Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.
1 | P a g e
THERMAL STRESS
AND THE HEAT
SHOCK RESPONSE
2 | P a g e
Contents
Types of Microbes on the basis of Temperature
Thermophile
Psychrophile
Mesophile
Thermal Stress
...
3 | P a g e
THERMAL STRESS AND THE
HEAT SHOCK RESPONSE
As with pH, microbes exhibit a wide range of temperatures at which ...
4 | P a g e
"Thermophile" is derived from the Greek: θερμότητα (thermotita),
meaning heat, and Greek: υίλια (philia), love...
5 | P a g e
Examples are Arthrobacter sp., Psychrobacter sp. and members
of the genera Halomonas, Pseudomonas, Hyphomonas ...
6 | P a g e
Lactic acid bacteria
Escherichia coli
Thermal Stress
The stress induced in the body of microbes due to high te...
7 | P a g e
Heat Shock Response
The heat shock represents a ubiquitous protective and homeostatic cellular response to
cop...
8 | P a g e
 Whereas the periplasm lacks ATP, is oxidizing, and is in contact withthe
external milieu.
Since optimal cell...
9 | P a g e
 The mechanism regulating proteolysis centers on whether σᴴ associates with RNA
polymerase. During growth at ...
10 | P a g e
diadenosine 5_, 5___-P1, P4-tetraphosphate (AppppA), which is made by some
aminoacyl–tRNA synthetases (e.g., ...
11 | P a g e
2. Heat Shock Response against
Periplasmic Thermal Stress
The extra cytoplasmic response pathways involve two...
12 | P a g e
 RseA is a transmembrane protein whose cytoplasmic C-terminal domain interacts
with σᴱ, acting as an anti-σf...
13 | P a g e
 In E. coli ,in conjunction with σE, degP (htrA)
 In addition, CpxR∼P activates transcription of cpxP encod...
Upcoming SlideShare
Loading in …5
×

Thermal Stress and the Heat Shock Response in Microbes

Thermal Stress and the Heat Shock Response in Microbes

  • Login to see the comments

Thermal Stress and the Heat Shock Response in Microbes

  1. 1. 1 | P a g e THERMAL STRESS AND THE HEAT SHOCK RESPONSE
  2. 2. 2 | P a g e Contents Types of Microbes on the basis of Temperature Thermophile Psychrophile Mesophile Thermal Stress Heat Shock Response Description Types of Heat Shock Responses Heat Shock Response against Cytoplasmic Thermal Stress  σᴴ Regulation Heat Shock Response against Periplasmic Thermal Stress  σᴱ Regulation  Cpx systems
  3. 3. 3 | P a g e THERMAL STRESS AND THE HEAT SHOCK RESPONSE As with pH, microbes exhibit a wide range of temperatures at which they can grow. Types of Microbes on the basis of Temperature There are three types of microbes on the basis of temperature. 1. Thermophiles 2. Psychrophiles 3. Mesophiles Thermophile  A thermophile is an organism — a type of extremophile — that thrives at relatively high temperatures, between 45 and 122 °C (113 and 252 °F).  Many thermophiles are archaea. Thermophilic eubacteria are suggested to have been among the earliest bacteria.  Thermophiles are found in various geothermally heated regions of the Earth, such as hot springs like those in Yellowstone National Park and deep sea hydrothermal vents, as well as decaying plant matter, such as peat bogs and compost.  As a prerequisite for their survival, thermophiles contain enzymes that can function at high temperatures. Some of these enzymes are used in molecular biology (for example, heat-stable DNA polymerases for PCR), and in washing agents.
  4. 4. 4 | P a g e "Thermophile" is derived from the Greek: θερμότητα (thermotita), meaning heat, and Greek: υίλια (philia), love A colony of thermophiles in the outflow of Mickey Hot Springs, Oregon, the water temperature is approximately 60°C. Psychrophile  Psychrophiles or cryophiles are extremophilic organisms that are capable of growth and reproduction in cold temperatures, ranging from −15°C to +10°C.  Temperatures as low as −15°C are found in pockets of very salty water (brine) surrounded by sea ice.  They can be contrasted with thermophiles, which thrive at unusually hot temperatures. The environments they inhabit are ubiquitous on Earth, as a large fraction of our planetary surface experiences temperatures lower than 15°C.  They are present in alpine and arctic soils, high-latitude and deep ocean waters, polar ice, glaciers, and snowfields.
  5. 5. 5 | P a g e Examples are Arthrobacter sp., Psychrobacter sp. and members of the genera Halomonas, Pseudomonas, Hyphomonas and Sphingomonas. Cold-loving extremophile bacteria Mesophile  A mesophile is an organism that grows best in moderate temperature, neither too hot nor too cold, typically between 20 and 45 °C (68 and 113 °F). The term is mainly applied to microorganisms.  The habitats of these organisms include especially cheese, yogurt, and mesophile organisms are often included in the process of beer and wine making.  Organisms that prefer cold environments are termed psychrophilic, those preferring warmer temperatures are termed thermophilic and those thriving in extremely hot environments are hyperthermophilic. All bacteria have their own optimum environmental surroundings and temperatures in which they thrive the most. Examples include E.coli and Streptococcus.
  6. 6. 6 | P a g e Lactic acid bacteria Escherichia coli Thermal Stress The stress induced in the body of microbes due to high temperature is called thermal stress.
  7. 7. 7 | P a g e Heat Shock Response The heat shock represents a ubiquitous protective and homeostatic cellular response to cope with heat-induced damage in proteins. Description  Upon a shift from 30◦ to 42 ◦C, E. coli and other bacteria transiently increase the rate of synthesis of a set of proteins called heat shock proteins (HSPs).  Many of these HSPs are required for cell growth or survival at more elevated temperatures (thermotolerance).  Among the induced proteins are DnaJ and DnaK, the RNA polymerase σ70 subunit (rpoD), GroES, GroEL, Lon protease, and LysU.  There are nearly 50 heat shock–inducible proteins identified in E. coli. Types of Heat Shock Responses There are two types of heat shock responses. 1. Heat shock response against cytoplasmic thermal stress 2. Heat shock response against periplasmic thermal stress The hallmark ofthe Gram-negative cell is the existence of two membrane-bound subcellular compartments:  Cytoplasm  Periplasm Conditions in each of these compartments differ markedly.  The cytoplasm is energy rich, reducing (low redox potential), and osmotically stable.
  8. 8. 8 | P a g e  Whereas the periplasm lacks ATP, is oxidizing, and is in contact withthe external milieu. Since optimal cell growth requires that the cell senses and responds to changes in these disparate sub cellular compartments, it is not surprising that the stress responses in E. coli and S. typhimurium are compartmentalized into cytoplasmic and extracytoplasmic responses. 1. Heat Shock Response against Cytoplasmic Thermal Stress  The σᴴ regulon provides protection against cytoplasmic thermal stress.  The E. coli rpoH locus (formerly called htpR) encodes a 32 kDa σ factor, alternatively called σᴴ or σ³², which redirects promoter specificity of RNA polymerase.  The σᴴ protein regulates the expression of 34 heat shock genes.  The simple explanation for how heat shock increases expression of the σᴴ regulon is that heat shock first causes an elevation in σᴴ levels, which in turn increases expression of the σᴴ target genes.  Although the principle is simple, the controls governing σᴴ production are complex.  First, a temperature upshifts from 30 ◦ to 42 ◦C results in the increased translation of rpoH message.  Cis-acting mRNA sites within the 5’ region of rpoH message form temperature- sensitive secondary structures that sequester the ribosome-binding site. At higher temperatures, these secondary structures melt, thereby enabling more efficient translation of the rpoH message.  In addition to the increased translation of rpoH message, the σᴴ protein itself becomes more stable, at least transiently.
  9. 9. 9 | P a g e  The mechanism regulating proteolysis centers on whether σᴴ associates with RNA polymerase. During growth at 30 ◦C, σᴴ can be degraded by several proteases including FtsH, HslVU, and ClpAP.  However, if σᴴ is bound to RNAP, σᴴ is protected from degradation.  The cell uses the DnaK-DnaJ-GrpE chaperone team to interact with σᴴ at low temperature, sequestering σᴴ from RNA polymerase.  Failure to bind RNAP facilitates degradation of the σ factor.  Upon heat shock, there is an increase in the number of other unfolded or denatured proteins that can bind to DnaK or DnaJ. This reduces the level of free DnaK/DnaJ molecules available to bind σᴴ, allowing σᴴ tobind RNAP, which protects σᴴ from degradation.  As the cell reaches the adaptation phase following heat shock, the levels of DnaK and DnaJ rise (both are induced by σᴴ) and can again bind σᴴ, redirecting it toward degradation. Nevertheless, even though σᴴ degradation resumes, translation of rpoH remains high at the elevated temperature and σᴴ continues to accumulate, although at a slower rate. In addition to translational and proteolytic controls, production of σᴴ is regulated at the transcriptional level via a feedback mechanism. There are four promoters driving rpoH expression, three of which are dependent on σ70, the housekeeping σ factor. The gene encoding σ70, rpoD, is also a heat shock gene induced by σᴴ. So increased production of σᴴ increases σ70, which increases transcription of rpoH. The fourth rpoH promoter is recognized by another σ factor, σᴱ, encoded by rpoE. The heat shock response is also triggered by a variety of environmental agents such as ethanol, UV irradiation, and agents that inhibit DNA gyrase. Induction by all of these stimuli occurs through σᴴ. The only explanation that appears reasonable is the accumulation of denatured or incomplete peptides. There is a potential alarmone that has been implicated in signaling expression of this global network. The molecule is
  10. 10. 10 | P a g e diadenosine 5_, 5___-P1, P4-tetraphosphate (AppppA), which is made by some aminoacyl–tRNA synthetases (e.g., lysU) at low tRNA concentrations. How this may influence the response is not known.
  11. 11. 11 | P a g e 2. Heat Shock Response against Periplasmic Thermal Stress The extra cytoplasmic response pathways involve two partially overlapping signal transduction cascades: I. σᴱ regulation II. Cpx systems These pathways are induced following the accumulation of misfolded proteins in the periplasmas a result of stresses such as high temperature, pH extremes, or carbon/energy starvation. I. σᴱ Regulation σᴱis a member of the extracytoplasmic function (ECF) subfamily of σ factors.In E. coli, σᴱ is responsible for the transcription of up to genes, including:  rpoH (σᴴ)  degP (htrA) encoding a periplasmic protease for the degradation of misfolded proteins  fkpA encoding a periplasmic peptidyl prolyl isomerase  rpoE rseABC operon The gene encoding σᴱ, rpoE, is the first member of an operon followed by the genes rseA, B, and C (rse, meaning regulators of σE).
  12. 12. 12 | P a g e  RseA is a transmembrane protein whose cytoplasmic C-terminal domain interacts with σᴱ, acting as an anti-σfactor.  The periplasmic face of RseA binds to the periplasmic RseB.  Extracellular stress in some way signals increased proteolysis of RseA by the periplasmic protease DegS, thus relieving the anti-σ effect of RseA on σE.  It has been proposed that Rse Band perhaps other periplasmic proteins involved in protein folding protect RseA from degradation by binding to the RseA periplasmic domain, capping the target site of DegS.  Stress-induced misfolding of periplasmic proteins would titrate the RseA cap proteins off of RseA, rendering the anti-σ factor vulnerable to attack by DegS.  The result would be increased activity of σᴱ leading to increased levels of σᴱ protein and RseA anti-σ (since they form an operon).  The increased amount of σᴱ will drive further expression of genes whose products handle the periplasmic damage while the of RseA will enable the cell to down regulate the system once the capping proteins are again free to bind and protect RseA from DegS degradation. II. Cpx systems A second system dedicated to protecting the periplasmic perimeter of the cellis the CpxRA two-component system with:  CpxA playing the role of membrane-localized sensor histidine kinase  CpxR as the cytoplasmicresponse regulator CpxA responds to envelope stress by autophosphorylation followed by phosphotransfer to CpxR. CpxR∼P activates expression of:  dsbA (disulfideoxidoreductase)  ppiA and ppiD encoding peptidyl-prolyl-isomerases
  13. 13. 13 | P a g e  In E. coli ,in conjunction with σE, degP (htrA)  In addition, CpxR∼P activates transcription of cpxP encoding a small protein that negatively regulates the CpxAR regulon, probablyby binding to a periplasmic domain of CpxA. The ability to autoactivate and then repress (via CpxP) enables a temporary amplification of the Cpx response that maybe important to rescue cells from transitory stresses. PrpA and PrpB are type Iserine/threonine phosphatases that also participate in the ECF pathway at least inpart by affecting the phosphorylation level of CpxR. B. subtilis has four classes of heat shock genes. One is particularly interesting because of the mechanism used to control the genes. Class I heat shock genes include the major chaperones DnaK-DnaJ-GrpE and GroEL-GroES. Their transcription requires the housekeeping σ factor, σA (σ70) and is negatively controlled by a repressor called HrcA. HrcA binds to a class I geneoperator, a well-conserved 9 bp inverted repeat with a 9 bp spacer, called CIRCE. TheCIRCE/HrcA regulon is normally repressed by the HrcA repressor but can be heat induced by inactivating the repressor. The molecular switch involves the chaperone GroE. Unlike σ³² in E. coli, the GroE chaperones bind to and facilitate folding of HrcA and thereby modulate repressor function. Titration of GroE by stress-induced misfolded proteins results in lower HrcA repressor activity.

×