SlideShare a Scribd company logo
1 of 32
CONSERVATION LAW
 1
X
A  2
x
A
    V
A
A
t
V
G
x
x 








 2
1
 
G
x
V
A
t










c
x
m
x
x ,
, 

 

x
m
x




 
 ,
x
c
x V


,

 
 
G
c
x
m
x
V
A
t











 ,
,
   
G
x
m
x
V
V
A
V
A
t













 ,      
G
x
m
x
x
V
AV
V
A
V
A
V
t

















 ,
   
G
x
x
V
AV
V
x
A
V
A
V
t


































  G
t

 






.
      G
m V
V
t

 












.
.
.
      G
V
V
t

 













.
.
.
3-D PROPERTY
CONSERVATION EQUATION
MOLECULER AND CONVECTION HEAT TRANSPORT
PROCESS (APPLICATION OF EQUATION OF CHANGE)
Property
Accumulation
Rate
=
Inlet Property
Rate -
Outlet Property
Rate +
Property
Generation
Rate
HEAT TRANSPORT
MOLECULER AND CONVECTION HEAT TRANSPORT
PROCESS (APPLICATION OF EQUATION OF CHANGE)
General heat transport phenomena is expressed as equation of change. Equation
of change concerning conduction and convection heat transport is called Energy
Equation basically as microscopic energy conservation equation.
      G
m V
V
t

 












.
.
.
=CpT, m
 T
k
q 



    
     G
T
V
CpT
CpT
CpT
V
t
CpT 
















.
.
. 




 
CpT



 G
G T

 

Cp
k

  = thermal diffusivity
HEAT TRANSPORT
       
v
v
p
q
v
U
t
U











:
.
.
ˆ
.
ˆ



     
v
v
T
p
T
q
T
v
t
T
v
C
V































:
.
.
.
ˆ
ˆ


      Dt
Dp
v
q
v
H
t
H










:
.
ˆ
.
ˆ



   
v
Dt
Dp
T
q
T
v
t
T
p
C
p
























:
ln
ln
.
.
ˆ 


OTHER FORMS OF ENERGY EQUATION
Expressed in 𝑈
:
Expressed in 𝐶𝑣 and T
Expressed in 𝐻
Expressed in 𝐶𝑝 and T
  V
V 


 
 : V
 Tabel $B.7
MOLECULER AND CONVECTION HEAT TRANSPORT
PROCESS (APPLICATION OF EQUATION OF CHANGE)
V
T
k
Dt
DT
p
C 


 
 2
ˆ
HEAT TRANSPORT
2B
x
y
z
L
W
EXAMPLE -2
Determine temprature
distribution in a viscous liquid
flowing downward in steady
state and laminar between two
vertical paralell plate. The two
plates are maintained at
constant temprature of 𝑇0.
Assume constant  and k.
Solution:
First, we draw sketsc of flow
system,
Assumptions:
1.Steady state,
2.Laminar flow,
3.Vx=Vy=0, VZ is not function of y
4. Newtonian Fluid,
5.Constant , , k
6.
𝜕𝑇
𝜕𝑦
=
𝜕𝑇
𝜕𝑧
= 0
7. No slip at wall
8. End effect is neglected
MOLECULER AND CONVECTION HEAT TRANSPORT
PROCESS (APPLICATION OF EQUATION OF CHANGE)
HEAT TRANSPORT
0












z
V
y
V
x
V
t
z
y
x 



0



z
Vz

0



z
Vz
z
z
z
z
z
z
z
y
x
x
z
g
z
V
y
V
x
V
z
P
z
V
V
y
V
V
x
V
V
t
V


 








































2
2
2
2
2
2
z
z
g
dx
V
d
z
P

 




 2
2
0
L
dx
V
d L
z 0
2
2




 z
g
P z




1
0
K
x
L
dx
dV L
z






0
0 


dx
dV
x z
x
L
dx
dV L
z

0




2
2
0
2
K
x
L
V L
z 





0


 z
V
B
x
2
0
2
2
B
L
K L






SOLUTION
MOLECULER AND CONVECTION HEAT TRANSPORT
PROCESS (APPLICATION OF EQUATION OF CHANGE)
K1=0
HEAT TRANSPORT


















2
2
1
2 B
x
L
B
Vz
 















2
max
, 1
B
x
Vz
L
B
Vz

2
2
max
,



2
max
.
2
B
x
V
dx
dV
z
z







































2
2
2
2
2
2
z
T
y
T
x
T
k
z
T
V
y
T
V
x
T
V
t
T
C z
y
x
P





















































































2
2
2
2
2
2
2
y
V
z
V
x
V
z
V
x
V
y
V
z
V
y
V
x
V z
y
z
x
y
x
z
y
x


0
2
2
2








dx
dV
dx
T
d
k z
 0
4
. 4
2
2
max
,
2
2








B
x
V
dx
T
d
k z

3
3
4
2
max
,
3
4
K
x
kB
V
dx
dT z




4
3
4
4
2
max
,
3
K
x
K
x
kB
V
T z





ENERGY EQUATION
SOLUTION
MOLECULER AND CONVECTION HEAT TRANSPORT
PROCESS (APPLICATION OF EQUATION OF CHANGE)
From table A-5
HEAT TRANSPORT
4
3
4
4
2
max
,
3
K
x
K
x
kB
V
T z





0
0 


dx
dT
x
4
4
4
2
max
,
3
K
x
kB
V
T z




0
T
T
B
x 


B.C-1:
B.C.-2:
0
3 
K
k
V
T
K z
3
2
max
,
0
4




















4
2
max
,
0 1
3 B
x
k
V
T
T z

 



















4
2
4
0 1
12 B
x
k
L
B
T
T

SOLUTION
MOLECULER AND CONVECTION HEAT TRANSPORT
PROCESS (APPLICATION OF EQUATION OF CHANGE)
HEAT TRANSPORT
Example 3
Inlet air at T1
Cooler
A system consist of two porous concentric spherical walls with radius R1 and R2.
Outer surfase of inner wall is maintained at temprature T1 and inner surface of
outer wall is maintained at tempratrure T2. Dry air at temprature T1 is blown
radially from inner wall to outer wall. Develop an expression for heat removal
rate needed from inner wall as a function of air mass flow rate. Assume steady
state laminar flow and low gas rate.
MOLECULER AND CONVECTION HEAT TRANSPORT
PROCESS (APPLICATION OF EQUATION OF CHANGE)
HEAT TRANSPORT
Solution:
Assumption:
0
.
1 
 
 V
V )
(r
f
Vr 
2. T=T(r)
)
(
.
3 r



  0
1 2
2

r
V
r
dr
d
r
 
r
V
r 
2

4
r
w

constant
Continuity Equation:
  














 r
r
r V
r
dr
d
r
dr
d
dr
d
dr
dV
V 2
2
1


Equation of Motion
dr
d
dr
r
w
d
r
w
r
r 








2
2
4
4


dr
d
r
wr 



5
2
2
8 
  
 

 



2
2
5
2
2
8
R
r
r
R
r
r
dr
w
d


    












 4
4
2
2
2
2
1
1
32 r
R
w
r
R r


   



















4
2
4
2
2
2
2 1
32 r
R
R
w
R
r r


MOLECULER AND CONVECTION HEAT TRANSPORT
PROCESS (APPLICATION OF EQUATION OF CHANGE)
r
2
r
2
2
2
r
2
2
r
2
2
2
2
2
θ
r
r
θ
r
r
r
ρg
v
θ
sin
r
1
θ
v
sinθ
θ
sinθ
r
1
r
)
v
(r
r
1
μ
r
r
v
v
v
θ
sin
r
v
θ
v
r
v
r
v
v
t
v
ρ



































 
















p
𝜕
𝜕𝑟
1
𝑟2
𝜕
𝜕𝑟
𝑟2𝑣𝑟
HEAT TRANSPORT







dr
dT
r
dr
d
r
k
dr
dT
V
C r
p
2
2
1
ˆ
 






dr
dT
r
dr
d
C
w
k
dr
dT
p
r
2
ˆ
4
𝑢 = 𝑟2
𝑑𝑇
𝑑𝑟
= 𝐾1𝑒−
𝑅0
𝑟
2
0
1
0
2
0
0
2
1
2
R
R
R
R
R
R
r
R
e
e
e
e
T
T
T
T
/
/
/
/








 k
C
w
R P
r 
4
0 /
ˆ

1
2
1
4
R
r
r
q
R
Q


 
1
2
1
4
R
r
dr
dT
k
R

 
 
  
  1
1
4
2
1
1
0
1
2
0




R
R
R
R
T
T
k
R
Q
/
/
exp
  
2
1
1
2
1
0
1
4
R
R
T
T
k
R
Q
/




1
1
0
0






e
Q
Q
Q    
k
R
R
R
C
w
R
R
R
R P
r
1
2
1
1
1
0
4
1
1


/
ˆ
/ 



Energy Equation:
Substitution:
Heat transafer rate to inner wall is
Cooling requirement at inner wall,
If there is no air flow
MOLECULER AND CONVECTION HEAT TRANSPORT
PROCESS (APPLICATION OF EQUATION OF CHANGE)
𝑢
𝑟2
=
1
𝑅0
𝑑
𝑑𝑟
𝑢 →
𝑑𝑟
𝑟2
=
1
𝑅0
𝑑𝑢
𝑢
−
𝑅0
𝑟
+ ln 𝐾1 = ln 𝑢 → 𝑢 = 𝐾1𝑒−
𝑅0
𝑟
𝑑𝑇 = 𝐾1
𝑒−
𝑅0
𝑟
𝑟2 𝑑𝑟
𝑠 =
𝑅0
𝑟
→ 𝑑𝑠 = −
𝑅0
𝑟2 𝑑𝑟 𝑑𝑇 = 𝑇 = 𝐾1
𝑒−
𝑅0
𝑟
𝑟2 𝑑𝑟 = −
𝐾1
𝑅0
𝑒−𝑠
𝑑𝑠 =
𝐾1
𝑅0
𝑒−
𝑅0
𝑟 + 𝐾2
𝑢 = 𝑟2
𝑑𝑇
𝑑𝑟
EQUATION OF
CHANGE TABLE
     
0
z
ρv
y
ρv
x
ρv
t
ρ z
y
x












     
0
z
v
ρ
θ
v
ρ
r
1
r
v
r
ρ
r
1
t
ρ z
θ
r












     
0
v
ρ
rsinθ
1
θ
sinθ
v
ρ
rsinθ
1
r
v
r
ρ
r
1
t
ρ θ
r
2
2














Cartesian Coordinate System:
Cylindrical Coordinate System:
Spherical Coordinate System
Table A-1 Continuity Equation
-Table A2Equation of Motion (Equation of Momentum)
x
zx
yx
xx
x
z
x
y
x
z
x
ρg
z
τ
y
τ
x
τ
x
z
v
v
y
v
v
x
v
v
t
v
ρ 







































 p
y
zy
yy
xy
y
z
y
y
y
z
y
ρg
z
τ
y
τ
x
τ
y
z
v
v
y
v
v
x
v
v
t
v
ρ 







































 p
z
zz
yz
xz
z
z
z
y
z
z
z
ρg
z
τ
y
τ
x
τ
z
z
v
v
y
v
v
x
v
v
t
v
ρ 







































 p
Cartesian Coordinate System:
 
r
rz
θθ
rθ
rr
r
z
2
θ
r
θ
r
r
r
ρg
z
τ
r
τ
θ
τ
r
1
r
rτ
r
1
r
z
v
v
r
v
θ
v
r
v
r
v
v
t
v
ρ








































 p
 
θ
zθ
θθ
rθ
2
2
θ
z
θ
r
θ
θ
θ
r
θ
ρg
z
τ
θ
τ
r
1
r
τ
r
r
1
θ
r
1
z
v
v
r
v
v
θ
v
r
v
r
v
v
t
v
ρ







































 p
 
z
zz
θz
rz
z
z
z
θ
z
r
z
ρg
z
τ
θ
τ
r
1
x
rτ
r
1
z
z
v
v
θ
v
r
v
r
v
v
t
v
ρ 



































 p
Cylindrical Coordinate System
-Table A2Equation of Motion (Equation of Momentum)
Spherical Coordinate System
 
r
r
θθ
rθ
rr
2
2
2
2
θ
r
r
θ
r
r
r
ρg
τ
rsinθ
1
r
τ
τ
θ
sinθ
τ
rsinθ
1
r
τ
r
r
1
r
r
v
v
v
rsinθ
v
θ
v
r
v
r
v
v
t
v
ρ































 

















 p
 
θ
rθ
θ
θθ
rθ
2
2
2
θ
r
θ
θ
θ
θ
r
θ
ρg
τ
r
cotθ
r
τ
τ
rsinθ
1
θ
sinθ
τ
rsinθ
1
r
τ
r
r
1
θ
r
1
r
cotθ
v
r
v
v
v
rsinθ
v
θ
v
r
v
r
v
v
t
v
ρ



















































p
 














ρg
τ
r
cotθ
2
r
τ
τ
rsinθ
1
θ
τ
r
1
r
τ
r
r
1
rsinθ
1
cotθ
r
v
v
r
v
v
v
rsinθ
v
θ
v
r
v
r
v
v
t
v
ρ
θ
r
θ
r
2
2
θ
r
θ
φ
r
φ












































 p
-Table A2Equation of Motion (Equation of Momentum)
x
2
x
2
x
2
2
x
2
x
z
x
y
x
z
x
ρg
z
v
y
v
x
v
μ
x
z
v
v
y
v
v
x
v
v
t
v
ρ 







































 p
y
2
y
2
2
y
2
2
y
2
y
z
y
y
y
z
y
ρg
z
v
y
v
x
v
μ
y
z
v
v
y
v
v
x
v
v
t
v
ρ 







































 p
z
2
z
2
2
z
2
2
z
2
z
z
z
y
z
z
z
ρg
z
v
y
v
x
v
μ
z
z
v
v
y
v
v
x
v
v
t
v
ρ 







































 p
-Table A2Equation of Motion (Equation of Momentum)
(Incompressible Newtonian Fluid)
Cartesian Coordinate System:
Table A-3 Equation of Motion (Equation of Momentum)
(Incompresiible Newtonian Fluid)
Cylindrical Coordinate:
  r
2
r
2
θ
2
2
r
2
2
r
r
z
2
θ
r
θ
r
r
r
ρg
z
v
θ
v
r
2
θ
v
r
1
rv
r
r
1
r
μ
r
z
v
v
r
v
θ
v
r
v
r
v
v
t
v
ρ


















































 p
  θ
2
θ
2
r
2
2
θ
2
2
θ
θ
z
θ
r
θ
θ
θ
r
θ
ρg
z
v
θ
v
r
2
θ
v
r
1
rv
r
r
1
r
μ
θ
r
1
z
v
v
r
v
v
θ
v
r
v
r
v
v
t
v
ρ
















































 p
x
2
z
2
2
z
2
2
z
z
z
z
θ
z
r
z
ρg
z
v
θ
v
r
1
r
v
r
r
r
1
μ
z
z
v
v
θ
v
r
v
r
v
v
t
v
ρ 











































 p
Table A-3 Equation of Motion ( Equation of Momentum)
(Incompressible Newtonian Fluid)
Spherical Coordinate
r
2
r
2
2
2
r
2
2
r
2
2
2
2
2
θ
r
r
θ
r
r
r
ρg
v
θ
sin
r
1
θ
v
sinθ
θ
sinθ
r
1
r
)
v
(r
r
1
μ
r
r
v
v
v
θ
sin
r
v
θ
v
r
v
r
v
v
t
v
ρ



































 
















p
θ
2
2
r
2
2
θ
2
2
2
θ
2
θ
2
2
2
θ
r
θ
θ
θ
θ
r
θ
ρg
v
θ
sin
r
cosθ
2
θ
v
r
2
v
θ
sin
r
1
θ
sinθ
v
sinθ
1
θ
r
1
r
v
r
r
r
1
μ
θ
r
1
r
cotθ
v
r
v
v
v
rsinθ
v
θ
v
r
v
r
v
v
t
v
ρ






































































 p
















ρg
v
θ
sin
r
cosθ
2
v
sinθ
r
2
v
θ
sin
r
1
θ
sinθ
v
sinθ
1
θ
r
1
r
v
r
r
r
1
μ
rsinθ
1
cotθ
r
v
v
r
v
v
v
rsinθ
v
θ
v
r
v
r
v
v
t
v
ρ
θ
2
2
r
2
2
2
2
2
2
2
2
θ
r
θ
r




































































 p
Table A-4 Components of stress tensor for Newtonian Fluid
Koordinat Silinder Koordinat Bola
 










 v
.
κ
x
v
2
μ
τ x
xx
 










 v
.
κ
y
v
2
μ
τ
y
yy
 










 v
z
vz
xx .
2 
















x
v
y
v
μ
τ
τ
y
x
yx
xy














y
v
z
v
μ
τ
τ z
y
zy
yz














z
v
x
v
μ
τ
τ x
z
xz
zx
 










 v
.
κ
r
v
2
μ
τ r
rr
 

















 v
.
κ
r
v
θ
v
r
1
2
μ
τ r
θ
θθ
 










 v
.
κ
z
v
2
μ
τ z
zz
 














θ
v
r
1
r
/r
v
r
μ
τ
τ r
θ
θr
rθ














θ
v
r
1
z
v
μ
τ
τ z
θ
zθ
θz














z
v
r
v
μ
τ
τ r
z
rz
zr
 










 v
.
κ
r
v
2
μ
τ r
rr
 

















 v
.
κ
r
v
θ
v
r
1
2
μ
τ r
θ
θθ
 




















 v
.
κ
r
cotθ
v
r
v
v
rsinθ
1
2
μ
τ θ
r

















θ
v
r
1
r
/r)
(v
r
μ
τ
τ r
θ
θr
rθ


























θ
θ
θ
v
rsinθ
1
sinθ
v
θ
r
sinθ
μ
τ
τ














r
/r)
(v
r
φ
v
rsinθ
1
μ
τ
τ
φ
r
r
r 

3
2
κ 
Cartesian Coordinate System
Cylindrical Coordinate
Spherical Coordinate
 
v
.

z
v
y
v
x
v z
y
x








 
z
v
θ
v
r
1
rv
r
r
1 z
θ
r








   









 v
rsinθ
1
sinθ
v
θ
rsinθ
1
v
r
r
r
1
θ
r
2
2
Cartesian Coordinate System:
Tabel A-5
Fungsi untuk fluida Newton
Coordinate System
Cartesian
Sylindrical
Spherical
v

 2
2
z
x
2
y
z
2
x
y
2
z
2
y
2
x
v
.
3
2
x
v
z
v
z
v
y
v
y
v
x
v
z
v
y
v
x
v
2










































































 2
2
z
r
2
θ
z
2
r
θ
2
z
2
r
θ
2
r
v
.
3
2
r
v
z
v
z
v
θ
v
r
1
θ
v
r
1
r
v
r
r
z
v
r
v
θ
v
r
1
r
v
2














































































 2
2
r
2
θ
2
r
θ
2
θ
r
2
r
θ
2
r
v
.
3
2
r
v
r
r
v
rsi
n θ
1
v
rsi
n θ
1
si
n θ
v
θ
r
si
n θ
θ
v
r
1
r
v
r
r
r
cotθ
v
r
v
v
rsi
n θ
1
r
v
θ
v
r
1
r
v
2









































































































Table A-6
Component of Energy Flux
Cartesian Cylindrical Spherical
z
T
k
q
y
T
k
q
x
T
k
q
z
y
x












z
T
k
q
θ
T
r
1
k
q
r
T
k
q
z
θ
r

























T
rsinθ
1
k
q
θ
T
r
1
k
q
r
T
k
q
φ
θ
r
Tabel A-7
Energy Equation in energy and momentum flux
 










































































































y
v
z
v
τ
x
v
z
v
τ
x
v
y
v
τ
z
v
τ
y
v
τ
x
v
τ
v
.
T
p
T
z
q
y
q
x
q
z
T
v
y
T
v
x
T
v
t
T
ρC
z
y
yz
z
x
xz
y
x
xy
z
zz
y
yy
x
xx
ρ
z
y
x
z
y
x
v
   

















































































































z
v
θ
v
r
1
τ
z
v
r
v
τ
θ
v
r
1
r
v
r
r
τ
z
v
τ
v
θ
v
r
1
τ
r
v
τ
v
.
T
p
T
z
q
θ
q
r
1
rq
r
r
1
z
T
v
θ
T
r
v
r
T
v
t
T
ρC
θ
z
θz
r
z
rz
r
θ
rθ
z
zz
r
θ
θθ
r
rr
ρ
z
θ
r
z
θ
r
v
 
 





















































































































































v
r
cotθ
v
rsinθ
1
θ
v
r
1
τ
r
v
v
rsinθ
1
r
v
τ
r
v
θ
v
r
1
r
v
τ
r
cotθ
v
r
v
v
rsinθ
1
τ
v
θ
v
r
1
τ
r
v
τ
v
.
T
p
T
q
rsinθ
1
θ
sinθ
q
rsinθ
1
q
r
r
r
1
T
rsinθ
v
θ
T
r
v
r
T
v
t
T
ρC
θ
θ
r
r
θ
r
θ
rθ
θ
r
r
θ
θθ
r
rr
ρ
θ
r
2
2
θ
r
v
Cartesian
Cylindrical
Spherical
Tabel A-8
V




































μ
z
T
y
T
x
T
k
z
T
v
y
T
v
x
T
v
t
T
ρC 2
2
2
2
2
2
z
y
x
p
V










































μ
z
T
θ
T
r
1
r
T
r
r
r
1
k
z
T
v
θ
T
r
v
r
T
v
t
T
ρC 2
2
2
2
2
z
θ
r
p
V




















































μ
T
θ
sin
r
1
θ
T
sinθ
θ
sinθ
r
1
r
T
r
r
r
1
k
T
rsinθ
v
θ
T
r
v
r
T
v
t
T
ρ 2
2
2
2
2
2
2
θ
r
p



Energy Equation For Incompressible Newtonian Fluid with constant properties
Spherical
Cylindrical
Cartesian
𝜌𝐶𝑝
V




















































μ
T
θ
sin
r
1
θ
T
sinθ
θ
sinθ
r
1
r
T
r
r
r
1
k
T
rsinθ
v
θ
T
r
v
r
T
v
t
T
ρ 2
2
2
2
2
2
2
θ
r
p



Tabel A-9
Components of molecular Diffusion Flux
Spherical
z
C
D
J
y
C
D
J
x
C
D
J
A
AB
Az
A
AB
Ay
A
AB
Ax












z
C
D
J
θ
C
r
1
D
J
r
C
D
J
A
AB
Az
A
AB
Aθ
A
AB
Ar

























A
AB
Az
A
AB
Aθ
A
AB
Ar
C
rsinθ
1
D
J
θ
C
r
1
D
J
r
C
D
J
Cartesian Cylindrical
Tabel A-10
Continuity Equation of Component A
A
Az
Ay
Ax
A
R
z
N
y
N
x
N
t
C




















  A
Az
Aθ
Ar
A
R
z
N
θ
N
r
1
rN
r
r
1
t
C


















    A
A
Aθ
Ar
2
2
A
R
N
rsinθ
1
sinθ
N
θ
rsinθ
1
N
r
r
r
1
t
C






















Cartesian
Cylindrical
Spherical
TabLE A-11
Continuity equation of component A for constant properties
A
2
A
2
2
A
2
2
A
2
AB
A
z
A
y
A
x
A
R
z
C
y
C
x
C
D
z
C
v
y
C
v
x
C
v
t
C





































A
2
A
2
2
A
2
2
A
AB
A
z
A
θ
A
r
A
R
z
C
θ
C
r
1
r
C
r
r
r
1
D
z
C
v
θ
C
r
1
v
r
C
v
t
C











































A
2
A
2
2
2
A
2
A
2
2
AB
A
A
θ
A
r
A
R
C
θ
sin
r
1
θ
C
sinθ
θ
sinθ
r
1
r
C
r
r
r
1
D
C
rsin θ
1
v
θ
C
r
1
v
r
C
v
t
C
























































Cartesian
Cylindrical
Spherical
P(x,y,z)
y
z
x
y
x
z
CARTESIAN COORDINATE SYSTEM
z
 
z
r
P ,
,

r
CYLINDRICAL COORDINATE SYSTEM
 

,
,
r
P


SPHERICAL COORDINATE SYSTEM
NON NEWTONIAN FLUID
 




















:
2
1
0
0


   2
0
:
2
1


 
0

   2
0
:
2
1


 
0
0 

 




y
Vx
yx 2
0
2

 
yx
0



y
Vx 2
0
2

 
yx
  












1
:
2
1
n
m

 























 

2
0
0
:
2
1
1







BINGHAM PLASTIC
POWER LAW
Model Reiner-Philippof
NON NEWTONIAN FLUID
 




















:
2
1
0
0


   2
0
:
2
1


 
0

   2
0
:
2
1


 
0
0 

 




y
Vx
yx 2
0
2

 
yx
0



y
Vx 2
0
2

 
yx
  












1
:
2
1
n
m

 























 

2
0
0
:
2
1
1







BINGHAM PLASTIC
POWER LAW
Model Reiner-Philippof

More Related Content

Similar to PR_TMP_IUP_2021_CHAP3.pptx

free Video lecture in india
free Video lecture in indiafree Video lecture in india
free Video lecture in indiaEdhole.com
 
Free video lecture in india
Free video lecture in indiaFree video lecture in india
Free video lecture in indiaCss Founder
 
Open channel flow
Open channel flowOpen channel flow
Open channel flowAdnan Aslam
 
Oil Spill Simulation near The Red Sea Coast using The Random Walk Technique
Oil Spill Simulation near The Red Sea Coast using The Random Walk TechniqueOil Spill Simulation near The Red Sea Coast using The Random Walk Technique
Oil Spill Simulation near The Red Sea Coast using The Random Walk TechniqueAmro Elfeki
 
Vol. 1 (1), 2014, 7–11
Vol. 1 (1), 2014, 7–11Vol. 1 (1), 2014, 7–11
Vol. 1 (1), 2014, 7–11Said Benramache
 
The Minimum Total Heating Lander By The Maximum Principle Pontryagin
The Minimum Total Heating Lander By The Maximum Principle PontryaginThe Minimum Total Heating Lander By The Maximum Principle Pontryagin
The Minimum Total Heating Lander By The Maximum Principle PontryaginIJERA Editor
 
On the dynamic behavior of the current in the condenser of a boost converter ...
On the dynamic behavior of the current in the condenser of a boost converter ...On the dynamic behavior of the current in the condenser of a boost converter ...
On the dynamic behavior of the current in the condenser of a boost converter ...TELKOMNIKA JOURNAL
 
Gas Dynamics, Lecture 2.pptx
Gas Dynamics, Lecture 2.pptxGas Dynamics, Lecture 2.pptx
Gas Dynamics, Lecture 2.pptxNamLe218588
 
Ch07a Entropy (1).pptx
Ch07a Entropy (1).pptxCh07a Entropy (1).pptx
Ch07a Entropy (1).pptxMercyjiren
 
Heat Conduction Simulation with FDM
Heat Conduction Simulation with FDMHeat Conduction Simulation with FDM
Heat Conduction Simulation with FDMXueer Zhang
 
Lecture slides Ist & 2nd Order Circuits[282].pdf
Lecture slides Ist & 2nd Order Circuits[282].pdfLecture slides Ist & 2nd Order Circuits[282].pdf
Lecture slides Ist & 2nd Order Circuits[282].pdfsami717280
 
009b (PPT) Viscous Flow -2.pdf .
009b (PPT) Viscous Flow -2.pdf           .009b (PPT) Viscous Flow -2.pdf           .
009b (PPT) Viscous Flow -2.pdf .happycocoman
 

Similar to PR_TMP_IUP_2021_CHAP3.pptx (20)

free Video lecture in india
free Video lecture in indiafree Video lecture in india
free Video lecture in india
 
Free video lecture in india
Free video lecture in indiaFree video lecture in india
Free video lecture in india
 
Ostwald
OstwaldOstwald
Ostwald
 
Ostwald
OstwaldOstwald
Ostwald
 
Open channel flow
Open channel flowOpen channel flow
Open channel flow
 
Oil Spill Simulation near The Red Sea Coast using The Random Walk Technique
Oil Spill Simulation near The Red Sea Coast using The Random Walk TechniqueOil Spill Simulation near The Red Sea Coast using The Random Walk Technique
Oil Spill Simulation near The Red Sea Coast using The Random Walk Technique
 
Fluid dynamics
Fluid dynamicsFluid dynamics
Fluid dynamics
 
Vol. 1 (1), 2014, 7–11
Vol. 1 (1), 2014, 7–11Vol. 1 (1), 2014, 7–11
Vol. 1 (1), 2014, 7–11
 
2. fluids 2
2. fluids 22. fluids 2
2. fluids 2
 
N3 l penelet_final
N3 l penelet_finalN3 l penelet_final
N3 l penelet_final
 
The Minimum Total Heating Lander By The Maximum Principle Pontryagin
The Minimum Total Heating Lander By The Maximum Principle PontryaginThe Minimum Total Heating Lander By The Maximum Principle Pontryagin
The Minimum Total Heating Lander By The Maximum Principle Pontryagin
 
On the dynamic behavior of the current in the condenser of a boost converter ...
On the dynamic behavior of the current in the condenser of a boost converter ...On the dynamic behavior of the current in the condenser of a boost converter ...
On the dynamic behavior of the current in the condenser of a boost converter ...
 
Gas Dynamics, Lecture 2.pptx
Gas Dynamics, Lecture 2.pptxGas Dynamics, Lecture 2.pptx
Gas Dynamics, Lecture 2.pptx
 
Ch07a Entropy (1).pptx
Ch07a Entropy (1).pptxCh07a Entropy (1).pptx
Ch07a Entropy (1).pptx
 
Drift flux
Drift fluxDrift flux
Drift flux
 
Simple & Fast Fluids
Simple & Fast FluidsSimple & Fast Fluids
Simple & Fast Fluids
 
Heat Conduction Simulation with FDM
Heat Conduction Simulation with FDMHeat Conduction Simulation with FDM
Heat Conduction Simulation with FDM
 
Fl35967977
Fl35967977Fl35967977
Fl35967977
 
Lecture slides Ist & 2nd Order Circuits[282].pdf
Lecture slides Ist & 2nd Order Circuits[282].pdfLecture slides Ist & 2nd Order Circuits[282].pdf
Lecture slides Ist & 2nd Order Circuits[282].pdf
 
009b (PPT) Viscous Flow -2.pdf .
009b (PPT) Viscous Flow -2.pdf           .009b (PPT) Viscous Flow -2.pdf           .
009b (PPT) Viscous Flow -2.pdf .
 

Recently uploaded

18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdfssuser54595a
 
Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)eniolaolutunde
 
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdfBASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdfSoniaTolstoy
 
Accessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impactAccessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impactdawncurless
 
How to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptxHow to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptxmanuelaromero2013
 
MENTAL STATUS EXAMINATION format.docx
MENTAL     STATUS EXAMINATION format.docxMENTAL     STATUS EXAMINATION format.docx
MENTAL STATUS EXAMINATION format.docxPoojaSen20
 
Introduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptxIntroduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptxpboyjonauth
 
A Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformA Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformChameera Dedduwage
 
Solving Puzzles Benefits Everyone (English).pptx
Solving Puzzles Benefits Everyone (English).pptxSolving Puzzles Benefits Everyone (English).pptx
Solving Puzzles Benefits Everyone (English).pptxOH TEIK BIN
 
The basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxThe basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxheathfieldcps1
 
Sanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfSanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfsanyamsingh5019
 
Alper Gobel In Media Res Media Component
Alper Gobel In Media Res Media ComponentAlper Gobel In Media Res Media Component
Alper Gobel In Media Res Media ComponentInMediaRes1
 
Crayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon ACrayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon AUnboundStockton
 
Contemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptx
Contemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptxContemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptx
Contemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptxRoyAbrique
 
Introduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher EducationIntroduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher Educationpboyjonauth
 
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17Incoming and Outgoing Shipments in 1 STEP Using Odoo 17
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17Celine George
 
How to Configure Email Server in Odoo 17
How to Configure Email Server in Odoo 17How to Configure Email Server in Odoo 17
How to Configure Email Server in Odoo 17Celine George
 
Employee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptxEmployee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptxNirmalaLoungPoorunde1
 
Presiding Officer Training module 2024 lok sabha elections
Presiding Officer Training module 2024 lok sabha electionsPresiding Officer Training module 2024 lok sabha elections
Presiding Officer Training module 2024 lok sabha electionsanshu789521
 

Recently uploaded (20)

18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
 
Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)
 
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdfBASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
 
Accessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impactAccessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impact
 
How to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptxHow to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptx
 
MENTAL STATUS EXAMINATION format.docx
MENTAL     STATUS EXAMINATION format.docxMENTAL     STATUS EXAMINATION format.docx
MENTAL STATUS EXAMINATION format.docx
 
Introduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptxIntroduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptx
 
A Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformA Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy Reform
 
Solving Puzzles Benefits Everyone (English).pptx
Solving Puzzles Benefits Everyone (English).pptxSolving Puzzles Benefits Everyone (English).pptx
Solving Puzzles Benefits Everyone (English).pptx
 
The basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxThe basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptx
 
Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝
 
Sanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfSanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdf
 
Alper Gobel In Media Res Media Component
Alper Gobel In Media Res Media ComponentAlper Gobel In Media Res Media Component
Alper Gobel In Media Res Media Component
 
Crayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon ACrayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon A
 
Contemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptx
Contemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptxContemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptx
Contemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptx
 
Introduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher EducationIntroduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher Education
 
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17Incoming and Outgoing Shipments in 1 STEP Using Odoo 17
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17
 
How to Configure Email Server in Odoo 17
How to Configure Email Server in Odoo 17How to Configure Email Server in Odoo 17
How to Configure Email Server in Odoo 17
 
Employee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptxEmployee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptx
 
Presiding Officer Training module 2024 lok sabha elections
Presiding Officer Training module 2024 lok sabha electionsPresiding Officer Training module 2024 lok sabha elections
Presiding Officer Training module 2024 lok sabha elections
 

PR_TMP_IUP_2021_CHAP3.pptx

  • 1. CONSERVATION LAW  1 X A  2 x A     V A A t V G x x           2 1   G x V A t           c x m x x , ,      x m x        , x c x V   ,      G c x m x V A t             , ,     G x m x V V A V A t               ,       G x m x x V AV V A V A V t                   ,     G x x V AV V x A V A V t                                     G t          .       G m V V t                . . .       G V V t                 . . . 3-D PROPERTY CONSERVATION EQUATION MOLECULER AND CONVECTION HEAT TRANSPORT PROCESS (APPLICATION OF EQUATION OF CHANGE) Property Accumulation Rate = Inlet Property Rate - Outlet Property Rate + Property Generation Rate
  • 2. HEAT TRANSPORT MOLECULER AND CONVECTION HEAT TRANSPORT PROCESS (APPLICATION OF EQUATION OF CHANGE) General heat transport phenomena is expressed as equation of change. Equation of change concerning conduction and convection heat transport is called Energy Equation basically as microscopic energy conservation equation.       G m V V t                . . . =CpT, m  T k q               G T V CpT CpT CpT V t CpT                  . . .        CpT     G G T     Cp k    = thermal diffusivity
  • 3. HEAT TRANSPORT         v v p q v U t U            : . . ˆ . ˆ          v v T p T q T v t T v C V                                : . . . ˆ ˆ         Dt Dp v q v H t H           : . ˆ . ˆ        v Dt Dp T q T v t T p C p                         : ln ln . . ˆ    OTHER FORMS OF ENERGY EQUATION Expressed in 𝑈 : Expressed in 𝐶𝑣 and T Expressed in 𝐻 Expressed in 𝐶𝑝 and T   V V       : V  Tabel $B.7 MOLECULER AND CONVECTION HEAT TRANSPORT PROCESS (APPLICATION OF EQUATION OF CHANGE) V T k Dt DT p C       2 ˆ
  • 4. HEAT TRANSPORT 2B x y z L W EXAMPLE -2 Determine temprature distribution in a viscous liquid flowing downward in steady state and laminar between two vertical paralell plate. The two plates are maintained at constant temprature of 𝑇0. Assume constant  and k. Solution: First, we draw sketsc of flow system, Assumptions: 1.Steady state, 2.Laminar flow, 3.Vx=Vy=0, VZ is not function of y 4. Newtonian Fluid, 5.Constant , , k 6. 𝜕𝑇 𝜕𝑦 = 𝜕𝑇 𝜕𝑧 = 0 7. No slip at wall 8. End effect is neglected MOLECULER AND CONVECTION HEAT TRANSPORT PROCESS (APPLICATION OF EQUATION OF CHANGE)
  • 5. HEAT TRANSPORT 0             z V y V x V t z y x     0    z Vz  0    z Vz z z z z z z z y x x z g z V y V x V z P z V V y V V x V V t V                                             2 2 2 2 2 2 z z g dx V d z P         2 2 0 L dx V d L z 0 2 2      z g P z     1 0 K x L dx dV L z       0 0    dx dV x z x L dx dV L z  0     2 2 0 2 K x L V L z       0    z V B x 2 0 2 2 B L K L       SOLUTION MOLECULER AND CONVECTION HEAT TRANSPORT PROCESS (APPLICATION OF EQUATION OF CHANGE) K1=0
  • 6. HEAT TRANSPORT                   2 2 1 2 B x L B Vz                  2 max , 1 B x Vz L B Vz  2 2 max ,    2 max . 2 B x V dx dV z z                                        2 2 2 2 2 2 z T y T x T k z T V y T V x T V t T C z y x P                                                                                      2 2 2 2 2 2 2 y V z V x V z V x V y V z V y V x V z y z x y x z y x   0 2 2 2         dx dV dx T d k z  0 4 . 4 2 2 max , 2 2         B x V dx T d k z  3 3 4 2 max , 3 4 K x kB V dx dT z     4 3 4 4 2 max , 3 K x K x kB V T z      ENERGY EQUATION SOLUTION MOLECULER AND CONVECTION HEAT TRANSPORT PROCESS (APPLICATION OF EQUATION OF CHANGE) From table A-5
  • 7. HEAT TRANSPORT 4 3 4 4 2 max , 3 K x K x kB V T z      0 0    dx dT x 4 4 4 2 max , 3 K x kB V T z     0 T T B x    B.C-1: B.C.-2: 0 3  K k V T K z 3 2 max , 0 4                     4 2 max , 0 1 3 B x k V T T z                       4 2 4 0 1 12 B x k L B T T  SOLUTION MOLECULER AND CONVECTION HEAT TRANSPORT PROCESS (APPLICATION OF EQUATION OF CHANGE)
  • 8. HEAT TRANSPORT Example 3 Inlet air at T1 Cooler A system consist of two porous concentric spherical walls with radius R1 and R2. Outer surfase of inner wall is maintained at temprature T1 and inner surface of outer wall is maintained at tempratrure T2. Dry air at temprature T1 is blown radially from inner wall to outer wall. Develop an expression for heat removal rate needed from inner wall as a function of air mass flow rate. Assume steady state laminar flow and low gas rate. MOLECULER AND CONVECTION HEAT TRANSPORT PROCESS (APPLICATION OF EQUATION OF CHANGE)
  • 9. HEAT TRANSPORT Solution: Assumption: 0 . 1     V V ) (r f Vr  2. T=T(r) ) ( . 3 r      0 1 2 2  r V r dr d r   r V r  2  4 r w  constant Continuity Equation:                   r r r V r dr d r dr d dr d dr dV V 2 2 1   Equation of Motion dr d dr r w d r w r r          2 2 4 4   dr d r wr     5 2 2 8             2 2 5 2 2 8 R r r R r r dr w d                     4 4 2 2 2 2 1 1 32 r R w r R r                          4 2 4 2 2 2 2 1 32 r R R w R r r   MOLECULER AND CONVECTION HEAT TRANSPORT PROCESS (APPLICATION OF EQUATION OF CHANGE) r 2 r 2 2 2 r 2 2 r 2 2 2 2 2 θ r r θ r r r ρg v θ sin r 1 θ v sinθ θ sinθ r 1 r ) v (r r 1 μ r r v v v θ sin r v θ v r v r v v t v ρ                                                      p 𝜕 𝜕𝑟 1 𝑟2 𝜕 𝜕𝑟 𝑟2𝑣𝑟
  • 10. HEAT TRANSPORT        dr dT r dr d r k dr dT V C r p 2 2 1 ˆ         dr dT r dr d C w k dr dT p r 2 ˆ 4 𝑢 = 𝑟2 𝑑𝑇 𝑑𝑟 = 𝐾1𝑒− 𝑅0 𝑟 2 0 1 0 2 0 0 2 1 2 R R R R R R r R e e e e T T T T / / / /          k C w R P r  4 0 / ˆ  1 2 1 4 R r r q R Q     1 2 1 4 R r dr dT k R           1 1 4 2 1 1 0 1 2 0     R R R R T T k R Q / / exp    2 1 1 2 1 0 1 4 R R T T k R Q /     1 1 0 0       e Q Q Q     k R R R C w R R R R P r 1 2 1 1 1 0 4 1 1   / ˆ /     Energy Equation: Substitution: Heat transafer rate to inner wall is Cooling requirement at inner wall, If there is no air flow MOLECULER AND CONVECTION HEAT TRANSPORT PROCESS (APPLICATION OF EQUATION OF CHANGE) 𝑢 𝑟2 = 1 𝑅0 𝑑 𝑑𝑟 𝑢 → 𝑑𝑟 𝑟2 = 1 𝑅0 𝑑𝑢 𝑢 − 𝑅0 𝑟 + ln 𝐾1 = ln 𝑢 → 𝑢 = 𝐾1𝑒− 𝑅0 𝑟 𝑑𝑇 = 𝐾1 𝑒− 𝑅0 𝑟 𝑟2 𝑑𝑟 𝑠 = 𝑅0 𝑟 → 𝑑𝑠 = − 𝑅0 𝑟2 𝑑𝑟 𝑑𝑇 = 𝑇 = 𝐾1 𝑒− 𝑅0 𝑟 𝑟2 𝑑𝑟 = − 𝐾1 𝑅0 𝑒−𝑠 𝑑𝑠 = 𝐾1 𝑅0 𝑒− 𝑅0 𝑟 + 𝐾2 𝑢 = 𝑟2 𝑑𝑇 𝑑𝑟
  • 12.       0 z ρv y ρv x ρv t ρ z y x                   0 z v ρ θ v ρ r 1 r v r ρ r 1 t ρ z θ r                   0 v ρ rsinθ 1 θ sinθ v ρ rsinθ 1 r v r ρ r 1 t ρ θ r 2 2               Cartesian Coordinate System: Cylindrical Coordinate System: Spherical Coordinate System Table A-1 Continuity Equation
  • 13. -Table A2Equation of Motion (Equation of Momentum) x zx yx xx x z x y x z x ρg z τ y τ x τ x z v v y v v x v v t v ρ                                          p y zy yy xy y z y y y z y ρg z τ y τ x τ y z v v y v v x v v t v ρ                                          p z zz yz xz z z z y z z z ρg z τ y τ x τ z z v v y v v x v v t v ρ                                          p Cartesian Coordinate System:
  • 14.   r rz θθ rθ rr r z 2 θ r θ r r r ρg z τ r τ θ τ r 1 r rτ r 1 r z v v r v θ v r v r v v t v ρ                                          p   θ zθ θθ rθ 2 2 θ z θ r θ θ θ r θ ρg z τ θ τ r 1 r τ r r 1 θ r 1 z v v r v v θ v r v r v v t v ρ                                         p   z zz θz rz z z z θ z r z ρg z τ θ τ r 1 x rτ r 1 z z v v θ v r v r v v t v ρ                                      p Cylindrical Coordinate System -Table A2Equation of Motion (Equation of Momentum)
  • 15. Spherical Coordinate System   r r θθ rθ rr 2 2 2 2 θ r r θ r r r ρg τ rsinθ 1 r τ τ θ sinθ τ rsinθ 1 r τ r r 1 r r v v v rsinθ v θ v r v r v v t v ρ                                                    p   θ rθ θ θθ rθ 2 2 2 θ r θ θ θ θ r θ ρg τ r cotθ r τ τ rsinθ 1 θ sinθ τ rsinθ 1 r τ r r 1 θ r 1 r cotθ v r v v v rsinθ v θ v r v r v v t v ρ                                                    p                 ρg τ r cotθ 2 r τ τ rsinθ 1 θ τ r 1 r τ r r 1 rsinθ 1 cotθ r v v r v v v rsinθ v θ v r v r v v t v ρ θ r θ r 2 2 θ r θ φ r φ                                              p -Table A2Equation of Motion (Equation of Momentum)
  • 16. x 2 x 2 x 2 2 x 2 x z x y x z x ρg z v y v x v μ x z v v y v v x v v t v ρ                                          p y 2 y 2 2 y 2 2 y 2 y z y y y z y ρg z v y v x v μ y z v v y v v x v v t v ρ                                          p z 2 z 2 2 z 2 2 z 2 z z z y z z z ρg z v y v x v μ z z v v y v v x v v t v ρ                                          p -Table A2Equation of Motion (Equation of Momentum) (Incompressible Newtonian Fluid) Cartesian Coordinate System:
  • 17. Table A-3 Equation of Motion (Equation of Momentum) (Incompresiible Newtonian Fluid) Cylindrical Coordinate:   r 2 r 2 θ 2 2 r 2 2 r r z 2 θ r θ r r r ρg z v θ v r 2 θ v r 1 rv r r 1 r μ r z v v r v θ v r v r v v t v ρ                                                    p   θ 2 θ 2 r 2 2 θ 2 2 θ θ z θ r θ θ θ r θ ρg z v θ v r 2 θ v r 1 rv r r 1 r μ θ r 1 z v v r v v θ v r v r v v t v ρ                                                  p x 2 z 2 2 z 2 2 z z z z θ z r z ρg z v θ v r 1 r v r r r 1 μ z z v v θ v r v r v v t v ρ                                              p
  • 18. Table A-3 Equation of Motion ( Equation of Momentum) (Incompressible Newtonian Fluid) Spherical Coordinate r 2 r 2 2 2 r 2 2 r 2 2 2 2 2 θ r r θ r r r ρg v θ sin r 1 θ v sinθ θ sinθ r 1 r ) v (r r 1 μ r r v v v θ sin r v θ v r v r v v t v ρ                                                      p θ 2 2 r 2 2 θ 2 2 2 θ 2 θ 2 2 2 θ r θ θ θ θ r θ ρg v θ sin r cosθ 2 θ v r 2 v θ sin r 1 θ sinθ v sinθ 1 θ r 1 r v r r r 1 μ θ r 1 r cotθ v r v v v rsinθ v θ v r v r v v t v ρ                                                                        p                 ρg v θ sin r cosθ 2 v sinθ r 2 v θ sin r 1 θ sinθ v sinθ 1 θ r 1 r v r r r 1 μ rsinθ 1 cotθ r v v r v v v rsinθ v θ v r v r v v t v ρ θ 2 2 r 2 2 2 2 2 2 2 2 θ r θ r                                                                      p
  • 19. Table A-4 Components of stress tensor for Newtonian Fluid Koordinat Silinder Koordinat Bola              v . κ x v 2 μ τ x xx              v . κ y v 2 μ τ y yy              v z vz xx . 2                  x v y v μ τ τ y x yx xy               y v z v μ τ τ z y zy yz               z v x v μ τ τ x z xz zx              v . κ r v 2 μ τ r rr                     v . κ r v θ v r 1 2 μ τ r θ θθ              v . κ z v 2 μ τ z zz                 θ v r 1 r /r v r μ τ τ r θ θr rθ               θ v r 1 z v μ τ τ z θ zθ θz               z v r v μ τ τ r z rz zr              v . κ r v 2 μ τ r rr                     v . κ r v θ v r 1 2 μ τ r θ θθ                        v . κ r cotθ v r v v rsinθ 1 2 μ τ θ r                  θ v r 1 r /r) (v r μ τ τ r θ θr rθ                           θ θ θ v rsinθ 1 sinθ v θ r sinθ μ τ τ               r /r) (v r φ v rsinθ 1 μ τ τ φ r r r   3 2 κ  Cartesian Coordinate System
  • 20. Cylindrical Coordinate Spherical Coordinate   v .  z v y v x v z y x           z v θ v r 1 rv r r 1 z θ r                       v rsinθ 1 sinθ v θ rsinθ 1 v r r r 1 θ r 2 2 Cartesian Coordinate System:
  • 21. Tabel A-5 Fungsi untuk fluida Newton Coordinate System Cartesian Sylindrical Spherical v   2 2 z x 2 y z 2 x y 2 z 2 y 2 x v . 3 2 x v z v z v y v y v x v z v y v x v 2                                                                            2 2 z r 2 θ z 2 r θ 2 z 2 r θ 2 r v . 3 2 r v z v z v θ v r 1 θ v r 1 r v r r z v r v θ v r 1 r v 2                                                                                2 2 r 2 θ 2 r θ 2 θ r 2 r θ 2 r v . 3 2 r v r r v rsi n θ 1 v rsi n θ 1 si n θ v θ r si n θ θ v r 1 r v r r r cotθ v r v v rsi n θ 1 r v θ v r 1 r v 2                                                                                                         
  • 22. Table A-6 Component of Energy Flux Cartesian Cylindrical Spherical z T k q y T k q x T k q z y x             z T k q θ T r 1 k q r T k q z θ r                          T rsinθ 1 k q θ T r 1 k q r T k q φ θ r
  • 23. Tabel A-7 Energy Equation in energy and momentum flux                                                                                                             y v z v τ x v z v τ x v y v τ z v τ y v τ x v τ v . T p T z q y q x q z T v y T v x T v t T ρC z y yz z x xz y x xy z zz y yy x xx ρ z y x z y x v                                                                                                                      z v θ v r 1 τ z v r v τ θ v r 1 r v r r τ z v τ v θ v r 1 τ r v τ v . T p T z q θ q r 1 rq r r 1 z T v θ T r v r T v t T ρC θ z θz r z rz r θ rθ z zz r θ θθ r rr ρ z θ r z θ r v                                                                                                                                                          v r cotθ v rsinθ 1 θ v r 1 τ r v v rsinθ 1 r v τ r v θ v r 1 r v τ r cotθ v r v v rsinθ 1 τ v θ v r 1 τ r v τ v . T p T q rsinθ 1 θ sinθ q rsinθ 1 q r r r 1 T rsinθ v θ T r v r T v t T ρC θ θ r r θ r θ rθ θ r r θ θθ r rr ρ θ r 2 2 θ r v Cartesian Cylindrical Spherical
  • 24. Tabel A-8 V                                     μ z T y T x T k z T v y T v x T v t T ρC 2 2 2 2 2 2 z y x p V                                           μ z T θ T r 1 r T r r r 1 k z T v θ T r v r T v t T ρC 2 2 2 2 2 z θ r p V                                                     μ T θ sin r 1 θ T sinθ θ sinθ r 1 r T r r r 1 k T rsinθ v θ T r v r T v t T ρ 2 2 2 2 2 2 2 θ r p    Energy Equation For Incompressible Newtonian Fluid with constant properties Spherical Cylindrical Cartesian 𝜌𝐶𝑝 V                                                     μ T θ sin r 1 θ T sinθ θ sinθ r 1 r T r r r 1 k T rsinθ v θ T r v r T v t T ρ 2 2 2 2 2 2 2 θ r p   
  • 25. Tabel A-9 Components of molecular Diffusion Flux Spherical z C D J y C D J x C D J A AB Az A AB Ay A AB Ax             z C D J θ C r 1 D J r C D J A AB Az A AB Aθ A AB Ar                          A AB Az A AB Aθ A AB Ar C rsinθ 1 D J θ C r 1 D J r C D J Cartesian Cylindrical
  • 26. Tabel A-10 Continuity Equation of Component A A Az Ay Ax A R z N y N x N t C                       A Az Aθ Ar A R z N θ N r 1 rN r r 1 t C                       A A Aθ Ar 2 2 A R N rsinθ 1 sinθ N θ rsinθ 1 N r r r 1 t C                       Cartesian Cylindrical Spherical
  • 27. TabLE A-11 Continuity equation of component A for constant properties A 2 A 2 2 A 2 2 A 2 AB A z A y A x A R z C y C x C D z C v y C v x C v t C                                      A 2 A 2 2 A 2 2 A AB A z A θ A r A R z C θ C r 1 r C r r r 1 D z C v θ C r 1 v r C v t C                                            A 2 A 2 2 2 A 2 A 2 2 AB A A θ A r A R C θ sin r 1 θ C sinθ θ sinθ r 1 r C r r r 1 D C rsin θ 1 v θ C r 1 v r C v t C                                                         Cartesian Cylindrical Spherical
  • 31. NON NEWTONIAN FLUID                       : 2 1 0 0      2 0 : 2 1     0     2 0 : 2 1     0 0         y Vx yx 2 0 2    yx 0    y Vx 2 0 2    yx                1 : 2 1 n m                              2 0 0 : 2 1 1        BINGHAM PLASTIC POWER LAW Model Reiner-Philippof
  • 32. NON NEWTONIAN FLUID                       : 2 1 0 0      2 0 : 2 1     0     2 0 : 2 1     0 0         y Vx yx 2 0 2    yx 0    y Vx 2 0 2    yx                1 : 2 1 n m                              2 0 0 : 2 1 1        BINGHAM PLASTIC POWER LAW Model Reiner-Philippof