
       2            4                   8    
i  1   i  1  2cos
9
                              i  2cos      i   i   2cos      i
                         9             9                    9    
                           2        4      8 
 i  1  i  i  1  2cos
          4
                                 2cos     2cos 
                            9         9       9 
               2       4      8
   1  8cos       cos     cos
                9        9       9
               2       4        
   1  8cos       cos       cos 
                9        9        9
       2            4                   8    
i  1   i  1  2cos
9
                              i  2cos      i   i   2cos      i
                         9             9                    9    
                           2        4      8 
 i  1  i  i  1  2cos
          4
                                 2cos     2cos 
                            9         9       9 
               2       4      8
   1  8cos       cos     cos
                9        9       9
               2       4        
   1  8cos       cos       cos 
                9        9        9
           2     4 1
    cos cos    cos   
       9     9      9 8
       2            4                   8    
i  1   i  1  2cos
9
                              i  2cos      i   i   2cos      i
                         9             9                    9    
                           2        4      8 
 i  1  i  i  1  2cos
          4
                                 2cos     2cos 
                            9         9       9 
               2       4      8
   1  8cos       cos     cos
                9        9       9
               2       4        
   1  8cos       cos       cos 
                9        9        9
           2     4 1
    cos cos    cos   
       9     9      9 8



                   Exercise 4J; 1 to 4, 7ac

More Related Content

Similar to X2 T01 08 factorising complex expressions (2010)

X2 T01 08 factorising complex expressions (2011)
X2 T01 08 factorising complex expressions (2011)X2 T01 08 factorising complex expressions (2011)
X2 T01 08 factorising complex expressions (2011)Nigel Simmons
 
X2 t01 08 factorising complex expressions (2012)
X2 t01 08 factorising complex expressions (2012)X2 t01 08 factorising complex expressions (2012)
X2 t01 08 factorising complex expressions (2012)Nigel Simmons
 
X2 t01 01 complex definitions (2012)
X2 t01 01 complex definitions (2012)X2 t01 01 complex definitions (2012)
X2 t01 01 complex definitions (2012)Nigel Simmons
 
X2 T01 01 definitions (2010)
X2 T01 01 definitions (2010)X2 T01 01 definitions (2010)
X2 T01 01 definitions (2010)Nigel Simmons
 
X2 T01 01 definitions (2011)
X2 T01 01 definitions (2011)X2 T01 01 definitions (2011)
X2 T01 01 definitions (2011)Nigel Simmons
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)Nigel Simmons
 
X2 t02 02 complex factors (2012)
X2 t02 02 complex factors (2012)X2 t02 02 complex factors (2012)
X2 t02 02 complex factors (2012)Nigel Simmons
 
X2 T02 02 complex factors
X2 T02 02 complex factorsX2 T02 02 complex factors
X2 T02 02 complex factorsNigel Simmons
 
X2 T02 02 complex factors
X2 T02 02 complex factorsX2 T02 02 complex factors
X2 T02 02 complex factorsNigel Simmons
 
X2 T02 02 complex factors (2011)
X2 T02 02 complex factors (2011)X2 T02 02 complex factors (2011)
X2 T02 02 complex factors (2011)Nigel Simmons
 
X2 t01 01 arithmetic of complex numbers (2013)
X2 t01 01 arithmetic of complex numbers (2013)X2 t01 01 arithmetic of complex numbers (2013)
X2 t01 01 arithmetic of complex numbers (2013)Nigel Simmons
 
X2 T01 02 complex equations (2011)
X2 T01 02 complex equations (2011)X2 T01 02 complex equations (2011)
X2 T01 02 complex equations (2011)Nigel Simmons
 
X2 t01 02 complex equations (2012)
X2 t01 02 complex equations (2012)X2 t01 02 complex equations (2012)
X2 t01 02 complex equations (2012)Nigel Simmons
 
11X1 T16 02 definite integral (2011)
11X1 T16 02 definite integral (2011)11X1 T16 02 definite integral (2011)
11X1 T16 02 definite integral (2011)Nigel Simmons
 
11X1 T17 02 definite integral
11X1 T17 02 definite integral11X1 T17 02 definite integral
11X1 T17 02 definite integralNigel Simmons
 
11X1 T14 02 definite integral
11X1 T14 02 definite integral11X1 T14 02 definite integral
11X1 T14 02 definite integralNigel Simmons
 
11 x1 t16 02 definite integral (2012)
11 x1 t16 02 definite integral (2012)11 x1 t16 02 definite integral (2012)
11 x1 t16 02 definite integral (2012)Nigel Simmons
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)Nigel Simmons
 
11 X1 T01 08 Simultaneous Equations (2010)
11 X1 T01 08 Simultaneous Equations (2010)11 X1 T01 08 Simultaneous Equations (2010)
11 X1 T01 08 Simultaneous Equations (2010)Nigel Simmons
 

Similar to X2 T01 08 factorising complex expressions (2010) (20)

X2 T01 08 factorising complex expressions (2011)
X2 T01 08 factorising complex expressions (2011)X2 T01 08 factorising complex expressions (2011)
X2 T01 08 factorising complex expressions (2011)
 
X2 t01 08 factorising complex expressions (2012)
X2 t01 08 factorising complex expressions (2012)X2 t01 08 factorising complex expressions (2012)
X2 t01 08 factorising complex expressions (2012)
 
X2 t01 01 complex definitions (2012)
X2 t01 01 complex definitions (2012)X2 t01 01 complex definitions (2012)
X2 t01 01 complex definitions (2012)
 
X2 T01 01 definitions (2010)
X2 T01 01 definitions (2010)X2 T01 01 definitions (2010)
X2 T01 01 definitions (2010)
 
X2 T01 01 definitions (2011)
X2 T01 01 definitions (2011)X2 T01 01 definitions (2011)
X2 T01 01 definitions (2011)
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)
 
X2 t02 02 complex factors (2012)
X2 t02 02 complex factors (2012)X2 t02 02 complex factors (2012)
X2 t02 02 complex factors (2012)
 
X2 T02 02 complex factors
X2 T02 02 complex factorsX2 T02 02 complex factors
X2 T02 02 complex factors
 
X2 T02 02 complex factors
X2 T02 02 complex factorsX2 T02 02 complex factors
X2 T02 02 complex factors
 
X2 T02 02 complex factors (2011)
X2 T02 02 complex factors (2011)X2 T02 02 complex factors (2011)
X2 T02 02 complex factors (2011)
 
X2 t01 01 arithmetic of complex numbers (2013)
X2 t01 01 arithmetic of complex numbers (2013)X2 t01 01 arithmetic of complex numbers (2013)
X2 t01 01 arithmetic of complex numbers (2013)
 
X2 T01 02 complex equations (2011)
X2 T01 02 complex equations (2011)X2 T01 02 complex equations (2011)
X2 T01 02 complex equations (2011)
 
X2 t01 02 complex equations (2012)
X2 t01 02 complex equations (2012)X2 t01 02 complex equations (2012)
X2 t01 02 complex equations (2012)
 
11X1 T16 02 definite integral (2011)
11X1 T16 02 definite integral (2011)11X1 T16 02 definite integral (2011)
11X1 T16 02 definite integral (2011)
 
11X1 T17 02 definite integral
11X1 T17 02 definite integral11X1 T17 02 definite integral
11X1 T17 02 definite integral
 
11X1 T14 02 definite integral
11X1 T14 02 definite integral11X1 T14 02 definite integral
11X1 T14 02 definite integral
 
1150 day 8
1150 day 81150 day 8
1150 day 8
 
11 x1 t16 02 definite integral (2012)
11 x1 t16 02 definite integral (2012)11 x1 t16 02 definite integral (2012)
11 x1 t16 02 definite integral (2012)
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)
 
11 X1 T01 08 Simultaneous Equations (2010)
11 X1 T01 08 Simultaneous Equations (2010)11 X1 T01 08 Simultaneous Equations (2010)
11 X1 T01 08 Simultaneous Equations (2010)
 

More from Nigel Simmons

Goodbye slideshare UPDATE
Goodbye slideshare UPDATEGoodbye slideshare UPDATE
Goodbye slideshare UPDATENigel Simmons
 
12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)Nigel Simmons
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)Nigel Simmons
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)Nigel Simmons
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)Nigel Simmons
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)Nigel Simmons
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)Nigel Simmons
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)Nigel Simmons
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)Nigel Simmons
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)Nigel Simmons
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)Nigel Simmons
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)Nigel Simmons
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)Nigel Simmons
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)Nigel Simmons
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)Nigel Simmons
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)Nigel Simmons
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)Nigel Simmons
 
11 x1 t16 01 area under curve (2013)
11 x1 t16 01 area under curve (2013)11 x1 t16 01 area under curve (2013)
11 x1 t16 01 area under curve (2013)Nigel Simmons
 
X2 t01 11 nth roots of unity (2012)
X2 t01 11 nth roots of unity (2012)X2 t01 11 nth roots of unity (2012)
X2 t01 11 nth roots of unity (2012)Nigel Simmons
 

More from Nigel Simmons (20)

Goodbye slideshare UPDATE
Goodbye slideshare UPDATEGoodbye slideshare UPDATE
Goodbye slideshare UPDATE
 
Goodbye slideshare
Goodbye slideshareGoodbye slideshare
Goodbye slideshare
 
12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)
 
11 x1 t16 01 area under curve (2013)
11 x1 t16 01 area under curve (2013)11 x1 t16 01 area under curve (2013)
11 x1 t16 01 area under curve (2013)
 
X2 t01 11 nth roots of unity (2012)
X2 t01 11 nth roots of unity (2012)X2 t01 11 nth roots of unity (2012)
X2 t01 11 nth roots of unity (2012)
 

Recently uploaded

Science lesson Moon for 4th quarter lesson
Science lesson Moon for 4th quarter lessonScience lesson Moon for 4th quarter lesson
Science lesson Moon for 4th quarter lessonJericReyAuditor
 
_Math 4-Q4 Week 5.pptx Steps in Collecting Data
_Math 4-Q4 Week 5.pptx Steps in Collecting Data_Math 4-Q4 Week 5.pptx Steps in Collecting Data
_Math 4-Q4 Week 5.pptx Steps in Collecting DataJhengPantaleon
 
Computed Fields and api Depends in the Odoo 17
Computed Fields and api Depends in the Odoo 17Computed Fields and api Depends in the Odoo 17
Computed Fields and api Depends in the Odoo 17Celine George
 
Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)eniolaolutunde
 
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxSOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxiammrhaywood
 
Alper Gobel In Media Res Media Component
Alper Gobel In Media Res Media ComponentAlper Gobel In Media Res Media Component
Alper Gobel In Media Res Media ComponentInMediaRes1
 
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions  for the students and aspirants of Chemistry12th.pptxOrganic Name Reactions  for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions for the students and aspirants of Chemistry12th.pptxVS Mahajan Coaching Centre
 
EPANDING THE CONTENT OF AN OUTLINE using notes.pptx
EPANDING THE CONTENT OF AN OUTLINE using notes.pptxEPANDING THE CONTENT OF AN OUTLINE using notes.pptx
EPANDING THE CONTENT OF AN OUTLINE using notes.pptxRaymartEstabillo3
 
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPTECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPTiammrhaywood
 
Enzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdf
Enzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdfEnzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdf
Enzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdfSumit Tiwari
 
Crayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon ACrayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon AUnboundStockton
 
Biting mechanism of poisonous snakes.pdf
Biting mechanism of poisonous snakes.pdfBiting mechanism of poisonous snakes.pdf
Biting mechanism of poisonous snakes.pdfadityarao40181
 
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Krashi Coaching
 
Introduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher EducationIntroduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher Educationpboyjonauth
 
internship ppt on smartinternz platform as salesforce developer
internship ppt on smartinternz platform as salesforce developerinternship ppt on smartinternz platform as salesforce developer
internship ppt on smartinternz platform as salesforce developerunnathinaik
 
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdfssuser54595a
 
Introduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptxIntroduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptxpboyjonauth
 
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17Incoming and Outgoing Shipments in 1 STEP Using Odoo 17
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17Celine George
 
भारत-रोम व्यापार.pptx, Indo-Roman Trade,
भारत-रोम व्यापार.pptx, Indo-Roman Trade,भारत-रोम व्यापार.pptx, Indo-Roman Trade,
भारत-रोम व्यापार.pptx, Indo-Roman Trade,Virag Sontakke
 

Recently uploaded (20)

Science lesson Moon for 4th quarter lesson
Science lesson Moon for 4th quarter lessonScience lesson Moon for 4th quarter lesson
Science lesson Moon for 4th quarter lesson
 
_Math 4-Q4 Week 5.pptx Steps in Collecting Data
_Math 4-Q4 Week 5.pptx Steps in Collecting Data_Math 4-Q4 Week 5.pptx Steps in Collecting Data
_Math 4-Q4 Week 5.pptx Steps in Collecting Data
 
Computed Fields and api Depends in the Odoo 17
Computed Fields and api Depends in the Odoo 17Computed Fields and api Depends in the Odoo 17
Computed Fields and api Depends in the Odoo 17
 
Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)
 
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxSOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
 
Alper Gobel In Media Res Media Component
Alper Gobel In Media Res Media ComponentAlper Gobel In Media Res Media Component
Alper Gobel In Media Res Media Component
 
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions  for the students and aspirants of Chemistry12th.pptxOrganic Name Reactions  for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
 
EPANDING THE CONTENT OF AN OUTLINE using notes.pptx
EPANDING THE CONTENT OF AN OUTLINE using notes.pptxEPANDING THE CONTENT OF AN OUTLINE using notes.pptx
EPANDING THE CONTENT OF AN OUTLINE using notes.pptx
 
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPTECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
 
Enzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdf
Enzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdfEnzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdf
Enzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdf
 
Crayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon ACrayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon A
 
Biting mechanism of poisonous snakes.pdf
Biting mechanism of poisonous snakes.pdfBiting mechanism of poisonous snakes.pdf
Biting mechanism of poisonous snakes.pdf
 
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
 
Introduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher EducationIntroduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher Education
 
internship ppt on smartinternz platform as salesforce developer
internship ppt on smartinternz platform as salesforce developerinternship ppt on smartinternz platform as salesforce developer
internship ppt on smartinternz platform as salesforce developer
 
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
 
Introduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptxIntroduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptx
 
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17Incoming and Outgoing Shipments in 1 STEP Using Odoo 17
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17
 
भारत-रोम व्यापार.pptx, Indo-Roman Trade,
भारत-रोम व्यापार.pptx, Indo-Roman Trade,भारत-रोम व्यापार.pptx, Indo-Roman Trade,
भारत-रोम व्यापार.pptx, Indo-Roman Trade,
 
Staff of Color (SOC) Retention Efforts DDSD
Staff of Color (SOC) Retention Efforts DDSDStaff of Color (SOC) Retention Efforts DDSD
Staff of Color (SOC) Retention Efforts DDSD
 

X2 T01 08 factorising complex expressions (2010)

  • 1. Factorising Complex Expressions
  • 2. Factorising Complex Expressions If a polynomial’s coefficients are all real then the roots will appear in complex conjugate pairs.
  • 3. Factorising Complex Expressions If a polynomial’s coefficients are all real then the roots will appear in complex conjugate pairs. Every polynomial of degree n can be;
  • 4. Factorising Complex Expressions If a polynomial’s coefficients are all real then the roots will appear in complex conjugate pairs. Every polynomial of degree n can be; • factorised as a mixture of quadratic and linear factors over the real field
  • 5. Factorising Complex Expressions If a polynomial’s coefficients are all real then the roots will appear in complex conjugate pairs. Every polynomial of degree n can be; • factorised as a mixture of quadratic and linear factors over the real field • factorised to n linear factors over the complex field
  • 6. Factorising Complex Expressions If a polynomial’s coefficients are all real then the roots will appear in complex conjugate pairs. Every polynomial of degree n can be; • factorised as a mixture of quadratic and linear factors over the real field • factorised to n linear factors over the complex field NOTE: odd ordered polynomials must have a real root
  • 7. Factorising Complex Expressions If a polynomial’s coefficients are all real then the roots will appear in complex conjugate pairs. Every polynomial of degree n can be; • factorised as a mixture of quadratic and linear factors over the real field • factorised to n linear factors over the complex field NOTE: odd ordered polynomials must have a real root e.g . i  x 2  2 x  2
  • 8. Factorising Complex Expressions If a polynomial’s coefficients are all real then the roots will appear in complex conjugate pairs. Every polynomial of degree n can be; • factorised as a mixture of quadratic and linear factors over the real field • factorised to n linear factors over the complex field NOTE: odd ordered polynomials must have a real root e.g . i  x 2  2 x  2   x  12  1
  • 9. Factorising Complex Expressions If a polynomial’s coefficients are all real then the roots will appear in complex conjugate pairs. Every polynomial of degree n can be; • factorised as a mixture of quadratic and linear factors over the real field • factorised to n linear factors over the complex field NOTE: odd ordered polynomials must have a real root e.g . i  x 2  2 x  2   x  12  1   x  1  i  x  1  i 
  • 10. ii  z 4  z 2  12  0
  • 11. ii  z 4  z 2  12  0 z 2  3z 2  4   0
  • 12. ii  z 4  z 2  12  0 z  3z  4  0 2 2 z  3 z  3z  4  0 2
  • 13. ii  z 4  z 2  12  0 z  3z  4  0 2 2 z  3 z  3z  4  0 2 factorised over Real numbers
  • 14. ii  z 4  z 2  12  0 z  3z  4  0 2 2 z  3 z  3z  4  0 2 factorised over Real numbers z  3 z  3 z  2i  z  2i   0
  • 15. ii  z 4  z 2  12  0 z  3z  4  0 2 2 z  3 z  3z  4  0 2 factorised over Real numbers z  3 z  3 z  2i  z  2i   0 factorised over Complex numbers
  • 16. ii  z 4  z 2  12  0 z  3z  4  0 2 2 z  3 z  3z  4  0 2 factorised over Real numbers z  3 z  3 z  2i  z  2i   0 factorised over Complex numbers z   3 or z  2i
  • 17. ii  z 4  z 2  12  0 z  3z  4  0 2 2 z  3 z  3z  4  0 2 factorised over Real numbers z  3 z  3 z  2i  z  2i   0 factorised over Complex numbers z   3 or z  2i iii  Factorise 2 x 3  3x 2  8 x  5
  • 18. ii  z 4  z 2  12  0 z  3z  4  0 2 2 z  3 z  3z  4  0 2 factorised over Real numbers z  3 z  3 z  2i  z  2i   0 factorised over Complex numbers z   3 or z  2i iii  Factorise 2 x 3  3x 2  8 x  5 as it is a cubic it must have a real factor
  • 19. ii  z 4  z 2  12  0 z  3z  4  0 2 2 z  3 z  3z  4  0 2 factorised over Real numbers z  3 z  3 z  2i  z  2i   0 factorised over Complex numbers z   3 or z  2i iii  Factorise 2 x 3  3x 2  8 x  5 as it is a cubic it must have a real factor 3 2  1  1  1  1 P    2    3    8    5  2  2  2  2 1 3    45 4 4 0
  • 20. ii  z 4  z 2  12  0 z  3z  4  0 2 2 z  3 z  3z  4  0 2 factorised over Real numbers z  3 z  3 z  2i  z  2i   0 factorised over Complex numbers z   3 or z  2i iii  Factorise 2 x 3  3x 2  8 x  5 as it is a cubic it must have a real factor 3 2  1  1  1  1 P    2    3    8    5  2  2  2  2 1 3    45 4 4 0  2 x 3  3 x 2  8 x  5  2 x  1x 2  2 x  5
  • 21. ii  z 4  z 2  12  0 z  3z  4  0 2 2 z  3 z  3z  4  0 2 factorised over Real numbers z  3 z  3 z  2i  z  2i   0 factorised over Complex numbers z   3 or z  2i iii  Factorise 2 x 3  3x 2  8 x  5 as it is a cubic it must have a real factor 3 2  1  1  1  1 P    2    3    8    5  2  2  2  2 1 3    45 4 4 0  2 x 3  3 x 2  8 x  5  2 x  1x 2  2 x  5   2 x  1  x  1  4 2 
  • 22. ii  z 4  z 2  12  0 z  3z  4  0 2 2 z  3 z  3z  4  0 2 factorised over Real numbers z  3 z  3 z  2i  z  2i   0 factorised over Complex numbers z   3 or z  2i iii  Factorise 2 x 3  3x 2  8 x  5 as it is a cubic it must have a real factor 3 2  1  1  1  1 P    2    3    8    5  2  2  2  2 1 3    45 4 4 0  2 x 3  3 x 2  8 x  5  2 x  1x 2  2 x  5   2 x  1  x  1  4 2   2 x  1 x  1  2i  x  1  2i 
  • 23. iv  z 5  z 4  z 3  z 2  z  1  0
  • 24. iv  z 5  z 4  z 3  z 2  z  1  0 Now z 6  1   z  1z 5  z 4  z 3  z 2  z  1
  • 25. iv  z 5  z 4  z 3  z 2  z  1  0 Now z 6  1   z  1z 5  z 4  z 3  z 2  z  1 And z 6  1  0 has solutions;  2 k  z  cis   k  0, 1, 2,3  6 
  • 26. iv  z 5  z 4  z 3  z 2  z  1  0 Now z 6  1   z  1z 5  z 4  z 3  z 2  z  1 And z 6  1  0 has solutions;  2 k  z  cis   k  0, 1, 2,3  6  z5  z4  z3  z2 1  0
  • 27. iv  z 5  z 4  z 3  z 2  z  1  0 Now z 6  1   z  1z 5  z 4  z 3  z 2  z  1 And z 6  1  0 has solutions;  2 k  z  cis   k  0, 1, 2,3  6  z5  z4  z3  z2 1  0  z  1z 5  z 4  z 3  z 2  1 0  z  1
  • 28. iv  z 5  z 4  z 3  z 2  z  1  0 Now z 6  1   z  1z 5  z 4  z 3  z 2  z  1 And z 6  1  0 has solutions;  2 k  z  cis   k  0, 1, 2,3  6  z5  z4  z3  z2 1  0  z  1z 5  z 4  z 3  z 2  1 0  z  1 z 6  1  0, z  1
  • 29. iv  z 5  z 4  z 3  z 2  z  1  0 Now z 6  1   z  1z 5  z 4  z 3  z 2  z  1 And z 6  1  0 has solutions;  2 k  z  cis   k  0, 1, 2,3  6  z5  z4  z3  z2 1  0  z  1z 5  z 4  z 3  z 2  1 0  z  1 z 6  1  0, z  1   2 2 z  cis , cis  , cis , cis  , cis 3 3 3 3
  • 30. iv  z 5  z 4  z 3  z 2  z  1  0 Now z 6  1   z  1z 5  z 4  z 3  z 2  z  1 And z 6  1  0 has solutions;  2 k  z  cis   k  0, 1, 2,3  6  z5  z4  z3  z2 1  0  z  1z 5  z 4  z 3  z 2  1 0  z  1 z 6  1  0, z  1   2 2 z  cis , cis  , cis , cis  , cis 3 3 3 3 1 3 1 3 1 3 1 3 z  i,  i,   i,   i, 1 2 2 2 2 2 2 2 2
  • 31. v 1996 HSC 2 2 Let   cos  i sin 9 9 a) Show that  k is a solution of z 9  1  0, where k is an integer
  • 32. v 1996 HSC 2 2 Let   cos  i sin 9 9 a) Show that  k is a solution of z 9  1  0, where k is an integer z9  1
  • 33. v 1996 HSC 2 2 Let   cos  i sin 9 9 a) Show that  k is a solution of z 9  1  0, where k is an integer z9  1 2k  z  cis   9  k  0,1,2,3,4,5,6,7,8  
  • 34. v 1996 HSC 2 2 Let   cos  i sin 9 9 a) Show that  k is a solution of z 9  1  0, where k is an integer z9  1 2k  z  cis   9  k  0,1,2,3,4,5,6,7,8   2 k z  cis     9 
  • 35. v 1996 HSC 2 2 Let   cos  i sin 9 9 a) Show that  k is a solution of z 9  1  0, where k is an integer z9  1 2k  z  cis   9  k  0,1,2,3,4,5,6,7,8   2 k z  cis     9  z  k
  • 36. v 1996 HSC 2 2 Let   cos  i sin 9 9 a) Show that  k is a solution of z 9  1  0, where k is an integer z9  1 2k  z  cis   9  k  0,1,2,3,4,5,6,7,8   2 k z  cis     9  z  k b) Prove that    2   3   4   5   6   7   8  1
  • 37. v 1996 HSC 2 2 Let   cos  i sin 9 9 a) Show that  k is a solution of z 9  1  0, where k is an integer z9  1 2k  z  cis   9  k  0,1,2,3,4,5,6,7,8   2 k z  cis     9  z  k b) Prove that    2   3   4   5   6   7   8  1 z9 1  0
  • 38. v 1996 HSC 2 2 Let   cos  i sin 9 9 a) Show that  k is a solution of z 9  1  0, where k is an integer z9  1 2k  z  cis   9  k  0,1,2,3,4,5,6,7,8   2 k z  cis     9  z  k b) Prove that    2   3   4   5   6   7   8  1 z9 1  0 1     2   3   4   5   6   7   8  0
  • 39. v 1996 HSC 2 2 Let   cos  i sin 9 9 a) Show that  k is a solution of z 9  1  0, where k is an integer z9  1 2k  z  cis   9  k  0,1,2,3,4,5,6,7,8   2 k z  cis     9  z  k b) Prove that    2   3   4   5   6   7   8  1 z9 1  0 1     2   3   4   5   6   7   8  0 sum of roots 
  • 40. v 1996 HSC 2 2 Let   cos  i sin 9 9 a) Show that  k is a solution of z 9  1  0, where k is an integer z9  1 2k  z  cis   9  k  0,1,2,3,4,5,6,7,8   2 k z  cis     9  z  k b) Prove that    2   3   4   5   6   7   8  1 z9 1  0 1     2   3   4   5   6   7   8  0 sum of roots     2   3   4   5   6   7   8  1
  • 41. 2 4 1 c) Hence show that cos cos cos  9 9 9 8
  • 42.  2 4 1 c) Hence show that cos cos cos  9 9 9 8  A B   A B  sin A  sin B  2sin   cos    2   2 
  • 43.  2 4 1 c) Hence show that cos cos cos  9 9 9 8  A B   A B  (2 sine half sum sin A  sin B  2sin   cos    2   2  cos half diff)
  • 44.  2 4 1 c) Hence show that cos cos cos  9 9 9 8  A B   A B  (2 sine half sum sin A  sin B  2sin   cos    2   2  cos half diff)  A  B  cos A  B  cos A  cos B  2 cos     2   2 
  • 45.  2 4 1 c) Hence show that cos cos cos  9 9 9 8  A B   A B  (2 sine half sum sin A  sin B  2sin   cos    2   2  cos half diff)  A  B  cos A  B  cos A  cos B  2 cos (2 cos half sum     2   2  cos half diff)
  • 46.  2 4 1 c) Hence show that cos cos cos  9 9 9 8  A B   A B  (2 sine half sum sin A  sin B  2sin   cos    2   2  cos half diff)  A  B  cos A  B  cos A  cos B  2 cos (2 cos half sum     2   2  cos half diff)  A B   A B  cos A  cos B  2sin   sin    2   2 
  • 47.  2 4 1 c) Hence show that cos cos cos  9 9 9 8  A B   A B  (2 sine half sum sin A  sin B  2sin   cos    2   2  cos half diff)  A  B  cos A  B  cos A  cos B  2 cos (2 cos half sum     2   2  cos half diff)  A B   A B  (minus 2 sine half sum cos A  cos B  2sin   sin    2   2  sine half diff)
  • 48.  2 4 1 c) Hence show that cos cos cos  9 9 9 8  A B   A B  (2 sine half sum sin A  sin B  2sin   cos    2   2  cos half diff)  A  B  cos A  B  cos A  cos B  2 cos (2 cos half sum     2   2  cos half diff)  A B   A B  (minus 2 sine half sum cos A  cos B  2sin   sin    2   2  sine half diff)    2   3   4   5   6   7   8  1
  • 49.  2 4 1 c) Hence show that cos cos cos  9 9 9 8  A B   A B  (2 sine half sum sin A  sin B  2sin   cos    2   2  cos half diff)  A  B  cos A  B  cos A  cos B  2 cos (2 cos half sum     2   2  cos half diff)  A B   A B  (minus 2 sine half sum cos A  cos B  2sin   sin    2   2  sine half diff)    2   3   4   5   6   7   8  1 roots appear in conjugate pairs
  • 50.  2 4 1 c) Hence show that cos cos cos  9 9 9 8  A B   A B  (2 sine half sum sin A  sin B  2sin   cos    2   2  cos half diff)  A  B  cos A  B  cos A  cos B  2 cos (2 cos half sum     2   2  cos half diff)  A B   A B  (minus 2 sine half sum cos A  cos B  2sin   sin    2   2  sine half diff)    2   3   4   5   6   7   8  1 roots appear in conjugate pairs 2 4 6 8 2cos  2cos  2cos  2cos  1 9 9 9 9
  • 51.  2 4 1 c) Hence show that cos cos cos  9 9 9 8  A B   A B  (2 sine half sum sin A  sin B  2sin   cos    2   2  cos half diff)  A  B  cos A  B  cos A  cos B  2 cos (2 cos half sum     2   2  cos half diff)  A B   A B  (minus 2 sine half sum cos A  cos B  2sin   sin    2   2  sine half diff)    2   3   4   5   6   7   8  1 roots appear in conjugate pairs 2 4 6 8 2cos  2cos  2cos  2cos  1 9 9 9 9 2 4 6 8 1 cos  cos  cos  cos  9 9 9 9 2
  • 52.  2 4 1 c) Hence show that cos cos cos  9 9 9 8  A B   A B  (2 sine half sum sin A  sin B  2sin   cos    2   2  cos half diff)  A  B  cos A  B  cos A  cos B  2 cos (2 cos half sum     2   2  cos half diff)  A B   A B  (minus 2 sine half sum cos A  cos B  2sin   sin    2   2  sine half diff)    2   3   4   5   6   7   8  1 roots appear in conjugate pairs 2 4 6 8 2cos  2cos  2cos  2cos  1 9 9 9 9 2 4 6 8 1 cos  cos  cos  cos  9 9 9 9 2 3  7  1 2cos cos  2cos cos   9 9 9 9 2
  • 53. 3  7  1 2cos cos  2cos cos   9 9 9 9 2
  • 54. 3  7  1 2cos cos  2cos cos   9 9 9 9 2  3 7  1 cos  cos  cos  9 9 9  4
  • 55. 3  7  1 2cos cos  2cos cos   9 9 9 9 2  3 7  1 cos  cos  cos  9 9 9  4  5 2  1 cos  2cos cos  9 9 9  4
  • 56. 3  7  1 2cos cos  2cos cos   9 9 9 9 2  3 7  1 cos  cos  cos  9 9 9  4  5 2  1 cos  2cos cos  9 9 9  4  2 5 1 cos cos cos  9 9 9 8
  • 57. 3  7  1 2cos cos  2cos cos   9 9 9 9 2  3 7  1 cos  cos  cos  9 9 9  4  5 2  1 cos  2cos cos  9 9 9  4  2 5 1 cos cos cos  9 9 9 8 5 4 But cos   cos 9 9
  • 58. 3  7  1 2cos cos  2cos cos   9 9 9 9 2  3 7  1 cos  cos  cos  9 9 9  4  5 2  1 cos  2cos cos  9 9 9  4  2 5 1 cos cos cos  9 9 9 8 5 4 But cos   cos 9 9  2 4 1  cos cos cos  9 9 9 8
  • 59. 3  7  1 2cos cos  2cos cos   9 9 9 9 2  3 7  1 cos  cos  cos  9 9 9  4  5 2  1 cos  2cos cos  9 9 9  4  2 5 1 cos cos cos  9 9 9 8 5 4 But cos   cos 9 9  2 4 1  cos cos cos  9 9 9 8  2 4 1 cos cos cos  9 9 9 8
  • 60. OR z9 1   z  1 z     z   8  z   2  z   7  z   3  z   6  z   4  z   5 
  • 61. OR z9 1   z  1 z     z   8  z   2  z   7  z   3  z   6  z   4  z   5   2  4    z  1  z 2  2cos z  1 z 2  2cos z  1  9  9   2 6  2 8   z  2cos z  1 z  2cos z  1  9  9 
  • 62. OR z9 1   z  1 z     z   8  z   2  z   7  z   3  z   6  z   4  z   5   2  4    z  1  z 2  2cos z  1 z 2  2cos z  1  9  9   2 6  2 8   z  2cos z  1 z  2cos z  1  9  9   2 2  2 4    z  1  z  2cos z  1 z  2cos z  1  9  9   8   z 2  z  1  z 2  2cos  9 z  1 
  • 63. OR z9 1   z  1 z     z   8  z   2  z   7  z   3  z   6  z   4  z   5   2  4    z  1  z 2  2cos z  1 z 2  2cos z  1  9  9   2 6  2 8   z  2cos z  1 z  2cos z  1  9  9   2 2  2 4    z  1  z  2cos z  1 z  2cos z  1  9  9   8   z 2  z  1  z 2  2cos  9 z  1  Let z  i
  • 64. OR z9 1   z  1 z     z   8  z   2  z   7  z   3  z   6  z   4  z   5   2  4    z  1  z 2  2cos z  1 z 2  2cos z  1  9  9   2 6  2 8   z  2cos z  1 z  2cos z  1  9  9   2 2  2 4    z  1  z  2cos z  1 z  2cos z  1  9  9   8   z 2  z  1  z 2  2cos  9 z  1  Let z  i  2  4   8  i 9  1   i  1  2cos i  2cos i   i   2cos i  9  9   9 
  • 65. 2  4   8  i  1   i  1  2cos 9 i  2cos i   i   2cos i  9  9   9 
  • 66. 2  4   8  i  1   i  1  2cos 9 i  2cos i   i   2cos i  9  9   9   2  4  8  i  1  i  i  1  2cos 4  2cos  2cos   9  9  9 
  • 67. 2  4   8  i  1   i  1  2cos 9 i  2cos i   i   2cos i  9  9   9   2  4  8  i  1  i  i  1  2cos 4  2cos  2cos   9  9  9  2 4 8 1  8cos cos cos 9 9 9
  • 68. 2  4   8  i  1   i  1  2cos 9 i  2cos i   i   2cos i  9  9   9   2  4  8  i  1  i  i  1  2cos 4  2cos  2cos   9  9  9  2 4 8 1  8cos cos cos 9 9 9 2 4   1  8cos cos   cos  9 9  9
  • 69. 2  4   8  i  1   i  1  2cos 9 i  2cos i   i   2cos i  9  9   9   2  4  8  i  1  i  i  1  2cos 4  2cos  2cos   9  9  9  2 4 8 1  8cos cos cos 9 9 9 2 4   1  8cos cos   cos  9 9  9  2 4 1 cos cos cos  9 9 9 8
  • 70. 2  4   8  i  1   i  1  2cos 9 i  2cos i   i   2cos i  9  9   9   2  4  8  i  1  i  i  1  2cos 4  2cos  2cos   9  9  9  2 4 8 1  8cos cos cos 9 9 9 2 4   1  8cos cos   cos  9 9  9  2 4 1 cos cos cos  9 9 9 8 Exercise 4J; 1 to 4, 7ac