SlideShare a Scribd company logo
1 of 4
Download to read offline
DangThiMai Int. Journal of Engineering Research and Applications www.ijera.com
ISSN : 2248-9622, Vol. 4, Issue 12( Part 2), December 2014, pp.77-80
www.ijera.com 77|P a g e
The Minimum Total Heating Lander By The Maximum Principle
Pontryagin
DangThiMai*, Nguyen Viet Hung
*(Department of Basic Science, University of Transport and Communications,Lang Thuong, Dong Da, Ha Noi,
Viet Nam,)
**(Le Quy Don Technical University)
ABSTRACT
The article will research a lander flying into the atmosphere with the flow velocity constraint, i.e. the total load
by means of minimizing the total thermal energy at the end of the landing process. The lander’s distance at the
last moment depends on the variables selected from the total thermal energy minimum. To deal with the problem
weapplyPontryagin maximum principle and scheme Dubovitskij Milutin.
Solvingboundaryusingtheparameterandthesolutionobtained inthe choiceof variables. The results of simulations
performed on Matlab.
Keywords-maximum principle; control; the overload; total heat; minimum.
I. Introduction
Research on the problem of choosing an angle
of launch of the flying object which is reducing
velocity in atmospheric conditions under which it is
taken into account the minimizing of total heat flow
with the load limits of aircraft equipment. The total
heat output of the device is the integral form of the
following:
1
3 2
0
T
Q CV dt  ..1((1)
Required to deteminea control )(tCy , which
minimizes Q(T) (1) under the following restrictions:
)2(,
2
,
2
22 V
qN
G
S
qCCn yx



(
2maxmin
, yxoxyyy kCCCCCC 
(3)
)4(,,
)(
, 2
2
00 mgG
HR
R
gge H


 

)5(,sin,sin  VHg
m
S
qCV x 

)6(,cos 









V
g
HR
V
mV
S
qCy
)7(.
cos
HR
RV
L


 
Where

n - full overload, q - speed pressure,
 - atmospheric density, V - velocity of the
vehicle,  - path angle, H- height, L - the remote,
G- the weight of the machine, m – mass, 0g -
acceleration due to gravity on the surface of the
planet, R - the radius of the planet, xC - the drag
coefficient, yC - lift coefficient, S - characteristic
area apparatus,
NCCCkC yyxo ,,,,,,, maxmin
0  - constants.
For the system (1) - (7) the initial conditions:
)8(.)0(,)0(
)0(,)0(
00
00
LLHH
VV

 
and conditions and limitations:
    ,,,)( 111 HTHTVTV  
,)( aTL  T - not fixed. (9)
where a – parameter.
II. Application of Maximum principle in
the regular case.
Let lander comes from the initial state (8) in a
washed-position (9) in an optimal way in the sense
of minimizing the total amount of heat under the
assumption that the optimal trajectory regularity
condition [3,4]. In the above problem, the regularity
condition is equivalent to
.,0 Nn
C
n
y






(10)
In this case, the maximum principle is as follows:

 QPLPVPHPP QLVH
, (11)
RESEARCH ARTICLE OPEN ACCESS
DangThiMai Int. Journal of Engineering Research and Applications www.ijera.com
ISSN : 2248-9622, Vol. 4, Issue 12( Part 2), December 2014, pp.77-80
www.ijera.com 78|P a g e
 NntL 

 )(1  , (12)
H
P
V
PP HV








 
,,


.,
Q
P
L
P QL





  (13)
Here  t - the Lagrange multiplier, which is
determined from the condition of Bliss
[3, 4].
  0






yy C
n
t
C
 . (14)
 - Pontryagin function, 1L - Lagrange function.
QLHV PPPPP ,,,, - corresponding conjugate
variables. For inequality constraints (2) satisfies the
complementary slackness.
   0

Nnt . (15)
Since the system (1)- (7) is autonomous and the
descent no restrictions, the Pontryagin function (11)
is identically zero, ie
   ,,,,,,0,, LHVxCuuxP yy 
.
 qLHV PPPPPP ,,,, . (16)
Conjugate variable  tPQ normalized by the
condition:
 tPQ -1. (17)
The initial conditionsfor the system (13)
andareunknownparameters of the problem.
Condition  tPQ  -1 and   0,,  uxP is
essentially determined by threefree parameters:
      321 0,0,0 CPCPCP LV  (18)
since  0HP is determinedfrom the
condition   0,,  uxP .
In this case,the number of controlledfunctionsat the
end ofthe trajectory(9)coincides with the numberof
free parametersof the problem (1) - (9), (11), (12),
because the time Tis not fixedandis a free parameter.
According to the principleof maximumcontrol
programchosen from the condition:
min)(max  TQkhiП
yC
(19)
We write downthe partPontryaginfunction(11),
which clearly depends onthe control  tCy
m
SVC
P
m
VSC
P x
V
y
22
2
0

  . (20)
)(tCy can takecontrolnot onlylimitvalues(3), but
alsoan intermediate, which is determined from the
condition
maxmin0
2
,0 yyy
V
y
y
CCC
VkP
P
C
C


   . (21)
Wecalculatethreevaluesof the function 0 in (20)
     
 yyy CCC 03
max
02
min
01 ,, .
and
 321
max
0 ,,max  . (22)
Equation (22) determine the nature ofthe optimal
controlproblemof Pontryagin, ie provided
that Nn 

.Solution of the problemis greatly
simplifiedif the rightend of the trajectoryis
controlled bythe condition:
  1HTH  . (23)
In this case,the solution of (1) - (9) is determined by
theboundary conditions
  11 )(, VTVT  ,   aTL  . (24)
Anddepends on threearbitrary constants 21, CC and
3C .
Thus, the initialproblem is reduced toa three-
parameterproblem (1) - (9), (13), (18), (24), and the
optimal controlis determinedat each point t ofthe
maximum principle(24).
III. Restriction onoverload
Inthe taskdifficulty of determiningthe
geometry ofthe optimal trajectoryis the identification
ofpointscoming off the disabled Nn 

.
Note that the total overload (2) has two components
xn and yn . The first is called a longitudinal
overload, and the second - normal.
22
0
2
0
2
,
2
,
2
yxxxyy nnnC
mg
SV
nC
mg
SV
n 


 .
Instead of limiting (2), we introduce a new
restriction
  0,, 11  uxNnnNnn xyxy  (25)
With an appropriate choice 1N ofthe inequality(25) is
known to besatisfiedconstraint (2). This factfollows
from
  22
1 yxxy nnnnN  . (26)
equal signoccurs when 0yC .
We now compute the derivative of  ux, (25)
follow yC
 yy
y
kCsignC
mg
SV
C
2
2 0
2


  . (27)
In this case, the Lagrange multiplier  t for
limiting   0, ux (25) is determined by the
formula
DangThiMai Int. Journal of Engineering Research and Applications www.ijera.com
ISSN : 2248-9622, Vol. 4, Issue 12( Part 2), December 2014, pp.77-80
www.ijera.com 79|P a g e
 
 yy
yV
kCsignCV
gVCkP
P
t
2
2
2 0










 . (28)
IV. Necessary optimality conditions inthe
irregular case
Now consider the casewhenthe optimal
trajectorycontains an interval, when Nn 

,
andin this intervalat some point 0



yC
n
.
The set of pointsdefinedby the equations:
Nn
C
n
y






,0 . (29)
following [3], we call irregularpoints.For the
problem 0



yC
n
at 0yC . For thegiven
problemwecanusethe resultsof A. I. Dubovistkij and
A. A. Miliutin [3, 4]. According to [3, 4] in the
presence ofirregular pointsconjugatesystemof
equations are
 
 
,
,
,
0
0
H
V
L
Q
P
n nd
P t
H H dt H
n nd
P t
V V dt V
P
P












 

      
  
      
  


(30)
Here-  t Lagrange multiplier-a
d
dt
 generalized
function. For theseobjectsare madecomplementary
slackness condition
   0, 0y
d
t n N C
dt

   

.(31)
From (29) it follows that in theirregular
point(28)andthe conjugate variableswill
experienceracingon the values of
H
n



 and
V
n



 when 0 . This is theessential difference
between thecaseofirregular, wherethe conjugate
variablesare continuous functionsfor
mixedclassconstraints[3, 4].
Besidesthe conditions (29) - (31) on the
optimal trajectoryshould bethe conditionsof
integrabilityof the Lagrange multipliersand the
normalization condition(non-triviality condition of
the maximum principle).
V. Example and numerical result
For more details of the problem, we solve the
problem of finding the minimum total heating of
space shuttle [7], constants and the boundary
conditions are:
min
yC =-0.5; 6.0max
yC ;
50000
m
S 12 
kgkm ,
3
0 10.3769.2 
 kgkm
3
,
kmR 2.6371 ; 88.00 xC ,
k = 0.5 ;
23
0 10.8.9 
 kmsg ,
C = 20; N = 4 ; 145.0 1
km ,
  0 = -1.25(deg);V(0) =0.35kms
1
,
H(0)= 100(km);L(0)= 0(km).
The resultreceivedby using Matlab:
Figure 1.Height H [km]
Figure1illustratesthe shuttle'saltitudeover time, we
seethatthe heightHdecreases rapidly
from100kmdownto40kmover a period[0, 200s].
Figure 2. Lift coefficient yC
In Figure2 illustratesthe state of
thecontrolvariableschangeover time.
t [s]
H [km]
t [s]
yC
DangThiMai Int. Journal of Engineering Research and Applications www.ijera.com
ISSN : 2248-9622, Vol. 4, Issue 12( Part 2), December 2014, pp.77-80
www.ijera.com 80|P a g e
Figure 3. Full overload n
Figure 4.Velocity V[km/s]
Figure4 showsthe velocity ofthe
shuttlealsodroppedsignificantly duringthisperiod.
Figure 5. Path angle [deg]
Figure5describestheorbitalinclinationangle.
Figure 6. Remote L [km]
Figure6illustrates thedistanceofthelandingshipsover
time. Wefound thatthedistanceL(t) does
notincreasemuchafter200speriod.
Figure 7. Totalheat Q
Figure7, in theinterval[0, 200s] the
totalamountofsurfacetemperatureincreaseand
stabilizethe shipduring the periodclose
tolanding[200-720s]. According
tooursimulationsonthe heatatthe surfaceof
thevesselcan be consideredto have
beenminimizedduringlanding.
VI. Conclusion
Three parameterboundary value (24), the
problem is solvedfor a fixed value a. Next, we can
choosethe desired value a from the minimumof the
minimumvalue of the functional(1).The boundary
value problemwas solved by thecontinuation of
solutionsto the parameter[6].
REFERENCES
[1]. A.E. Bryson and Y.-C. Ho, Applied Optimal
Control, Rev. Printing (Hemisphere, New
York, 1975).
[2]. Ярошевский В.А. Вход в атмосферу
космических летательных аппаратов. — М.:
Наука, 1988.
[3]. Афанасьев А.П., Дикусар В.В., Милютин
А.А., Чуканов С.В. Необходимое условие в
принципе максимума. — М.: Наука, 1990.
[4]. Дикусар В.В., Милютин А.А.
Количественные и качественные методы в
принципе максимума — М.: Наука, 1989.
[5]. O. von Struk and R. Bulirsch. Direct and
indirect methods for trajectory optimization.
AnnalsofOperationsResearch 37(1992)357-373
[6]. Дикусар В. В, Кошька М, Фигура А.
Продолжение решений в прикладных задач
оптимального управления. М.,МФТИ. 2001.
[7]. M. H Breitner and H. Josef Pesch. Reentry
trajectory optimization under atmospheric
uncertainty as a differential Game. Advances in
dynamic games and applications, 1994.
t [s]
n
t [s]
V [km/s]
t [s]
[deg]
t [s]
L [km]
Q
Q
q [km]
t [s]

More Related Content

What's hot

Calibrating a CFD canopy model with the EC1 vertical profiles of mean wind sp...
Calibrating a CFD canopy model with the EC1 vertical profiles of mean wind sp...Calibrating a CFD canopy model with the EC1 vertical profiles of mean wind sp...
Calibrating a CFD canopy model with the EC1 vertical profiles of mean wind sp...
Stephane Meteodyn
 
OConnor_SimulationProject
OConnor_SimulationProjectOConnor_SimulationProject
OConnor_SimulationProject
Kevin O'Connor
 
Modeling and simulation of MEMS
Modeling and simulation of MEMSModeling and simulation of MEMS
Modeling and simulation of MEMS
Rabie
 

What's hot (20)

Ultrasound lecture 1 post
Ultrasound lecture 1 postUltrasound lecture 1 post
Ultrasound lecture 1 post
 
Hsu etal-2009
Hsu etal-2009Hsu etal-2009
Hsu etal-2009
 
Calibrating a CFD canopy model with the EC1 vertical profiles of mean wind sp...
Calibrating a CFD canopy model with the EC1 vertical profiles of mean wind sp...Calibrating a CFD canopy model with the EC1 vertical profiles of mean wind sp...
Calibrating a CFD canopy model with the EC1 vertical profiles of mean wind sp...
 
Ch30 ssm
Ch30 ssmCh30 ssm
Ch30 ssm
 
PART I.3 - Physical Mathematics
PART I.3 - Physical MathematicsPART I.3 - Physical Mathematics
PART I.3 - Physical Mathematics
 
Offshore Windfarm Design - Les 4 Actuator Disk Theory and Energy Yield
Offshore Windfarm Design -  Les 4 Actuator Disk Theory and Energy YieldOffshore Windfarm Design -  Les 4 Actuator Disk Theory and Energy Yield
Offshore Windfarm Design - Les 4 Actuator Disk Theory and Energy Yield
 
Mit2 092 f09_lec20
Mit2 092 f09_lec20Mit2 092 f09_lec20
Mit2 092 f09_lec20
 
Ch r ssm
Ch r ssmCh r ssm
Ch r ssm
 
Paolo Creminelli "Dark Energy after GW170817"
Paolo Creminelli "Dark Energy after GW170817"Paolo Creminelli "Dark Energy after GW170817"
Paolo Creminelli "Dark Energy after GW170817"
 
Quantum computing - A Compilation of Concepts
Quantum computing - A Compilation of ConceptsQuantum computing - A Compilation of Concepts
Quantum computing - A Compilation of Concepts
 
Discrete control
Discrete controlDiscrete control
Discrete control
 
Solution Manual for Heat Convection second edition by Latif M. Jiji
Solution Manual for Heat Convection second edition by Latif M. JijiSolution Manual for Heat Convection second edition by Latif M. Jiji
Solution Manual for Heat Convection second edition by Latif M. Jiji
 
FUNDAMENTALS OF PHYSICS
FUNDAMENTALS OF PHYSICSFUNDAMENTALS OF PHYSICS
FUNDAMENTALS OF PHYSICS
 
OConnor_SimulationProject
OConnor_SimulationProjectOConnor_SimulationProject
OConnor_SimulationProject
 
Chapitre1
Chapitre1Chapitre1
Chapitre1
 
Discrete control2
Discrete control2Discrete control2
Discrete control2
 
Gravitational Waves and Binary Systems (3) - Thibault Damour
Gravitational Waves and Binary Systems (3) - Thibault DamourGravitational Waves and Binary Systems (3) - Thibault Damour
Gravitational Waves and Binary Systems (3) - Thibault Damour
 
Quantum Computing and Quantum Supremacy at Google
Quantum Computing and Quantum Supremacy at GoogleQuantum Computing and Quantum Supremacy at Google
Quantum Computing and Quantum Supremacy at Google
 
Modeling and simulation of MEMS
Modeling and simulation of MEMSModeling and simulation of MEMS
Modeling and simulation of MEMS
 
Offshore windfarm design - Lesson 7 park design
Offshore windfarm design - Lesson 7 park designOffshore windfarm design - Lesson 7 park design
Offshore windfarm design - Lesson 7 park design
 

Viewers also liked

Study and Analysis of K-Means Clustering Algorithm Using Rapidminer
Study and Analysis of K-Means Clustering Algorithm Using RapidminerStudy and Analysis of K-Means Clustering Algorithm Using Rapidminer
Study and Analysis of K-Means Clustering Algorithm Using Rapidminer
IJERA Editor
 
Assessment of sanitation levels of sources of water in Osun State Capital, Ni...
Assessment of sanitation levels of sources of water in Osun State Capital, Ni...Assessment of sanitation levels of sources of water in Osun State Capital, Ni...
Assessment of sanitation levels of sources of water in Osun State Capital, Ni...
IJERA Editor
 

Viewers also liked (19)

Top 5 European Travel Destinations for 2015
Top 5 European Travel Destinations for 2015Top 5 European Travel Destinations for 2015
Top 5 European Travel Destinations for 2015
 
госпрограмма постановление от 19 июля 2013 г. № 330 пп
госпрограмма постановление от 19 июля 2013 г. № 330 ппгоспрограмма постановление от 19 июля 2013 г. № 330 пп
госпрограмма постановление от 19 июля 2013 г. № 330 пп
 
satheesh.k
satheesh.ksatheesh.k
satheesh.k
 
BusinessCard-GupCommerce-Fronte
BusinessCard-GupCommerce-FronteBusinessCard-GupCommerce-Fronte
BusinessCard-GupCommerce-Fronte
 
[kent.edu.vn] Dem chung ket cuoc thi HOt VTeen 2014 - Mai Xuan Thu va Quynh H...
[kent.edu.vn] Dem chung ket cuoc thi HOt VTeen 2014 - Mai Xuan Thu va Quynh H...[kent.edu.vn] Dem chung ket cuoc thi HOt VTeen 2014 - Mai Xuan Thu va Quynh H...
[kent.edu.vn] Dem chung ket cuoc thi HOt VTeen 2014 - Mai Xuan Thu va Quynh H...
 
Pattern based approach for Natural Language Interface to Database
Pattern based approach for Natural Language Interface to DatabasePattern based approach for Natural Language Interface to Database
Pattern based approach for Natural Language Interface to Database
 
BSNP - Kisi2 UN SMP
BSNP - Kisi2 UN SMPBSNP - Kisi2 UN SMP
BSNP - Kisi2 UN SMP
 
Possibilistic Fuzzy C Means Algorithm For Mass classificaion In Digital Mammo...
Possibilistic Fuzzy C Means Algorithm For Mass classificaion In Digital Mammo...Possibilistic Fuzzy C Means Algorithm For Mass classificaion In Digital Mammo...
Possibilistic Fuzzy C Means Algorithm For Mass classificaion In Digital Mammo...
 
Kansrekening les3 gvan alst
Kansrekening les3 gvan alstKansrekening les3 gvan alst
Kansrekening les3 gvan alst
 
Study and Analysis of K-Means Clustering Algorithm Using Rapidminer
Study and Analysis of K-Means Clustering Algorithm Using RapidminerStudy and Analysis of K-Means Clustering Algorithm Using Rapidminer
Study and Analysis of K-Means Clustering Algorithm Using Rapidminer
 
Μάθε τα πάντα για τη βιταμίνη C
Μάθε τα πάντα για τη βιταμίνη CΜάθε τα πάντα για τη βιταμίνη C
Μάθε τα πάντα για τη βιταμίνη C
 
downsize logo - Vector
downsize logo - Vectordownsize logo - Vector
downsize logo - Vector
 
Assessment of sanitation levels of sources of water in Osun State Capital, Ni...
Assessment of sanitation levels of sources of water in Osun State Capital, Ni...Assessment of sanitation levels of sources of water in Osun State Capital, Ni...
Assessment of sanitation levels of sources of water in Osun State Capital, Ni...
 
pro-e
pro-epro-e
pro-e
 
Anorthosite and Associated Rocks of Oddanchatram, Dindigul Anna District, Tam...
Anorthosite and Associated Rocks of Oddanchatram, Dindigul Anna District, Tam...Anorthosite and Associated Rocks of Oddanchatram, Dindigul Anna District, Tam...
Anorthosite and Associated Rocks of Oddanchatram, Dindigul Anna District, Tam...
 
QS Al Baqarah 148
QS Al Baqarah 148QS Al Baqarah 148
QS Al Baqarah 148
 
Trends in Wire Electrical Discharge Machining (WEDM): A Review
Trends in Wire Electrical Discharge Machining (WEDM): A ReviewTrends in Wire Electrical Discharge Machining (WEDM): A Review
Trends in Wire Electrical Discharge Machining (WEDM): A Review
 
Effects of Soil and Air Drying Methods on Soil Plasticity of Different Cities...
Effects of Soil and Air Drying Methods on Soil Plasticity of Different Cities...Effects of Soil and Air Drying Methods on Soil Plasticity of Different Cities...
Effects of Soil and Air Drying Methods on Soil Plasticity of Different Cities...
 
визитка...пустотина
визитка...пустотинавизитка...пустотина
визитка...пустотина
 

Similar to The Minimum Total Heating Lander By The Maximum Principle Pontryagin

Fir 05 dynamics 2-dof
Fir 05 dynamics 2-dofFir 05 dynamics 2-dof
Fir 05 dynamics 2-dof
nguyendattdh
 
Julio Bravo's Master Graduation Project
Julio Bravo's Master Graduation ProjectJulio Bravo's Master Graduation Project
Julio Bravo's Master Graduation Project
Julio Bravo
 

Similar to The Minimum Total Heating Lander By The Maximum Principle Pontryagin (20)

cfd ahmed body
cfd ahmed bodycfd ahmed body
cfd ahmed body
 
Study of using particle swarm for optimal power flow
Study of using particle swarm for optimal power flowStudy of using particle swarm for optimal power flow
Study of using particle swarm for optimal power flow
 
Bayesian Estimation For Modulated Claim Hedging
Bayesian Estimation For Modulated Claim HedgingBayesian Estimation For Modulated Claim Hedging
Bayesian Estimation For Modulated Claim Hedging
 
Controller design of inverted pendulum using pole placement and lqr
Controller design of inverted pendulum using pole placement and lqrController design of inverted pendulum using pole placement and lqr
Controller design of inverted pendulum using pole placement and lqr
 
Controller design of inverted pendulum using pole placement and lqr
Controller design of inverted pendulum using pole placement and lqrController design of inverted pendulum using pole placement and lqr
Controller design of inverted pendulum using pole placement and lqr
 
ANALYTICAL DESIGN OF FIRST-ORDER CONTROLLERS FOR THE TCP/AQM SYSTEMS WITH TIM...
ANALYTICAL DESIGN OF FIRST-ORDER CONTROLLERS FOR THE TCP/AQM SYSTEMS WITH TIM...ANALYTICAL DESIGN OF FIRST-ORDER CONTROLLERS FOR THE TCP/AQM SYSTEMS WITH TIM...
ANALYTICAL DESIGN OF FIRST-ORDER CONTROLLERS FOR THE TCP/AQM SYSTEMS WITH TIM...
 
Analysis of Reactivity Accident for Control Rods Withdrawal at the Thermal Re...
Analysis of Reactivity Accident for Control Rods Withdrawal at the Thermal Re...Analysis of Reactivity Accident for Control Rods Withdrawal at the Thermal Re...
Analysis of Reactivity Accident for Control Rods Withdrawal at the Thermal Re...
 
Analysis of Reactivity Accident for Control Rods Withdrawal at the Thermal Re...
Analysis of Reactivity Accident for Control Rods Withdrawal at the Thermal Re...Analysis of Reactivity Accident for Control Rods Withdrawal at the Thermal Re...
Analysis of Reactivity Accident for Control Rods Withdrawal at the Thermal Re...
 
Fir 05 dynamics
Fir 05 dynamicsFir 05 dynamics
Fir 05 dynamics
 
Fir 05 dynamics 2-dof
Fir 05 dynamics 2-dofFir 05 dynamics 2-dof
Fir 05 dynamics 2-dof
 
applications of second order differential equations
applications of second order differential equationsapplications of second order differential equations
applications of second order differential equations
 
PR_TMP_IUP_2021_CHAP3.pptx
PR_TMP_IUP_2021_CHAP3.pptxPR_TMP_IUP_2021_CHAP3.pptx
PR_TMP_IUP_2021_CHAP3.pptx
 
Dynamics
DynamicsDynamics
Dynamics
 
Julio Bravo's Master Graduation Project
Julio Bravo's Master Graduation ProjectJulio Bravo's Master Graduation Project
Julio Bravo's Master Graduation Project
 
Adaptive dynamic programming algorithm for uncertain nonlinear switched systems
Adaptive dynamic programming algorithm for uncertain nonlinear switched systemsAdaptive dynamic programming algorithm for uncertain nonlinear switched systems
Adaptive dynamic programming algorithm for uncertain nonlinear switched systems
 
Optimization of Thin Adhesive Layer Based on Colonial Competitive Algorithm
Optimization of Thin Adhesive Layer Based on Colonial Competitive AlgorithmOptimization of Thin Adhesive Layer Based on Colonial Competitive Algorithm
Optimization of Thin Adhesive Layer Based on Colonial Competitive Algorithm
 
Optimal_Control_of_a_Double_Inverted_Pen.pdf
Optimal_Control_of_a_Double_Inverted_Pen.pdfOptimal_Control_of_a_Double_Inverted_Pen.pdf
Optimal_Control_of_a_Double_Inverted_Pen.pdf
 
On the dynamic behavior of the current in the condenser of a boost converter ...
On the dynamic behavior of the current in the condenser of a boost converter ...On the dynamic behavior of the current in the condenser of a boost converter ...
On the dynamic behavior of the current in the condenser of a boost converter ...
 
Sloshing-aware MPC for upper stage attitude control
Sloshing-aware MPC for upper stage attitude controlSloshing-aware MPC for upper stage attitude control
Sloshing-aware MPC for upper stage attitude control
 
Computation of electromagnetic_fields_scattered_from_dielectric_objects_of_un...
Computation of electromagnetic_fields_scattered_from_dielectric_objects_of_un...Computation of electromagnetic_fields_scattered_from_dielectric_objects_of_un...
Computation of electromagnetic_fields_scattered_from_dielectric_objects_of_un...
 

Recently uploaded

Call Girls in Ramesh Nagar Delhi 💯 Call Us 🔝9953056974 🔝 Escort Service
Call Girls in Ramesh Nagar Delhi 💯 Call Us 🔝9953056974 🔝 Escort ServiceCall Girls in Ramesh Nagar Delhi 💯 Call Us 🔝9953056974 🔝 Escort Service
Call Girls in Ramesh Nagar Delhi 💯 Call Us 🔝9953056974 🔝 Escort Service
9953056974 Low Rate Call Girls In Saket, Delhi NCR
 
Call Now ≽ 9953056974 ≼🔝 Call Girls In New Ashok Nagar ≼🔝 Delhi door step de...
Call Now ≽ 9953056974 ≼🔝 Call Girls In New Ashok Nagar  ≼🔝 Delhi door step de...Call Now ≽ 9953056974 ≼🔝 Call Girls In New Ashok Nagar  ≼🔝 Delhi door step de...
Call Now ≽ 9953056974 ≼🔝 Call Girls In New Ashok Nagar ≼🔝 Delhi door step de...
9953056974 Low Rate Call Girls In Saket, Delhi NCR
 
Cara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak Hamil
Cara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak HamilCara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak Hamil
Cara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak Hamil
Cara Menggugurkan Kandungan 087776558899
 
notes on Evolution Of Analytic Scalability.ppt
notes on Evolution Of Analytic Scalability.pptnotes on Evolution Of Analytic Scalability.ppt
notes on Evolution Of Analytic Scalability.ppt
MsecMca
 

Recently uploaded (20)

2016EF22_0 solar project report rooftop projects
2016EF22_0 solar project report rooftop projects2016EF22_0 solar project report rooftop projects
2016EF22_0 solar project report rooftop projects
 
KubeKraft presentation @CloudNativeHooghly
KubeKraft presentation @CloudNativeHooghlyKubeKraft presentation @CloudNativeHooghly
KubeKraft presentation @CloudNativeHooghly
 
Generative AI or GenAI technology based PPT
Generative AI or GenAI technology based PPTGenerative AI or GenAI technology based PPT
Generative AI or GenAI technology based PPT
 
Call Girls in Ramesh Nagar Delhi 💯 Call Us 🔝9953056974 🔝 Escort Service
Call Girls in Ramesh Nagar Delhi 💯 Call Us 🔝9953056974 🔝 Escort ServiceCall Girls in Ramesh Nagar Delhi 💯 Call Us 🔝9953056974 🔝 Escort Service
Call Girls in Ramesh Nagar Delhi 💯 Call Us 🔝9953056974 🔝 Escort Service
 
Call Now ≽ 9953056974 ≼🔝 Call Girls In New Ashok Nagar ≼🔝 Delhi door step de...
Call Now ≽ 9953056974 ≼🔝 Call Girls In New Ashok Nagar  ≼🔝 Delhi door step de...Call Now ≽ 9953056974 ≼🔝 Call Girls In New Ashok Nagar  ≼🔝 Delhi door step de...
Call Now ≽ 9953056974 ≼🔝 Call Girls In New Ashok Nagar ≼🔝 Delhi door step de...
 
Call Girls Wakad Call Me 7737669865 Budget Friendly No Advance Booking
Call Girls Wakad Call Me 7737669865 Budget Friendly No Advance BookingCall Girls Wakad Call Me 7737669865 Budget Friendly No Advance Booking
Call Girls Wakad Call Me 7737669865 Budget Friendly No Advance Booking
 
VIP Model Call Girls Kothrud ( Pune ) Call ON 8005736733 Starting From 5K to ...
VIP Model Call Girls Kothrud ( Pune ) Call ON 8005736733 Starting From 5K to ...VIP Model Call Girls Kothrud ( Pune ) Call ON 8005736733 Starting From 5K to ...
VIP Model Call Girls Kothrud ( Pune ) Call ON 8005736733 Starting From 5K to ...
 
A Study of Urban Area Plan for Pabna Municipality
A Study of Urban Area Plan for Pabna MunicipalityA Study of Urban Area Plan for Pabna Municipality
A Study of Urban Area Plan for Pabna Municipality
 
Unit 2- Effective stress & Permeability.pdf
Unit 2- Effective stress & Permeability.pdfUnit 2- Effective stress & Permeability.pdf
Unit 2- Effective stress & Permeability.pdf
 
Cara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak Hamil
Cara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak HamilCara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak Hamil
Cara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak Hamil
 
22-prompt engineering noted slide shown.pdf
22-prompt engineering noted slide shown.pdf22-prompt engineering noted slide shown.pdf
22-prompt engineering noted slide shown.pdf
 
Unit 1 - Soil Classification and Compaction.pdf
Unit 1 - Soil Classification and Compaction.pdfUnit 1 - Soil Classification and Compaction.pdf
Unit 1 - Soil Classification and Compaction.pdf
 
Water Industry Process Automation & Control Monthly - April 2024
Water Industry Process Automation & Control Monthly - April 2024Water Industry Process Automation & Control Monthly - April 2024
Water Industry Process Automation & Control Monthly - April 2024
 
University management System project report..pdf
University management System project report..pdfUniversity management System project report..pdf
University management System project report..pdf
 
chapter 5.pptx: drainage and irrigation engineering
chapter 5.pptx: drainage and irrigation engineeringchapter 5.pptx: drainage and irrigation engineering
chapter 5.pptx: drainage and irrigation engineering
 
notes on Evolution Of Analytic Scalability.ppt
notes on Evolution Of Analytic Scalability.pptnotes on Evolution Of Analytic Scalability.ppt
notes on Evolution Of Analytic Scalability.ppt
 
data_management_and _data_science_cheat_sheet.pdf
data_management_and _data_science_cheat_sheet.pdfdata_management_and _data_science_cheat_sheet.pdf
data_management_and _data_science_cheat_sheet.pdf
 
Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...
Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...
Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...
 
ONLINE FOOD ORDER SYSTEM PROJECT REPORT.pdf
ONLINE FOOD ORDER SYSTEM PROJECT REPORT.pdfONLINE FOOD ORDER SYSTEM PROJECT REPORT.pdf
ONLINE FOOD ORDER SYSTEM PROJECT REPORT.pdf
 
Minimum and Maximum Modes of microprocessor 8086
Minimum and Maximum Modes of microprocessor 8086Minimum and Maximum Modes of microprocessor 8086
Minimum and Maximum Modes of microprocessor 8086
 

The Minimum Total Heating Lander By The Maximum Principle Pontryagin

  • 1. DangThiMai Int. Journal of Engineering Research and Applications www.ijera.com ISSN : 2248-9622, Vol. 4, Issue 12( Part 2), December 2014, pp.77-80 www.ijera.com 77|P a g e The Minimum Total Heating Lander By The Maximum Principle Pontryagin DangThiMai*, Nguyen Viet Hung *(Department of Basic Science, University of Transport and Communications,Lang Thuong, Dong Da, Ha Noi, Viet Nam,) **(Le Quy Don Technical University) ABSTRACT The article will research a lander flying into the atmosphere with the flow velocity constraint, i.e. the total load by means of minimizing the total thermal energy at the end of the landing process. The lander’s distance at the last moment depends on the variables selected from the total thermal energy minimum. To deal with the problem weapplyPontryagin maximum principle and scheme Dubovitskij Milutin. Solvingboundaryusingtheparameterandthesolutionobtained inthe choiceof variables. The results of simulations performed on Matlab. Keywords-maximum principle; control; the overload; total heat; minimum. I. Introduction Research on the problem of choosing an angle of launch of the flying object which is reducing velocity in atmospheric conditions under which it is taken into account the minimizing of total heat flow with the load limits of aircraft equipment. The total heat output of the device is the integral form of the following: 1 3 2 0 T Q CV dt  ..1((1) Required to deteminea control )(tCy , which minimizes Q(T) (1) under the following restrictions: )2(, 2 , 2 22 V qN G S qCCn yx    ( 2maxmin , yxoxyyy kCCCCCC  (3) )4(,, )( , 2 2 00 mgG HR R gge H      )5(,sin,sin  VHg m S qCV x   )6(,cos           V g HR V mV S qCy )7(. cos HR RV L     Where  n - full overload, q - speed pressure,  - atmospheric density, V - velocity of the vehicle,  - path angle, H- height, L - the remote, G- the weight of the machine, m – mass, 0g - acceleration due to gravity on the surface of the planet, R - the radius of the planet, xC - the drag coefficient, yC - lift coefficient, S - characteristic area apparatus, NCCCkC yyxo ,,,,,,, maxmin 0  - constants. For the system (1) - (7) the initial conditions: )8(.)0(,)0( )0(,)0( 00 00 LLHH VV    and conditions and limitations:     ,,,)( 111 HTHTVTV   ,)( aTL  T - not fixed. (9) where a – parameter. II. Application of Maximum principle in the regular case. Let lander comes from the initial state (8) in a washed-position (9) in an optimal way in the sense of minimizing the total amount of heat under the assumption that the optimal trajectory regularity condition [3,4]. In the above problem, the regularity condition is equivalent to .,0 Nn C n y       (10) In this case, the maximum principle is as follows:   QPLPVPHPP QLVH , (11) RESEARCH ARTICLE OPEN ACCESS
  • 2. DangThiMai Int. Journal of Engineering Research and Applications www.ijera.com ISSN : 2248-9622, Vol. 4, Issue 12( Part 2), December 2014, pp.77-80 www.ijera.com 78|P a g e  NntL    )(1  , (12) H P V PP HV           ,,   ., Q P L P QL        (13) Here  t - the Lagrange multiplier, which is determined from the condition of Bliss [3, 4].   0       yy C n t C  . (14)  - Pontryagin function, 1L - Lagrange function. QLHV PPPPP ,,,, - corresponding conjugate variables. For inequality constraints (2) satisfies the complementary slackness.    0  Nnt . (15) Since the system (1)- (7) is autonomous and the descent no restrictions, the Pontryagin function (11) is identically zero, ie    ,,,,,,0,, LHVxCuuxP yy  .  qLHV PPPPPP ,,,, . (16) Conjugate variable  tPQ normalized by the condition:  tPQ -1. (17) The initial conditionsfor the system (13) andareunknownparameters of the problem. Condition  tPQ  -1 and   0,,  uxP is essentially determined by threefree parameters:       321 0,0,0 CPCPCP LV  (18) since  0HP is determinedfrom the condition   0,,  uxP . In this case,the number of controlledfunctionsat the end ofthe trajectory(9)coincides with the numberof free parametersof the problem (1) - (9), (11), (12), because the time Tis not fixedandis a free parameter. According to the principleof maximumcontrol programchosen from the condition: min)(max  TQkhiП yC (19) We write downthe partPontryaginfunction(11), which clearly depends onthe control  tCy m SVC P m VSC P x V y 22 2 0    . (20) )(tCy can takecontrolnot onlylimitvalues(3), but alsoan intermediate, which is determined from the condition maxmin0 2 ,0 yyy V y y CCC VkP P C C      . (21) Wecalculatethreevaluesof the function 0 in (20)        yyy CCC 03 max 02 min 01 ,, . and  321 max 0 ,,max  . (22) Equation (22) determine the nature ofthe optimal controlproblemof Pontryagin, ie provided that Nn   .Solution of the problemis greatly simplifiedif the rightend of the trajectoryis controlled bythe condition:   1HTH  . (23) In this case,the solution of (1) - (9) is determined by theboundary conditions   11 )(, VTVT  ,   aTL  . (24) Anddepends on threearbitrary constants 21, CC and 3C . Thus, the initialproblem is reduced toa three- parameterproblem (1) - (9), (13), (18), (24), and the optimal controlis determinedat each point t ofthe maximum principle(24). III. Restriction onoverload Inthe taskdifficulty of determiningthe geometry ofthe optimal trajectoryis the identification ofpointscoming off the disabled Nn   . Note that the total overload (2) has two components xn and yn . The first is called a longitudinal overload, and the second - normal. 22 0 2 0 2 , 2 , 2 yxxxyy nnnC mg SV nC mg SV n     . Instead of limiting (2), we introduce a new restriction   0,, 11  uxNnnNnn xyxy  (25) With an appropriate choice 1N ofthe inequality(25) is known to besatisfiedconstraint (2). This factfollows from   22 1 yxxy nnnnN  . (26) equal signoccurs when 0yC . We now compute the derivative of  ux, (25) follow yC  yy y kCsignC mg SV C 2 2 0 2     . (27) In this case, the Lagrange multiplier  t for limiting   0, ux (25) is determined by the formula
  • 3. DangThiMai Int. Journal of Engineering Research and Applications www.ijera.com ISSN : 2248-9622, Vol. 4, Issue 12( Part 2), December 2014, pp.77-80 www.ijera.com 79|P a g e    yy yV kCsignCV gVCkP P t 2 2 2 0            . (28) IV. Necessary optimality conditions inthe irregular case Now consider the casewhenthe optimal trajectorycontains an interval, when Nn   , andin this intervalat some point 0    yC n . The set of pointsdefinedby the equations: Nn C n y       ,0 . (29) following [3], we call irregularpoints.For the problem 0    yC n at 0yC . For thegiven problemwecanusethe resultsof A. I. Dubovistkij and A. A. Miliutin [3, 4]. According to [3, 4] in the presence ofirregular pointsconjugatesystemof equations are     , , , 0 0 H V L Q P n nd P t H H dt H n nd P t V V dt V P P                                      (30) Here-  t Lagrange multiplier-a d dt  generalized function. For theseobjectsare madecomplementary slackness condition    0, 0y d t n N C dt       .(31) From (29) it follows that in theirregular point(28)andthe conjugate variableswill experienceracingon the values of H n     and V n     when 0 . This is theessential difference between thecaseofirregular, wherethe conjugate variablesare continuous functionsfor mixedclassconstraints[3, 4]. Besidesthe conditions (29) - (31) on the optimal trajectoryshould bethe conditionsof integrabilityof the Lagrange multipliersand the normalization condition(non-triviality condition of the maximum principle). V. Example and numerical result For more details of the problem, we solve the problem of finding the minimum total heating of space shuttle [7], constants and the boundary conditions are: min yC =-0.5; 6.0max yC ; 50000 m S 12  kgkm , 3 0 10.3769.2   kgkm 3 , kmR 2.6371 ; 88.00 xC , k = 0.5 ; 23 0 10.8.9   kmsg , C = 20; N = 4 ; 145.0 1 km ,   0 = -1.25(deg);V(0) =0.35kms 1 , H(0)= 100(km);L(0)= 0(km). The resultreceivedby using Matlab: Figure 1.Height H [km] Figure1illustratesthe shuttle'saltitudeover time, we seethatthe heightHdecreases rapidly from100kmdownto40kmover a period[0, 200s]. Figure 2. Lift coefficient yC In Figure2 illustratesthe state of thecontrolvariableschangeover time. t [s] H [km] t [s] yC
  • 4. DangThiMai Int. Journal of Engineering Research and Applications www.ijera.com ISSN : 2248-9622, Vol. 4, Issue 12( Part 2), December 2014, pp.77-80 www.ijera.com 80|P a g e Figure 3. Full overload n Figure 4.Velocity V[km/s] Figure4 showsthe velocity ofthe shuttlealsodroppedsignificantly duringthisperiod. Figure 5. Path angle [deg] Figure5describestheorbitalinclinationangle. Figure 6. Remote L [km] Figure6illustrates thedistanceofthelandingshipsover time. Wefound thatthedistanceL(t) does notincreasemuchafter200speriod. Figure 7. Totalheat Q Figure7, in theinterval[0, 200s] the totalamountofsurfacetemperatureincreaseand stabilizethe shipduring the periodclose tolanding[200-720s]. According tooursimulationsonthe heatatthe surfaceof thevesselcan be consideredto have beenminimizedduringlanding. VI. Conclusion Three parameterboundary value (24), the problem is solvedfor a fixed value a. Next, we can choosethe desired value a from the minimumof the minimumvalue of the functional(1).The boundary value problemwas solved by thecontinuation of solutionsto the parameter[6]. REFERENCES [1]. A.E. Bryson and Y.-C. Ho, Applied Optimal Control, Rev. Printing (Hemisphere, New York, 1975). [2]. Ярошевский В.А. Вход в атмосферу космических летательных аппаратов. — М.: Наука, 1988. [3]. Афанасьев А.П., Дикусар В.В., Милютин А.А., Чуканов С.В. Необходимое условие в принципе максимума. — М.: Наука, 1990. [4]. Дикусар В.В., Милютин А.А. Количественные и качественные методы в принципе максимума — М.: Наука, 1989. [5]. O. von Struk and R. Bulirsch. Direct and indirect methods for trajectory optimization. AnnalsofOperationsResearch 37(1992)357-373 [6]. Дикусар В. В, Кошька М, Фигура А. Продолжение решений в прикладных задач оптимального управления. М.,МФТИ. 2001. [7]. M. H Breitner and H. Josef Pesch. Reentry trajectory optimization under atmospheric uncertainty as a differential Game. Advances in dynamic games and applications, 1994. t [s] n t [s] V [km/s] t [s] [deg] t [s] L [km] Q Q q [km] t [s]