SlideShare a Scribd company logo
1 of 21
λ =
c
ν
‘ ’
μ
–
’
λ
λ
Ebλ (λ, T) =
C1 ∙ λ−5
(e
C2
λ∙T − 1)
W
m2 ∙ μm
C1 = 2 ∙ π ∙ h ∙ c0
2
= 3.74177 × 108
W ∙ μm4
/m2
C2 = h ∙
c0
k
= 1.439 × 104
μm ∙ K
λ
’
’
’
(λT)max power = 2897.8 μm ∙ K
λ
⟶
d
dλ
[Ebλ(T)] = 0
⟶
d
dλ
[
C1 ∙ λ−5
(e
C2
λ∙T − 1)
] = 0
⟶ (e
C2
λ∙T − 1) ∙ C⃥1
∙ (−5λ−6) − C⃥1
λ⃥−5
∙
C2
T
∙ (
−1
λ2⃥
) e
C2
λ∙T = 0
⟶ −e
C2
λ∙T ∙ 5 + 5 +
C2
λT
e
C2
λ∙T = 0
⟶ −1 + e
−(
C2
λ∙T
)
+
1
5
∙ (
C2
λ ∙ T
) = 0
Let
C2
λT
= x,
⟶
x
5
+ e−x
− 1 = 0
x ≈ 4. .965
C2
λT
= 4.965 ⇒ λT =
C2
4.965
=
1.439 × 104
μm ∙ K
4.965
𝛌𝐓 = 𝟐𝟖𝟕𝟗. 𝟖 𝛍𝐦 ∙ 𝐊
λ
→ Eb = ∫ Ebλ
∞
0
(λ, T) dλ = ∫
C1 ∙ λ−5
(e
C2
λ∙T − 1)
∞
0
dλ
Let
C2
λT
= y → λ =
C2
yT
→ dλ = −
C2
T ∙ y2
dy
At λ = 0 → y = ∞ λ = ∞ → y = 0
→ ∫
C1 ∙ (
C2
yT)
−5
(ey − 1)
0
∞
∙ (−
C2
T ∙ y2
) dy ⟹
C1 ∙ T4
C2
4 ∫ y3 ∙ (ey − 1)−1
∞
0
dy
→
C1 ∙ T4
C2
4 ∫ y3 ∙ (e−y + e−2y + e−3y + ⋯ )
∞
0
dy
→
C1 ∙ T4
C2
4 ∫ y3 ∙ e−ny
∞
0
dy
→
C1 ∙ T4
C2
4 ×
3!
n4
=
C1 ∙ T4
C2
4 × 3! × (
1
14
+
1
24
+
1
34
+
1
44
+ ⋯ )
→
C1 ∙ T4
C2
4 × 6 ×
π
90
= (
C1
C2
4 ×
π
15
) × T4
= (
3.74177 × 108
(1.439 × 104
)
4 ×
π
15
) × T4
= (5.67 × 10−8) × T−4
= 𝛔 × 𝐓 𝟒
σ → Stephan Boltzmann Constant
– σ
λ λ ∞
λ λ
Eb,0−λ(T) = ∫ Eb,λ(λ, T)
λ
0
dλ
–λ
λ
f0−λ,T =
∫ Eb,λ(λ, T)
λ
0
dλ
∫ Eb,λ(λ, T)
∞
0
dλ
=
∫ Eb,λ(λ, T)
λ
0
dλ
σ ∙ T4
λ
λ λ
f0−λ,T =
∫ Eb,λ(λ, T)
λ
0
dλ
σ ∙ T4
= ∫
C1 ∙ λ−5
(e
C2
λ∙T − 1) ∙ (σ ∙ T4)
λ
0
dλ =
C1
σ
∫
(λT)−5
(e
C2
λT − 1)
λ
0
d(λT)
λ λ
λ λ λ λ
fλ1−λ2
(T) =
∫ Ebλ(λ, T)
λ2
0
dλ − ∫ Ebλ(λ, T)
λ1
0
dλ
σT4
= fλ2
(T) − fλ1
(T)
λ λ λ λ
μ
μ
λ1T = 0.4 × 5800 = 2320 μm − K, f0−λ = 0.125 (from table)
λ1T = 0.76 × 5800 = 4408 μm − K, f0−λ = 0.550 (from table)
fλ1−λ2
= 0.55 − 0.125 = 0.426 or 42.6%
ω
ω
dω =
dS
r2
=
(r ∙ sinθ ∙ dϕ) ∙ (r ∙ dθ)
r2
ω
dω =
dAn
r2
=
dA ∙ cosθ
r2
ω
θ ϕ
θ ϕ
Ie(θ, ϕ) =
dQ̇ e
dAn ∙ dω
=
dQ̇ e
dA ∙ cosθ ∙ dω
=
dQ̇ e
dA cos θ ∙ sin θ dθ dϕ
dE =
dQ̇ e
dA
= Ie(θ, ϕ) × (cosθ ∙ sinθ dθ dϕ)
E = ∫ dE
hemisphere
= ∫ ∫ Ie(θ, ϕ) ∙ cos θ ∙ sin θ dθ dϕ
π
2
θ=0
2π
ϕ=0
W/m2
E = π ∙ Ie
λ
G = ∫ dG
Hemsiphere
= ∫ ∫ Ie(θ, ϕ) ∙ cosθ ∙ sinθ dθ dϕ
π
2
θ=0
2π
ϕ=0
W/m2
J = ∫ ∫ Ie+r(θ, ϕ) ∙ cos θ ∙ sinθ dθ dϕ
π
2
θ=0
2π
ϕ=0
W
m2
G = Gα + Gρ + Gτ
Gα
G
+
Gρ
G
+
Gτ
G
= 1
α + ρ + τ = 1
α → ρ → τ →
α = 1 ⟶ black body
ρ = 1 ⟶ white body
τ = 1 ⟶ transparent body
→ Total Hemi spherical absorptivity, α =
Gα
G
→ Total Hemi spherical reflectivity, ρ =
Gρ
G
→ Total Hemi spherical transmissivity, τ =
Gτ
G
→ Spectral Hemi spherical absorptivity, αλ =
Gαλ
G
→ Spectral Hemi spherical reflectivity, ρλ =
Gρλ
G
→ Spectral Hemi spherical transmissivity, τ =
Gτλ
G
→ Spectral directional absorptivity, αλ,θ =
Gαλ,θ
Gλ,θ
α → given spectral variation of irradiation
→ α =
Gα
G
=
∫ Gα,λdλ
∞
0
∫ Gλdλ
∞
0
, αλ =
Gα,λ
Gλ
Gα,λ = αλ ∙ Gλ
→ α =
∫ αλ ∙ Gλ dλ
∞
0
∫ Gλ dλ
∞
0
→ ρ =
∫ ρλ ∙ Gλ dλ
∞
0
∫ Gλ dλ
∞
0
→ τ =
∫ τλ ∙ Gλ dλ
∞
0
∫ Gλ dλ
∞
0
ε ≤ ε ≤
ε
ελ,θ(λ, θ, ϕ, T) =
Iλ,e(λ, θ, ϕ, T)
Ib,λ(λ, T)
εθ(θ, ϕ, T) =
Ie(θ, ϕ, T)
Ib(T)
ελ,θ =
Eλ(λ, T)
Ebλ(λ, T)
ε(T) =
E(T)
Eb(T)
→ ε =
∫ ελ ∙ Ebλ(T)
∞
0
∙ dλ
∫ Ebλ(T)
∞
0
∙ dλ
→ ε =
∫ ε1 ∙ Ebλ(T)
λ1
0
∙ dλ
σ ∙ T4
+
∫ ε2 ∙ Ebλ(T)
λ2
λ1
∙ dλ
σ ∙ T4
+
∫ ε3 ∙ Ebλ(T)
∞
λ2
∙ dλ
σ ∙ T4
→ ε = ε1 ×
∫ Ebλ(T)
λ1
0
∙ dλ
σ ∙ T4
+ ε2 ×
∫ Ebλ(T)
λ2
λ1
∙ dλ
σ ∙ T4
+ ε3 ×
∫ Ebλ(T)
∞
λ2
∙ dλ
σ ∙ T4
→ ε = ε1 × f0−λ1
(T) + ε2 × fλ1−λ2
(T) + ε3 × fλ2−λ3
(T)
→ α =
∫ αλ ∙ Gλ ∙ dλ
∞
0
∫ Gλ ∙ dλ
∞
0
=
∫ αλ ∙ Ebλ(T) ∙ dλ
∞
0
∫ Ebλ(T) ∙ dλ
∞
0
→ Gλ ∝ Ebλ(T)
’
ε α
→ Gincident = Eb(T) = σT4
→ Gabsorbed = α ∙ σT4
→ Eemitted = ε ∙ σT4
Eλ = αλ ∙ Gλ →
Eλ
αλ
= Gλ
ελ ∙ Ebλ = αλ ∙ Gbλ
As ∙ ε ∙ σT4
= As ∙ α ∙ σT4
→ ε(T) = α(T)
→ ε =
∫ ελ ∙ Ebλ(T)
∞
0
∙ dλ
Eb
=
∫ αλ ∙ Ebλ(T) dλ
∞
0
Eb
= α (Gλ = Ebλ)
’ ’
→ Ebλ(T) =
C1 ∙ λ−5
e
C2
λT − 1
μ
1) λT ≫ C2 & 2) λT ≪ C2
①
→ e
C2
λT = 1 + (
C2
λT
) +
1
2!
(
C2
λT
)
2
+
1
3!
(
C2
λT
)
3
+ ⋯
Higher order terms of
C2
λT
are neglected as λT ≫ C2
→ e
C2
λT − 1 =
C2
λT
→ Ebλ(T) =
C1 ∙ λ−5
C2
λT
=
C1T
C2λ4
⟼ Rayleigh′
s Jean Law
②
→ e
C2
λT − 1 = e
C2
λT (C2 ≫ λT)
Ebλ(T) =
C1 ∙ λ−5
e
C2
λT
= C1λ−5
∙ e
−
C2
λT ⟶ Wein′
s Law
View factor =
dQ1
Q1
= F12
n1, n2 → normals to dA1 & dA2
θ1, θ2 → polar angles
r → distance
dω21 → solid angle subtended by dA2when viewed from dA1
I1 → radiation intensity emitted by surface dA1uniformly
dQ1 → radiation emitted by dA1that strikes dA2
Q1 → total radiation emitted by dA1
→ dFdA1−dA2
=
dQ1
Q1
dQ1 = dA1 ∙ I1 cos θ1 ∙ dω1−2 = dA1 ∙ I1 cos θ1 ∙
dA2 ∙ cos θ2
r2
=
I1dA1dA2 cos θ1 cosθ2
r2
Also, Q1 = dA1 ∙ πI1
dFdA1−dA2
=
dQ1
Q1
=
I1dA1dA2 cos θ1 cos θ2
r2
×
1
dA1 ∙ πI1
=
cosθ1 cos θ2 ∙ dA2
πr2
→ dFdA1−A2
= ∫
cos θ1 cosθ2
πr2
A2
∙ dA2
→ dFA2−dA1
=
dA1
A2
∫
cos θ1 cos θ2
πr2
A2
∙ dA2
→ dFA2−A1
=
1
A2
∫ ∫
cos θ1 cos θ2
πr2
A1
∙ dA1dA2
A2
→ dFA1−A2
=
1
A1
∫ ∫
cos θ1 cos θ2
πr2
A2
∙ dA2dA1
A1
 …
𝐴𝑖 ∙ 𝐹𝐴𝑖−𝐴 𝑗
= 𝐴𝑗 ∙ 𝐹𝐴 𝑗−𝐴𝑖
∑ 𝐹𝐴 𝑗−𝐴 𝑘
𝑁
𝑘=1
= 1





→ 𝑁2
− [
𝑁(𝑁 − 1)
2
+ 𝑁 + 𝑁] =
𝑁(𝑁 − 3)
2
𝐹11 + 𝐹12 = 1
𝐹21 + 𝐹⃥22 = 1 → 𝐹21 = 1
𝐴1 𝐹12 = 𝐴2 𝐹21 = 𝐴2
𝐹12 =
𝐴2
𝐴1
𝐹11 = 1 − 𝐹12 = 1 −
𝐴2
𝐴1
𝐹12 =
Σ𝐶𝑟𝑜𝑠𝑠𝑒𝑑 𝑠𝑡𝑟𝑖𝑛𝑔𝑠 − Σ𝑢𝑛𝑐𝑟𝑜𝑠𝑠𝑒𝑑 𝑠𝑡𝑟𝑖𝑛𝑔𝑠
2 × 𝑙𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑠𝑡𝑟𝑖𝑛𝑔 𝑜𝑛 𝑡ℎ𝑒 𝑠𝑢𝑟𝑓𝑎𝑐𝑒 1
=
(𝐿5 + 𝐿6) − (𝐿3 + 𝐿4)
2 × 𝐿1
‘ ’
cos 𝜃1 = cos 𝜃2 = cos 𝜃3 =
𝐿
𝑟
𝑟 = √𝐿2 + 𝜌2
𝑑𝐴2 = 𝜌 ∙ 𝑑𝜌 ∙ 𝑑𝜙
𝐹𝑑𝐴1−𝐴2
= ∫
cos θ1 cosθ2
πr2
A2
∙ dA2 =
1
𝜋
∫ ∫
𝐿2
∙ 𝜌
(𝐿2 + 𝜌2)2
2𝜋
𝜙=0
𝑅
𝜌=0
𝑑𝜌 ∙ 𝑑𝜙 = 2𝐿2
∫
𝜌
(𝐿2 + 𝜌2)2
𝑑𝜌
𝑅
0
𝐹𝑑𝐴1−𝐴2
=
𝑅2
𝑅2 + 𝐿2
𝑄1−2 = (
𝑅𝑎𝑑𝑖𝑎𝑡𝑖𝑜𝑛 𝑙𝑒𝑎𝑣𝑖𝑛𝑔 𝑡ℎ𝑒 𝑠𝑢𝑟𝑓𝑎𝑐𝑒 1
𝑡ℎ𝑎𝑡 𝑠𝑡𝑟𝑖𝑘𝑒𝑠 2 𝑑𝑖𝑟𝑒𝑐𝑡𝑙𝑦
) − (
𝑅𝑎𝑑𝑖𝑎𝑡𝑖𝑜𝑛 𝑙𝑒𝑎𝑣𝑖𝑛𝑔 𝑡ℎ𝑒 𝑠𝑢𝑟𝑓𝑎𝑐𝑒 2
𝑡ℎ𝑎𝑡 𝑠𝑡𝑟𝑖𝑘𝑒𝑠 1 𝑑𝑖𝑟𝑒𝑐𝑡𝑙𝑦
)
= 𝐴1 𝐸 𝑏1
𝐹12 − 𝐴2 𝐹21 𝐸 𝑏2
𝑄12 = 𝐴1 𝐹12 (𝐸 𝑏1
− 𝐸 𝑏2
) = 𝐴1 𝐹12 𝜎(𝑇1
4
− 𝑇2
4
)
𝑄1 = ∑ 𝑄𝑖−𝑗
𝑁
𝑗=1
= 𝐴𝑖 ∙ 𝐹𝑖−𝑗 ∙ 𝜎(𝑇1
4
− 𝑇2
4)
Ji → radiosity of surface
Gi → irradiation of surface
qi → net radiation temperatire at surface
qi = Ji − Gi
Ji = emitted component + reflected component
Ji = ϵEbi
+ ρGi
Ji = ϵiEbi
+ (1 − αi)Gi
Ji = ϵEbi
+ (1 − ϵi)Gi
Ji − Gi = ϵi(Ebi
− Gi)
Gi =
Ji − ϵiEbi
1 − ϵi
Ji − Gi = qi = ϵi (Ebi
−
Ji − ϵiEbi
1 − ϵi
)
qi = ϵi (
Ebi
− ϵiEbi
− Ji + ϵiEbi
1 − ϵi
) = ϵi (
Ebi
− Ji
1 − ϵi
)
Net rate heat transfer rate Qi = Aiqi
Qi =
Ebi
− Ji
(
1 − ϵi
ϵ1Ai
)
(Ebi
− Ji) → potential difference
(
1 − ϵi
ϵ1Ai
) → surface resistance
Qi =
Ebi
− Ji
R
Q1−2 = A1F12σ(T1
4
− T2
4) = A1F12 ∙ (J1 − J2)
Q1−2 =
J1 − J2
(
1
A1F12
)
→ Q̇ 1 = Q̇ 12 = −Q̇ 2
Q1−2 =
Eb1 − Eb2
R1 + R2 + R3
=
σ(T1
4
− T2
4)
1 − ε1
A1ε1
+
1
A1F12
+
1 − ε2
A2ε2
Q0 =
A ∙ σ ∙ (T1
4
− T2
4
)
1
ε1
+
1
ε2
− 1
𝐴1 = 𝐴2 = 𝐴3 = 𝐴
R1 =
1 − ε1
A ∙ ε1
R2 =
1
A ∙ F13
R3 =
1 − ε31
A ∙ ε31
R4 =
1 − ε32
A ∙ ε32
R5 =
1
A ∙ F32
R4 =
1 − ε2
A ∙ ε2
Q =
A ∙ σ ∙ (T1
4
− T2
4
)
(
1
ε1
+
1
ε2
− 1) + (
1
ε31
+
1
ε32
− 1)
⟶ Radiation with shield
→ Qwithout shield =
A ∙ σ ∙ (T1
4
− T2
4
)
2
ε
− 1
→ Qwith shield =
A ∙ σ ∙ (T1
4
− T2
4
)
2 (
2
ε − 1)
‘ ’
→ QN =
A ∙ σ ∙ (T1
4
− T2
4
)
(N + 1) (
2
ε − 1)
→
QN
Q0
=
1
N + 1
→ QN = Q0 (
1
N + 1
)
Qo =
σ(T1
4
− T2
4)
1 − ε1
A1ε1
+
1
A1F12
+
1 − ε2
A2ε2
=
σ ∙ A1 ∙ (T1
4
− T2
4)
1
ε1
− 1 +
1
F12
+
A1
A2
(
1
ε2
− 1)
=
σ ∙ A1 ∙ (T1
4
− T2
4)
1
ε1
+
A1
A2
(
1
ε2
− 1)
Qshield =
σ(T1
4
− T2
4)
1 − ε1
A1ε1
+
1
A1F13
+
1 − ε31
A3ε31
+
1 − ε32
A3ε32
+
1
𝐴3 𝐹31
+
1 − ε2
A2ε2
Qshield =
σ(T1
4
− T2
4)
1
𝜀1
+
𝐴1
𝐴2
(
1
𝜀2
− 1) +
𝐴1
𝐴3
(
1
𝜀31
+
1
𝜀32
− 1)
Eb1 − J1
R1⏟
Q1
+
J2 − J1
R12⏟
−Q12
+
J3 − J1
R13⏟
−Q13
= 0
J1 − J2
R12
+
Eb2 − J2
R23
+
J3 − J2
R23
= 0
J1 − J3
R13
+
J2 − J3
R23
+
Eb3 − J3
R3
= 0
Q̇ i = ∑ Q̇ i→j
N
j=1
= ∑ AiFi→j(Ji − Jj)
N
j=1
= ∑
(Ji − Jj)
(1/AiFi→j)
N
j=1
’
R̅ = R1 + Req + R2
1
Req
=
1
R12
+
1
R13 + R23
R̅ = (
1 − ε1
A1ε1
) + (
1
1
A1F12
+
1
A1F13 + A2F23
) + (
1 − ε2
A2ε2
)
Q12 =
Eb1
− Eb2
R̅
λ
λ λ λ
dIλ(s)
ds
= (
emission per
unit volume
) − (
absorption per
unit volume
)
(
Absorption per
unit volume
) = κλ ∙ Iλ(s)
𝜿 𝝀
’
𝜿 𝝀
(
Emission per
unit volume
) = κλ Ibλ(T)
λ
𝑑𝐼𝜆(𝑠)
𝑑𝑠
+ 𝜅 𝜆 𝐼𝜆(𝑠) = 𝜅 𝜆 𝐼 𝑏𝜆(𝑇)
𝐼𝜆(𝑠) = 𝐼𝜆(0) 𝑎𝑡 𝑠 = 0
→
𝑑𝐼𝜆(𝑠)
𝑑𝑠
+ 𝜅 𝜆 𝐼𝜆(𝑠) = 𝜅 𝜆 𝐼 𝑏𝜆(𝑇)
→
𝑑𝐼𝜆(𝑠)
(𝐼 𝑏𝜆(𝑇) − 𝐼𝜆(𝑠))
= 𝜅 𝜆 𝑑𝑠
→ ∫
𝑑𝐼𝜆(𝑠)
( 𝐼 𝑏𝜆( 𝑇) − 𝐼 𝜆( 𝑠))
𝐼 𝜆(𝑠)
𝐼 𝜆(0)
= ∫ 𝜅 𝜆 𝑑𝑠
𝑠
0
⟹ ln( 𝐼 𝑏𝜆( 𝑇) − 𝐼 𝜆( 𝑠)) |
𝐼𝜆(𝑠)
𝐼𝜆(0)
= −𝜅 𝜆 ∙ 𝑠
→ ln
𝐼 𝑏𝜆( 𝑇) − 𝐼 𝜆( 𝑠)
𝐼 𝑏𝜆( 𝑇) − 𝐼 𝜆(0)
= −𝜅 𝜆 ∙ 𝑠 ⟹
𝐼 𝑏𝜆( 𝑇) − 𝐼 𝜆( 𝑠)
𝐼 𝑏𝜆( 𝑇) − 𝐼 𝜆(0)
= 𝑒−𝜅 𝜆∙𝑠
→ (𝐼 𝑏𝜆(𝑇) − 𝐼𝜆(0)) ∙ 𝑒−𝜅 𝜆∙𝑠 = 𝐼 𝑏𝜆(𝑇) − 𝐼𝜆(𝑠)
𝑰 𝝀(𝒔) = 𝑰 𝝀(𝟎) ∙ 𝒆−𝜿 𝝀∙𝒔
+ (𝟏 − 𝒆−𝜿 𝝀∙𝒔)𝑰 𝒃𝝀(𝑻)
𝐼𝜆(𝐿) = 𝐼𝜆(0) ∙ 𝑒−𝜅 𝜆∙𝐿
+ (1 − 𝑒−𝜅 𝜆∙𝐿)𝐼𝑏𝜆(𝑇)
λ
𝐼𝜆(𝐿) = 𝐼 𝜆(0) ∙ 𝑒−𝜅 𝜆∙𝐿
τλ
𝜏 𝜆 =
𝐼𝜆(𝐿)
𝐼𝜆(0)
= 𝑒−𝜅 𝜆∙𝐿
𝜏 𝜆 + 𝛼 𝜆 = 1
𝛼 𝜆
𝛼 𝜆 = 1 − 𝑒−𝜅 𝜆∙𝐿
’ 𝛼 𝜆 ελ.
𝜀 𝜆 = 𝛼 𝜆 = 1 − 𝑒−𝜅 𝜆∙𝐿
𝐼𝜆(𝐿) = (1 − 𝑒−𝜅 𝜆∙𝐿) 𝐼 𝑏𝜆( 𝑇)
’
εw = Cw ∙ εw,1 atm
Cw = 1 for P = 1 atm and thus
Pw + P
2
≅ 0.5
εg = εc + εw − Δε
εg = Cc ∙ εc,1 atm + Cw ∙ εw,1 atm − Δε
Δε
Δε
Le = 3.6 ×
V
A
V → Volume of gas body , A → surface area of enclosure
αg = αc + αw − Δα
Δα = Δε
CO2: αc = Cc × (
Tg
Ts
)
0.65
× εc (Ts,
PcLTs
Tg
)
H2O: αw = Cw × (
Tg
Ts
)
0.65
× εw (Ts,
PwLTs
Tg
)
α = ε Ts = Tg
𝑄 𝑒 = 𝐴 𝑠 ∙ 𝜀 𝑔 ∙ 𝜎𝑇𝑔
4
𝐴 𝑠 𝜎𝑇4
𝑄̇ 𝑎 = 𝐴 𝑠 ∙ 𝛼 𝑔 ∙ 𝜎𝑇4
𝑄̇ 𝑛𝑒𝑡 = 𝑄 𝑒 − 𝑄̇ 𝑎 = (𝐴 𝑠 ∙ 𝜀 𝑔 ∙ 𝜎𝑇𝑔
4
) − (𝐴 𝑠 ∙ 𝛼 𝑔 ∙ 𝜎𝑇4
)
𝑄̇ 𝑛𝑒𝑡 = 𝐴 𝑠 ∙ 𝜎 × (𝜀 𝑔 𝑇𝑔
4
− 𝛼 𝑔 𝑇4
) → 𝐵𝑙𝑎𝑐𝑘 𝐸𝑛𝑐𝑙𝑜𝑠𝑢𝑟𝑒
εs
𝑄̇ 𝑛𝑒𝑡,𝑔𝑟𝑎𝑦 =
𝜀 𝑠 + 1
2
𝑄̇ 𝑛𝑒𝑡,𝑏𝑙𝑎𝑐𝑘 =
𝜀 𝑠 + 1
2
× 𝐴 𝑠 ∙ 𝜎 × (𝜀 𝑔 𝑇𝑔
4
− 𝛼 𝑔 𝑇4
)

More Related Content

What's hot

Ejercicios resueltos de analisis matematico 1
Ejercicios resueltos de analisis matematico 1Ejercicios resueltos de analisis matematico 1
Ejercicios resueltos de analisis matematico 1tinardo
 
IB Chemistry on Hess's Law, Enthalpy Formation and Combustion
IB Chemistry on Hess's Law, Enthalpy Formation and CombustionIB Chemistry on Hess's Law, Enthalpy Formation and Combustion
IB Chemistry on Hess's Law, Enthalpy Formation and CombustionLawrence kok
 
B.tech ii unit-2 material beta gamma function
B.tech ii unit-2 material beta gamma functionB.tech ii unit-2 material beta gamma function
B.tech ii unit-2 material beta gamma functionRai University
 
Gamma beta functions-1
Gamma   beta functions-1Gamma   beta functions-1
Gamma beta functions-1Selvaraj John
 
Btech_II_ engineering mathematics_unit2
Btech_II_ engineering mathematics_unit2Btech_II_ engineering mathematics_unit2
Btech_II_ engineering mathematics_unit2Rai University
 
電路學 - [第八章] 磁耦合電路
電路學 - [第八章] 磁耦合電路電路學 - [第八章] 磁耦合電路
電路學 - [第八章] 磁耦合電路Simen Li
 
Ejercicos laplace ruben gonzalez
Ejercicos laplace   ruben gonzalezEjercicos laplace   ruben gonzalez
Ejercicos laplace ruben gonzalezRuben Gonzalez
 
Energy considerations in ionic bonding, lattice energy and solvation energy
Energy considerations in ionic bonding, lattice energy and solvation energyEnergy considerations in ionic bonding, lattice energy and solvation energy
Energy considerations in ionic bonding, lattice energy and solvation energyMithil Fal Desai
 

What's hot (14)

Ejercicios resueltos de analisis matematico 1
Ejercicios resueltos de analisis matematico 1Ejercicios resueltos de analisis matematico 1
Ejercicios resueltos de analisis matematico 1
 
Z transforms
Z transformsZ transforms
Z transforms
 
IB Chemistry on Hess's Law, Enthalpy Formation and Combustion
IB Chemistry on Hess's Law, Enthalpy Formation and CombustionIB Chemistry on Hess's Law, Enthalpy Formation and Combustion
IB Chemistry on Hess's Law, Enthalpy Formation and Combustion
 
Control system exercise
Control system exercise Control system exercise
Control system exercise
 
B.tech ii unit-2 material beta gamma function
B.tech ii unit-2 material beta gamma functionB.tech ii unit-2 material beta gamma function
B.tech ii unit-2 material beta gamma function
 
Ma2002 1.13 rm
Ma2002 1.13 rmMa2002 1.13 rm
Ma2002 1.13 rm
 
Gamma beta functions-1
Gamma   beta functions-1Gamma   beta functions-1
Gamma beta functions-1
 
Btech_II_ engineering mathematics_unit2
Btech_II_ engineering mathematics_unit2Btech_II_ engineering mathematics_unit2
Btech_II_ engineering mathematics_unit2
 
Taller 1 parcial 3
Taller 1 parcial 3Taller 1 parcial 3
Taller 1 parcial 3
 
電路學 - [第八章] 磁耦合電路
電路學 - [第八章] 磁耦合電路電路學 - [第八章] 磁耦合電路
電路學 - [第八章] 磁耦合電路
 
Gan
GanGan
Gan
 
Ejercicos laplace ruben gonzalez
Ejercicos laplace   ruben gonzalezEjercicos laplace   ruben gonzalez
Ejercicos laplace ruben gonzalez
 
Bohrn haber cycle of NaCl
Bohrn haber cycle of NaClBohrn haber cycle of NaCl
Bohrn haber cycle of NaCl
 
Energy considerations in ionic bonding, lattice energy and solvation energy
Energy considerations in ionic bonding, lattice energy and solvation energyEnergy considerations in ionic bonding, lattice energy and solvation energy
Energy considerations in ionic bonding, lattice energy and solvation energy
 

Similar to Radiation

University of manchester mathematical formula tables
University of manchester mathematical formula tablesUniversity of manchester mathematical formula tables
University of manchester mathematical formula tablesGaurav Vasani
 
Mathematical formula tables
Mathematical formula tablesMathematical formula tables
Mathematical formula tablesSaravana Selvan
 
Cálculo ii howard anton - capítulo 16 [tópicos do cálculo vetorial]
Cálculo ii   howard anton - capítulo 16 [tópicos do cálculo vetorial]Cálculo ii   howard anton - capítulo 16 [tópicos do cálculo vetorial]
Cálculo ii howard anton - capítulo 16 [tópicos do cálculo vetorial]Henrique Covatti
 
Hw4sol
Hw4solHw4sol
Hw4soluxxdqq
 
Lesson 7: Vector-valued functions
Lesson 7: Vector-valued functionsLesson 7: Vector-valued functions
Lesson 7: Vector-valued functionsMatthew Leingang
 
MLP輪読スパース8章 トレースノルム正則化
MLP輪読スパース8章 トレースノルム正則化MLP輪読スパース8章 トレースノルム正則化
MLP輪読スパース8章 トレースノルム正則化Akira Tanimoto
 
Quantitative norm convergence of some ergodic averages
Quantitative norm convergence of some ergodic averagesQuantitative norm convergence of some ergodic averages
Quantitative norm convergence of some ergodic averagesVjekoslavKovac1
 
Phase diagram at finite T & Mu in strong coupling limit of lattice QCD
Phase diagram at finite T & Mu in strong coupling limit of lattice QCDPhase diagram at finite T & Mu in strong coupling limit of lattice QCD
Phase diagram at finite T & Mu in strong coupling limit of lattice QCDBenjamin Jaedon Choi
 
Fourier Transform
Fourier TransformFourier Transform
Fourier TransformAamir Saeed
 
Signals and Systems Formula Sheet
Signals and Systems Formula SheetSignals and Systems Formula Sheet
Signals and Systems Formula SheetHaris Hassan
 
Csm chapters12
Csm chapters12Csm chapters12
Csm chapters12Pamela Paz
 
Contemporary communication systems 1st edition mesiya solutions manual
Contemporary communication systems 1st edition mesiya solutions manualContemporary communication systems 1st edition mesiya solutions manual
Contemporary communication systems 1st edition mesiya solutions manualto2001
 
Capitulo 2 corripio
Capitulo 2 corripioCapitulo 2 corripio
Capitulo 2 corripioomardavid01
 

Similar to Radiation (20)

University of manchester mathematical formula tables
University of manchester mathematical formula tablesUniversity of manchester mathematical formula tables
University of manchester mathematical formula tables
 
Ch15s
Ch15sCh15s
Ch15s
 
Mathematical formula tables
Mathematical formula tablesMathematical formula tables
Mathematical formula tables
 
Cálculo ii howard anton - capítulo 16 [tópicos do cálculo vetorial]
Cálculo ii   howard anton - capítulo 16 [tópicos do cálculo vetorial]Cálculo ii   howard anton - capítulo 16 [tópicos do cálculo vetorial]
Cálculo ii howard anton - capítulo 16 [tópicos do cálculo vetorial]
 
Hw4sol
Hw4solHw4sol
Hw4sol
 
Lesson 7: Vector-valued functions
Lesson 7: Vector-valued functionsLesson 7: Vector-valued functions
Lesson 7: Vector-valued functions
 
MLP輪読スパース8章 トレースノルム正則化
MLP輪読スパース8章 トレースノルム正則化MLP輪読スパース8章 トレースノルム正則化
MLP輪読スパース8章 トレースノルム正則化
 
Quantitative norm convergence of some ergodic averages
Quantitative norm convergence of some ergodic averagesQuantitative norm convergence of some ergodic averages
Quantitative norm convergence of some ergodic averages
 
Phase diagram at finite T & Mu in strong coupling limit of lattice QCD
Phase diagram at finite T & Mu in strong coupling limit of lattice QCDPhase diagram at finite T & Mu in strong coupling limit of lattice QCD
Phase diagram at finite T & Mu in strong coupling limit of lattice QCD
 
Fourier Transform
Fourier TransformFourier Transform
Fourier Transform
 
Signals and Systems Formula Sheet
Signals and Systems Formula SheetSignals and Systems Formula Sheet
Signals and Systems Formula Sheet
 
Sk7 ph
Sk7 phSk7 ph
Sk7 ph
 
Sk7 ph
Sk7 phSk7 ph
Sk7 ph
 
Shi20396 ch05
Shi20396 ch05Shi20396 ch05
Shi20396 ch05
 
Csm chapters12
Csm chapters12Csm chapters12
Csm chapters12
 
Stirling theorem
Stirling theoremStirling theorem
Stirling theorem
 
Contemporary communication systems 1st edition mesiya solutions manual
Contemporary communication systems 1st edition mesiya solutions manualContemporary communication systems 1st edition mesiya solutions manual
Contemporary communication systems 1st edition mesiya solutions manual
 
2.1 Calculus 2.formulas.pdf.pdf
2.1 Calculus 2.formulas.pdf.pdf2.1 Calculus 2.formulas.pdf.pdf
2.1 Calculus 2.formulas.pdf.pdf
 
Capitulo 2 corripio
Capitulo 2 corripioCapitulo 2 corripio
Capitulo 2 corripio
 
corripio
corripio corripio
corripio
 

More from Soumith V

Theory of machines notes
Theory of machines notesTheory of machines notes
Theory of machines notesSoumith V
 
Heat transfer GATE notes
Heat transfer GATE notesHeat transfer GATE notes
Heat transfer GATE notesSoumith V
 
Research methodology
Research methodologyResearch methodology
Research methodologySoumith V
 
Stoicism and How to build Self Discipline
Stoicism and How to build Self DisciplineStoicism and How to build Self Discipline
Stoicism and How to build Self DisciplineSoumith V
 
Actual cycles of IC engines
Actual cycles of IC enginesActual cycles of IC engines
Actual cycles of IC enginesSoumith V
 
Fuel air cycle
Fuel air cycleFuel air cycle
Fuel air cycleSoumith V
 
Air standard cycles
Air standard cyclesAir standard cycles
Air standard cyclesSoumith V
 
Guidelines for slide preparation
Guidelines for slide preparationGuidelines for slide preparation
Guidelines for slide preparationSoumith V
 
Applications of thermodynamics
Applications of thermodynamicsApplications of thermodynamics
Applications of thermodynamicsSoumith V
 
Study of heat transfer analysis in helical grooved pipe
Study of heat transfer analysis in helical grooved pipe Study of heat transfer analysis in helical grooved pipe
Study of heat transfer analysis in helical grooved pipe Soumith V
 
Fluid mechanics notes for gate
Fluid mechanics notes for gateFluid mechanics notes for gate
Fluid mechanics notes for gateSoumith V
 
Refrigeration and air conditioning notes for gate
Refrigeration and air conditioning notes for gateRefrigeration and air conditioning notes for gate
Refrigeration and air conditioning notes for gateSoumith V
 
thermodynamics notes for gate
thermodynamics notes for gatethermodynamics notes for gate
thermodynamics notes for gateSoumith V
 
Industrial engineering notes for gate
Industrial engineering notes for gateIndustrial engineering notes for gate
Industrial engineering notes for gateSoumith V
 
kitting method
kitting methodkitting method
kitting methodSoumith V
 

More from Soumith V (18)

Theory of machines notes
Theory of machines notesTheory of machines notes
Theory of machines notes
 
Heat transfer GATE notes
Heat transfer GATE notesHeat transfer GATE notes
Heat transfer GATE notes
 
Research methodology
Research methodologyResearch methodology
Research methodology
 
Stoicism and How to build Self Discipline
Stoicism and How to build Self DisciplineStoicism and How to build Self Discipline
Stoicism and How to build Self Discipline
 
Stoicism I
Stoicism   IStoicism   I
Stoicism I
 
Actual cycles of IC engines
Actual cycles of IC enginesActual cycles of IC engines
Actual cycles of IC engines
 
Fuel air cycle
Fuel air cycleFuel air cycle
Fuel air cycle
 
Air standard cycles
Air standard cyclesAir standard cycles
Air standard cycles
 
Guidelines for slide preparation
Guidelines for slide preparationGuidelines for slide preparation
Guidelines for slide preparation
 
Applications of thermodynamics
Applications of thermodynamicsApplications of thermodynamics
Applications of thermodynamics
 
Study of heat transfer analysis in helical grooved pipe
Study of heat transfer analysis in helical grooved pipe Study of heat transfer analysis in helical grooved pipe
Study of heat transfer analysis in helical grooved pipe
 
Power plant
Power plantPower plant
Power plant
 
Fluid mechanics notes for gate
Fluid mechanics notes for gateFluid mechanics notes for gate
Fluid mechanics notes for gate
 
Refrigeration and air conditioning notes for gate
Refrigeration and air conditioning notes for gateRefrigeration and air conditioning notes for gate
Refrigeration and air conditioning notes for gate
 
thermodynamics notes for gate
thermodynamics notes for gatethermodynamics notes for gate
thermodynamics notes for gate
 
Metrology
MetrologyMetrology
Metrology
 
Industrial engineering notes for gate
Industrial engineering notes for gateIndustrial engineering notes for gate
Industrial engineering notes for gate
 
kitting method
kitting methodkitting method
kitting method
 

Recently uploaded

Design For Accessibility: Getting it right from the start
Design For Accessibility: Getting it right from the startDesign For Accessibility: Getting it right from the start
Design For Accessibility: Getting it right from the startQuintin Balsdon
 
data_management_and _data_science_cheat_sheet.pdf
data_management_and _data_science_cheat_sheet.pdfdata_management_and _data_science_cheat_sheet.pdf
data_management_and _data_science_cheat_sheet.pdfJiananWang21
 
"Lesotho Leaps Forward: A Chronicle of Transformative Developments"
"Lesotho Leaps Forward: A Chronicle of Transformative Developments""Lesotho Leaps Forward: A Chronicle of Transformative Developments"
"Lesotho Leaps Forward: A Chronicle of Transformative Developments"mphochane1998
 
Thermal Engineering-R & A / C - unit - V
Thermal Engineering-R & A / C - unit - VThermal Engineering-R & A / C - unit - V
Thermal Engineering-R & A / C - unit - VDineshKumar4165
 
COST-EFFETIVE and Energy Efficient BUILDINGS ptx
COST-EFFETIVE  and Energy Efficient BUILDINGS ptxCOST-EFFETIVE  and Energy Efficient BUILDINGS ptx
COST-EFFETIVE and Energy Efficient BUILDINGS ptxJIT KUMAR GUPTA
 
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXssuser89054b
 
Introduction to Data Visualization,Matplotlib.pdf
Introduction to Data Visualization,Matplotlib.pdfIntroduction to Data Visualization,Matplotlib.pdf
Introduction to Data Visualization,Matplotlib.pdfsumitt6_25730773
 
Moment Distribution Method For Btech Civil
Moment Distribution Method For Btech CivilMoment Distribution Method For Btech Civil
Moment Distribution Method For Btech CivilVinayVitekari
 
A Study of Urban Area Plan for Pabna Municipality
A Study of Urban Area Plan for Pabna MunicipalityA Study of Urban Area Plan for Pabna Municipality
A Study of Urban Area Plan for Pabna MunicipalityMorshed Ahmed Rahath
 
School management system project Report.pdf
School management system project Report.pdfSchool management system project Report.pdf
School management system project Report.pdfKamal Acharya
 
AIRCANVAS[1].pdf mini project for btech students
AIRCANVAS[1].pdf mini project for btech studentsAIRCANVAS[1].pdf mini project for btech students
AIRCANVAS[1].pdf mini project for btech studentsvanyagupta248
 
A CASE STUDY ON CERAMIC INDUSTRY OF BANGLADESH.pptx
A CASE STUDY ON CERAMIC INDUSTRY OF BANGLADESH.pptxA CASE STUDY ON CERAMIC INDUSTRY OF BANGLADESH.pptx
A CASE STUDY ON CERAMIC INDUSTRY OF BANGLADESH.pptxmaisarahman1
 
Unleashing the Power of the SORA AI lastest leap
Unleashing the Power of the SORA AI lastest leapUnleashing the Power of the SORA AI lastest leap
Unleashing the Power of the SORA AI lastest leapRishantSharmaFr
 
S1S2 B.Arch MGU - HOA1&2 Module 3 -Temple Architecture of Kerala.pptx
S1S2 B.Arch MGU - HOA1&2 Module 3 -Temple Architecture of Kerala.pptxS1S2 B.Arch MGU - HOA1&2 Module 3 -Temple Architecture of Kerala.pptx
S1S2 B.Arch MGU - HOA1&2 Module 3 -Temple Architecture of Kerala.pptxSCMS School of Architecture
 
Theory of Time 2024 (Universal Theory for Everything)
Theory of Time 2024 (Universal Theory for Everything)Theory of Time 2024 (Universal Theory for Everything)
Theory of Time 2024 (Universal Theory for Everything)Ramkumar k
 
Online food ordering system project report.pdf
Online food ordering system project report.pdfOnline food ordering system project report.pdf
Online food ordering system project report.pdfKamal Acharya
 
Digital Communication Essentials: DPCM, DM, and ADM .pptx
Digital Communication Essentials: DPCM, DM, and ADM .pptxDigital Communication Essentials: DPCM, DM, and ADM .pptx
Digital Communication Essentials: DPCM, DM, and ADM .pptxpritamlangde
 
Hospital management system project report.pdf
Hospital management system project report.pdfHospital management system project report.pdf
Hospital management system project report.pdfKamal Acharya
 
Navigating Complexity: The Role of Trusted Partners and VIAS3D in Dassault Sy...
Navigating Complexity: The Role of Trusted Partners and VIAS3D in Dassault Sy...Navigating Complexity: The Role of Trusted Partners and VIAS3D in Dassault Sy...
Navigating Complexity: The Role of Trusted Partners and VIAS3D in Dassault Sy...Arindam Chakraborty, Ph.D., P.E. (CA, TX)
 

Recently uploaded (20)

Design For Accessibility: Getting it right from the start
Design For Accessibility: Getting it right from the startDesign For Accessibility: Getting it right from the start
Design For Accessibility: Getting it right from the start
 
data_management_and _data_science_cheat_sheet.pdf
data_management_and _data_science_cheat_sheet.pdfdata_management_and _data_science_cheat_sheet.pdf
data_management_and _data_science_cheat_sheet.pdf
 
"Lesotho Leaps Forward: A Chronicle of Transformative Developments"
"Lesotho Leaps Forward: A Chronicle of Transformative Developments""Lesotho Leaps Forward: A Chronicle of Transformative Developments"
"Lesotho Leaps Forward: A Chronicle of Transformative Developments"
 
Thermal Engineering-R & A / C - unit - V
Thermal Engineering-R & A / C - unit - VThermal Engineering-R & A / C - unit - V
Thermal Engineering-R & A / C - unit - V
 
COST-EFFETIVE and Energy Efficient BUILDINGS ptx
COST-EFFETIVE  and Energy Efficient BUILDINGS ptxCOST-EFFETIVE  and Energy Efficient BUILDINGS ptx
COST-EFFETIVE and Energy Efficient BUILDINGS ptx
 
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
 
Introduction to Data Visualization,Matplotlib.pdf
Introduction to Data Visualization,Matplotlib.pdfIntroduction to Data Visualization,Matplotlib.pdf
Introduction to Data Visualization,Matplotlib.pdf
 
Moment Distribution Method For Btech Civil
Moment Distribution Method For Btech CivilMoment Distribution Method For Btech Civil
Moment Distribution Method For Btech Civil
 
A Study of Urban Area Plan for Pabna Municipality
A Study of Urban Area Plan for Pabna MunicipalityA Study of Urban Area Plan for Pabna Municipality
A Study of Urban Area Plan for Pabna Municipality
 
School management system project Report.pdf
School management system project Report.pdfSchool management system project Report.pdf
School management system project Report.pdf
 
Cara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak Hamil
Cara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak HamilCara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak Hamil
Cara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak Hamil
 
AIRCANVAS[1].pdf mini project for btech students
AIRCANVAS[1].pdf mini project for btech studentsAIRCANVAS[1].pdf mini project for btech students
AIRCANVAS[1].pdf mini project for btech students
 
A CASE STUDY ON CERAMIC INDUSTRY OF BANGLADESH.pptx
A CASE STUDY ON CERAMIC INDUSTRY OF BANGLADESH.pptxA CASE STUDY ON CERAMIC INDUSTRY OF BANGLADESH.pptx
A CASE STUDY ON CERAMIC INDUSTRY OF BANGLADESH.pptx
 
Unleashing the Power of the SORA AI lastest leap
Unleashing the Power of the SORA AI lastest leapUnleashing the Power of the SORA AI lastest leap
Unleashing the Power of the SORA AI lastest leap
 
S1S2 B.Arch MGU - HOA1&2 Module 3 -Temple Architecture of Kerala.pptx
S1S2 B.Arch MGU - HOA1&2 Module 3 -Temple Architecture of Kerala.pptxS1S2 B.Arch MGU - HOA1&2 Module 3 -Temple Architecture of Kerala.pptx
S1S2 B.Arch MGU - HOA1&2 Module 3 -Temple Architecture of Kerala.pptx
 
Theory of Time 2024 (Universal Theory for Everything)
Theory of Time 2024 (Universal Theory for Everything)Theory of Time 2024 (Universal Theory for Everything)
Theory of Time 2024 (Universal Theory for Everything)
 
Online food ordering system project report.pdf
Online food ordering system project report.pdfOnline food ordering system project report.pdf
Online food ordering system project report.pdf
 
Digital Communication Essentials: DPCM, DM, and ADM .pptx
Digital Communication Essentials: DPCM, DM, and ADM .pptxDigital Communication Essentials: DPCM, DM, and ADM .pptx
Digital Communication Essentials: DPCM, DM, and ADM .pptx
 
Hospital management system project report.pdf
Hospital management system project report.pdfHospital management system project report.pdf
Hospital management system project report.pdf
 
Navigating Complexity: The Role of Trusted Partners and VIAS3D in Dassault Sy...
Navigating Complexity: The Role of Trusted Partners and VIAS3D in Dassault Sy...Navigating Complexity: The Role of Trusted Partners and VIAS3D in Dassault Sy...
Navigating Complexity: The Role of Trusted Partners and VIAS3D in Dassault Sy...
 

Radiation

  • 2. ’ λ λ Ebλ (λ, T) = C1 ∙ λ−5 (e C2 λ∙T − 1) W m2 ∙ μm C1 = 2 ∙ π ∙ h ∙ c0 2 = 3.74177 × 108 W ∙ μm4 /m2 C2 = h ∙ c0 k = 1.439 × 104 μm ∙ K λ ’ ’
  • 3. ’ (λT)max power = 2897.8 μm ∙ K λ ⟶ d dλ [Ebλ(T)] = 0 ⟶ d dλ [ C1 ∙ λ−5 (e C2 λ∙T − 1) ] = 0 ⟶ (e C2 λ∙T − 1) ∙ C⃥1 ∙ (−5λ−6) − C⃥1 λ⃥−5 ∙ C2 T ∙ ( −1 λ2⃥ ) e C2 λ∙T = 0 ⟶ −e C2 λ∙T ∙ 5 + 5 + C2 λT e C2 λ∙T = 0 ⟶ −1 + e −( C2 λ∙T ) + 1 5 ∙ ( C2 λ ∙ T ) = 0 Let C2 λT = x, ⟶ x 5 + e−x − 1 = 0 x ≈ 4. .965 C2 λT = 4.965 ⇒ λT = C2 4.965 = 1.439 × 104 μm ∙ K 4.965 𝛌𝐓 = 𝟐𝟖𝟕𝟗. 𝟖 𝛍𝐦 ∙ 𝐊 λ → Eb = ∫ Ebλ ∞ 0 (λ, T) dλ = ∫ C1 ∙ λ−5 (e C2 λ∙T − 1) ∞ 0 dλ Let C2 λT = y → λ = C2 yT → dλ = − C2 T ∙ y2 dy At λ = 0 → y = ∞ λ = ∞ → y = 0 → ∫ C1 ∙ ( C2 yT) −5 (ey − 1) 0 ∞ ∙ (− C2 T ∙ y2 ) dy ⟹ C1 ∙ T4 C2 4 ∫ y3 ∙ (ey − 1)−1 ∞ 0 dy → C1 ∙ T4 C2 4 ∫ y3 ∙ (e−y + e−2y + e−3y + ⋯ ) ∞ 0 dy → C1 ∙ T4 C2 4 ∫ y3 ∙ e−ny ∞ 0 dy → C1 ∙ T4 C2 4 × 3! n4 = C1 ∙ T4 C2 4 × 3! × ( 1 14 + 1 24 + 1 34 + 1 44 + ⋯ ) → C1 ∙ T4 C2 4 × 6 × π 90 = ( C1 C2 4 × π 15 ) × T4 = ( 3.74177 × 108 (1.439 × 104 ) 4 × π 15 ) × T4 = (5.67 × 10−8) × T−4 = 𝛔 × 𝐓 𝟒 σ → Stephan Boltzmann Constant
  • 4. – σ λ λ ∞ λ λ Eb,0−λ(T) = ∫ Eb,λ(λ, T) λ 0 dλ –λ λ f0−λ,T = ∫ Eb,λ(λ, T) λ 0 dλ ∫ Eb,λ(λ, T) ∞ 0 dλ = ∫ Eb,λ(λ, T) λ 0 dλ σ ∙ T4 λ λ λ f0−λ,T = ∫ Eb,λ(λ, T) λ 0 dλ σ ∙ T4 = ∫ C1 ∙ λ−5 (e C2 λ∙T − 1) ∙ (σ ∙ T4) λ 0 dλ = C1 σ ∫ (λT)−5 (e C2 λT − 1) λ 0 d(λT) λ λ λ λ λ λ fλ1−λ2 (T) = ∫ Ebλ(λ, T) λ2 0 dλ − ∫ Ebλ(λ, T) λ1 0 dλ σT4 = fλ2 (T) − fλ1 (T) λ λ λ λ μ μ λ1T = 0.4 × 5800 = 2320 μm − K, f0−λ = 0.125 (from table) λ1T = 0.76 × 5800 = 4408 μm − K, f0−λ = 0.550 (from table) fλ1−λ2 = 0.55 − 0.125 = 0.426 or 42.6% ω
  • 5. ω dω = dS r2 = (r ∙ sinθ ∙ dϕ) ∙ (r ∙ dθ) r2 ω dω = dAn r2 = dA ∙ cosθ r2 ω θ ϕ θ ϕ Ie(θ, ϕ) = dQ̇ e dAn ∙ dω = dQ̇ e dA ∙ cosθ ∙ dω = dQ̇ e dA cos θ ∙ sin θ dθ dϕ dE = dQ̇ e dA = Ie(θ, ϕ) × (cosθ ∙ sinθ dθ dϕ) E = ∫ dE hemisphere = ∫ ∫ Ie(θ, ϕ) ∙ cos θ ∙ sin θ dθ dϕ π 2 θ=0 2π ϕ=0 W/m2 E = π ∙ Ie λ
  • 6. G = ∫ dG Hemsiphere = ∫ ∫ Ie(θ, ϕ) ∙ cosθ ∙ sinθ dθ dϕ π 2 θ=0 2π ϕ=0 W/m2 J = ∫ ∫ Ie+r(θ, ϕ) ∙ cos θ ∙ sinθ dθ dϕ π 2 θ=0 2π ϕ=0 W m2 G = Gα + Gρ + Gτ Gα G + Gρ G + Gτ G = 1 α + ρ + τ = 1 α → ρ → τ → α = 1 ⟶ black body ρ = 1 ⟶ white body τ = 1 ⟶ transparent body → Total Hemi spherical absorptivity, α = Gα G → Total Hemi spherical reflectivity, ρ = Gρ G → Total Hemi spherical transmissivity, τ = Gτ G → Spectral Hemi spherical absorptivity, αλ = Gαλ G → Spectral Hemi spherical reflectivity, ρλ = Gρλ G → Spectral Hemi spherical transmissivity, τ = Gτλ G → Spectral directional absorptivity, αλ,θ = Gαλ,θ Gλ,θ α → given spectral variation of irradiation → α = Gα G = ∫ Gα,λdλ ∞ 0 ∫ Gλdλ ∞ 0 , αλ = Gα,λ Gλ Gα,λ = αλ ∙ Gλ → α = ∫ αλ ∙ Gλ dλ ∞ 0 ∫ Gλ dλ ∞ 0
  • 7. → ρ = ∫ ρλ ∙ Gλ dλ ∞ 0 ∫ Gλ dλ ∞ 0 → τ = ∫ τλ ∙ Gλ dλ ∞ 0 ∫ Gλ dλ ∞ 0 ε ≤ ε ≤ ε ελ,θ(λ, θ, ϕ, T) = Iλ,e(λ, θ, ϕ, T) Ib,λ(λ, T) εθ(θ, ϕ, T) = Ie(θ, ϕ, T) Ib(T)
  • 8. ελ,θ = Eλ(λ, T) Ebλ(λ, T) ε(T) = E(T) Eb(T) → ε = ∫ ελ ∙ Ebλ(T) ∞ 0 ∙ dλ ∫ Ebλ(T) ∞ 0 ∙ dλ → ε = ∫ ε1 ∙ Ebλ(T) λ1 0 ∙ dλ σ ∙ T4 + ∫ ε2 ∙ Ebλ(T) λ2 λ1 ∙ dλ σ ∙ T4 + ∫ ε3 ∙ Ebλ(T) ∞ λ2 ∙ dλ σ ∙ T4 → ε = ε1 × ∫ Ebλ(T) λ1 0 ∙ dλ σ ∙ T4 + ε2 × ∫ Ebλ(T) λ2 λ1 ∙ dλ σ ∙ T4 + ε3 × ∫ Ebλ(T) ∞ λ2 ∙ dλ σ ∙ T4 → ε = ε1 × f0−λ1 (T) + ε2 × fλ1−λ2 (T) + ε3 × fλ2−λ3 (T) → α = ∫ αλ ∙ Gλ ∙ dλ ∞ 0 ∫ Gλ ∙ dλ ∞ 0 = ∫ αλ ∙ Ebλ(T) ∙ dλ ∞ 0 ∫ Ebλ(T) ∙ dλ ∞ 0 → Gλ ∝ Ebλ(T) ’ ε α → Gincident = Eb(T) = σT4 → Gabsorbed = α ∙ σT4 → Eemitted = ε ∙ σT4 Eλ = αλ ∙ Gλ → Eλ αλ = Gλ ελ ∙ Ebλ = αλ ∙ Gbλ As ∙ ε ∙ σT4 = As ∙ α ∙ σT4
  • 9. → ε(T) = α(T) → ε = ∫ ελ ∙ Ebλ(T) ∞ 0 ∙ dλ Eb = ∫ αλ ∙ Ebλ(T) dλ ∞ 0 Eb = α (Gλ = Ebλ) ’ ’ → Ebλ(T) = C1 ∙ λ−5 e C2 λT − 1 μ 1) λT ≫ C2 & 2) λT ≪ C2 ① → e C2 λT = 1 + ( C2 λT ) + 1 2! ( C2 λT ) 2 + 1 3! ( C2 λT ) 3 + ⋯ Higher order terms of C2 λT are neglected as λT ≫ C2 → e C2 λT − 1 = C2 λT → Ebλ(T) = C1 ∙ λ−5 C2 λT = C1T C2λ4 ⟼ Rayleigh′ s Jean Law ② → e C2 λT − 1 = e C2 λT (C2 ≫ λT) Ebλ(T) = C1 ∙ λ−5 e C2 λT = C1λ−5 ∙ e − C2 λT ⟶ Wein′ s Law View factor = dQ1 Q1 = F12 n1, n2 → normals to dA1 & dA2 θ1, θ2 → polar angles r → distance dω21 → solid angle subtended by dA2when viewed from dA1 I1 → radiation intensity emitted by surface dA1uniformly dQ1 → radiation emitted by dA1that strikes dA2 Q1 → total radiation emitted by dA1
  • 10. → dFdA1−dA2 = dQ1 Q1 dQ1 = dA1 ∙ I1 cos θ1 ∙ dω1−2 = dA1 ∙ I1 cos θ1 ∙ dA2 ∙ cos θ2 r2 = I1dA1dA2 cos θ1 cosθ2 r2 Also, Q1 = dA1 ∙ πI1 dFdA1−dA2 = dQ1 Q1 = I1dA1dA2 cos θ1 cos θ2 r2 × 1 dA1 ∙ πI1 = cosθ1 cos θ2 ∙ dA2 πr2 → dFdA1−A2 = ∫ cos θ1 cosθ2 πr2 A2 ∙ dA2 → dFA2−dA1 = dA1 A2 ∫ cos θ1 cos θ2 πr2 A2 ∙ dA2 → dFA2−A1 = 1 A2 ∫ ∫ cos θ1 cos θ2 πr2 A1 ∙ dA1dA2 A2 → dFA1−A2 = 1 A1 ∫ ∫ cos θ1 cos θ2 πr2 A2 ∙ dA2dA1 A1  … 𝐴𝑖 ∙ 𝐹𝐴𝑖−𝐴 𝑗 = 𝐴𝑗 ∙ 𝐹𝐴 𝑗−𝐴𝑖 ∑ 𝐹𝐴 𝑗−𝐴 𝑘 𝑁 𝑘=1 = 1      → 𝑁2 − [ 𝑁(𝑁 − 1) 2 + 𝑁 + 𝑁] = 𝑁(𝑁 − 3) 2 𝐹11 + 𝐹12 = 1 𝐹21 + 𝐹⃥22 = 1 → 𝐹21 = 1 𝐴1 𝐹12 = 𝐴2 𝐹21 = 𝐴2 𝐹12 = 𝐴2 𝐴1
  • 11. 𝐹11 = 1 − 𝐹12 = 1 − 𝐴2 𝐴1 𝐹12 = Σ𝐶𝑟𝑜𝑠𝑠𝑒𝑑 𝑠𝑡𝑟𝑖𝑛𝑔𝑠 − Σ𝑢𝑛𝑐𝑟𝑜𝑠𝑠𝑒𝑑 𝑠𝑡𝑟𝑖𝑛𝑔𝑠 2 × 𝑙𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑠𝑡𝑟𝑖𝑛𝑔 𝑜𝑛 𝑡ℎ𝑒 𝑠𝑢𝑟𝑓𝑎𝑐𝑒 1 = (𝐿5 + 𝐿6) − (𝐿3 + 𝐿4) 2 × 𝐿1 ‘ ’ cos 𝜃1 = cos 𝜃2 = cos 𝜃3 = 𝐿 𝑟 𝑟 = √𝐿2 + 𝜌2 𝑑𝐴2 = 𝜌 ∙ 𝑑𝜌 ∙ 𝑑𝜙 𝐹𝑑𝐴1−𝐴2 = ∫ cos θ1 cosθ2 πr2 A2 ∙ dA2 = 1 𝜋 ∫ ∫ 𝐿2 ∙ 𝜌 (𝐿2 + 𝜌2)2 2𝜋 𝜙=0 𝑅 𝜌=0 𝑑𝜌 ∙ 𝑑𝜙 = 2𝐿2 ∫ 𝜌 (𝐿2 + 𝜌2)2 𝑑𝜌 𝑅 0 𝐹𝑑𝐴1−𝐴2 = 𝑅2 𝑅2 + 𝐿2 𝑄1−2 = ( 𝑅𝑎𝑑𝑖𝑎𝑡𝑖𝑜𝑛 𝑙𝑒𝑎𝑣𝑖𝑛𝑔 𝑡ℎ𝑒 𝑠𝑢𝑟𝑓𝑎𝑐𝑒 1 𝑡ℎ𝑎𝑡 𝑠𝑡𝑟𝑖𝑘𝑒𝑠 2 𝑑𝑖𝑟𝑒𝑐𝑡𝑙𝑦 ) − ( 𝑅𝑎𝑑𝑖𝑎𝑡𝑖𝑜𝑛 𝑙𝑒𝑎𝑣𝑖𝑛𝑔 𝑡ℎ𝑒 𝑠𝑢𝑟𝑓𝑎𝑐𝑒 2 𝑡ℎ𝑎𝑡 𝑠𝑡𝑟𝑖𝑘𝑒𝑠 1 𝑑𝑖𝑟𝑒𝑐𝑡𝑙𝑦 ) = 𝐴1 𝐸 𝑏1 𝐹12 − 𝐴2 𝐹21 𝐸 𝑏2 𝑄12 = 𝐴1 𝐹12 (𝐸 𝑏1 − 𝐸 𝑏2 ) = 𝐴1 𝐹12 𝜎(𝑇1 4 − 𝑇2 4 ) 𝑄1 = ∑ 𝑄𝑖−𝑗 𝑁 𝑗=1 = 𝐴𝑖 ∙ 𝐹𝑖−𝑗 ∙ 𝜎(𝑇1 4 − 𝑇2 4) Ji → radiosity of surface Gi → irradiation of surface qi → net radiation temperatire at surface qi = Ji − Gi
  • 12. Ji = emitted component + reflected component Ji = ϵEbi + ρGi Ji = ϵiEbi + (1 − αi)Gi Ji = ϵEbi + (1 − ϵi)Gi Ji − Gi = ϵi(Ebi − Gi) Gi = Ji − ϵiEbi 1 − ϵi Ji − Gi = qi = ϵi (Ebi − Ji − ϵiEbi 1 − ϵi ) qi = ϵi ( Ebi − ϵiEbi − Ji + ϵiEbi 1 − ϵi ) = ϵi ( Ebi − Ji 1 − ϵi ) Net rate heat transfer rate Qi = Aiqi Qi = Ebi − Ji ( 1 − ϵi ϵ1Ai ) (Ebi − Ji) → potential difference ( 1 − ϵi ϵ1Ai ) → surface resistance Qi = Ebi − Ji R Q1−2 = A1F12σ(T1 4 − T2 4) = A1F12 ∙ (J1 − J2) Q1−2 = J1 − J2 ( 1 A1F12 ) → Q̇ 1 = Q̇ 12 = −Q̇ 2 Q1−2 = Eb1 − Eb2 R1 + R2 + R3 = σ(T1 4 − T2 4) 1 − ε1 A1ε1 + 1 A1F12 + 1 − ε2 A2ε2
  • 13. Q0 = A ∙ σ ∙ (T1 4 − T2 4 ) 1 ε1 + 1 ε2 − 1 𝐴1 = 𝐴2 = 𝐴3 = 𝐴 R1 = 1 − ε1 A ∙ ε1 R2 = 1 A ∙ F13 R3 = 1 − ε31 A ∙ ε31 R4 = 1 − ε32 A ∙ ε32 R5 = 1 A ∙ F32 R4 = 1 − ε2 A ∙ ε2 Q = A ∙ σ ∙ (T1 4 − T2 4 ) ( 1 ε1 + 1 ε2 − 1) + ( 1 ε31 + 1 ε32 − 1) ⟶ Radiation with shield → Qwithout shield = A ∙ σ ∙ (T1 4 − T2 4 ) 2 ε − 1
  • 14. → Qwith shield = A ∙ σ ∙ (T1 4 − T2 4 ) 2 ( 2 ε − 1) ‘ ’ → QN = A ∙ σ ∙ (T1 4 − T2 4 ) (N + 1) ( 2 ε − 1) → QN Q0 = 1 N + 1 → QN = Q0 ( 1 N + 1 ) Qo = σ(T1 4 − T2 4) 1 − ε1 A1ε1 + 1 A1F12 + 1 − ε2 A2ε2 = σ ∙ A1 ∙ (T1 4 − T2 4) 1 ε1 − 1 + 1 F12 + A1 A2 ( 1 ε2 − 1) = σ ∙ A1 ∙ (T1 4 − T2 4) 1 ε1 + A1 A2 ( 1 ε2 − 1) Qshield = σ(T1 4 − T2 4) 1 − ε1 A1ε1 + 1 A1F13 + 1 − ε31 A3ε31 + 1 − ε32 A3ε32 + 1 𝐴3 𝐹31 + 1 − ε2 A2ε2 Qshield = σ(T1 4 − T2 4) 1 𝜀1 + 𝐴1 𝐴2 ( 1 𝜀2 − 1) + 𝐴1 𝐴3 ( 1 𝜀31 + 1 𝜀32 − 1)
  • 15. Eb1 − J1 R1⏟ Q1 + J2 − J1 R12⏟ −Q12 + J3 − J1 R13⏟ −Q13 = 0 J1 − J2 R12 + Eb2 − J2 R23 + J3 − J2 R23 = 0 J1 − J3 R13 + J2 − J3 R23 + Eb3 − J3 R3 = 0 Q̇ i = ∑ Q̇ i→j N j=1 = ∑ AiFi→j(Ji − Jj) N j=1 = ∑ (Ji − Jj) (1/AiFi→j) N j=1 ’
  • 16. R̅ = R1 + Req + R2 1 Req = 1 R12 + 1 R13 + R23 R̅ = ( 1 − ε1 A1ε1 ) + ( 1 1 A1F12 + 1 A1F13 + A2F23 ) + ( 1 − ε2 A2ε2 ) Q12 = Eb1 − Eb2 R̅
  • 17. λ λ λ λ dIλ(s) ds = ( emission per unit volume ) − ( absorption per unit volume ) ( Absorption per unit volume ) = κλ ∙ Iλ(s) 𝜿 𝝀 ’ 𝜿 𝝀 ( Emission per unit volume ) = κλ Ibλ(T) λ 𝑑𝐼𝜆(𝑠) 𝑑𝑠 + 𝜅 𝜆 𝐼𝜆(𝑠) = 𝜅 𝜆 𝐼 𝑏𝜆(𝑇) 𝐼𝜆(𝑠) = 𝐼𝜆(0) 𝑎𝑡 𝑠 = 0
  • 18. → 𝑑𝐼𝜆(𝑠) 𝑑𝑠 + 𝜅 𝜆 𝐼𝜆(𝑠) = 𝜅 𝜆 𝐼 𝑏𝜆(𝑇) → 𝑑𝐼𝜆(𝑠) (𝐼 𝑏𝜆(𝑇) − 𝐼𝜆(𝑠)) = 𝜅 𝜆 𝑑𝑠 → ∫ 𝑑𝐼𝜆(𝑠) ( 𝐼 𝑏𝜆( 𝑇) − 𝐼 𝜆( 𝑠)) 𝐼 𝜆(𝑠) 𝐼 𝜆(0) = ∫ 𝜅 𝜆 𝑑𝑠 𝑠 0 ⟹ ln( 𝐼 𝑏𝜆( 𝑇) − 𝐼 𝜆( 𝑠)) | 𝐼𝜆(𝑠) 𝐼𝜆(0) = −𝜅 𝜆 ∙ 𝑠 → ln 𝐼 𝑏𝜆( 𝑇) − 𝐼 𝜆( 𝑠) 𝐼 𝑏𝜆( 𝑇) − 𝐼 𝜆(0) = −𝜅 𝜆 ∙ 𝑠 ⟹ 𝐼 𝑏𝜆( 𝑇) − 𝐼 𝜆( 𝑠) 𝐼 𝑏𝜆( 𝑇) − 𝐼 𝜆(0) = 𝑒−𝜅 𝜆∙𝑠 → (𝐼 𝑏𝜆(𝑇) − 𝐼𝜆(0)) ∙ 𝑒−𝜅 𝜆∙𝑠 = 𝐼 𝑏𝜆(𝑇) − 𝐼𝜆(𝑠) 𝑰 𝝀(𝒔) = 𝑰 𝝀(𝟎) ∙ 𝒆−𝜿 𝝀∙𝒔 + (𝟏 − 𝒆−𝜿 𝝀∙𝒔)𝑰 𝒃𝝀(𝑻) 𝐼𝜆(𝐿) = 𝐼𝜆(0) ∙ 𝑒−𝜅 𝜆∙𝐿 + (1 − 𝑒−𝜅 𝜆∙𝐿)𝐼𝑏𝜆(𝑇) λ 𝐼𝜆(𝐿) = 𝐼 𝜆(0) ∙ 𝑒−𝜅 𝜆∙𝐿 τλ 𝜏 𝜆 = 𝐼𝜆(𝐿) 𝐼𝜆(0) = 𝑒−𝜅 𝜆∙𝐿 𝜏 𝜆 + 𝛼 𝜆 = 1 𝛼 𝜆 𝛼 𝜆 = 1 − 𝑒−𝜅 𝜆∙𝐿 ’ 𝛼 𝜆 ελ. 𝜀 𝜆 = 𝛼 𝜆 = 1 − 𝑒−𝜅 𝜆∙𝐿 𝐼𝜆(𝐿) = (1 − 𝑒−𝜅 𝜆∙𝐿) 𝐼 𝑏𝜆( 𝑇)
  • 19. ’ εw = Cw ∙ εw,1 atm Cw = 1 for P = 1 atm and thus Pw + P 2 ≅ 0.5
  • 20. εg = εc + εw − Δε εg = Cc ∙ εc,1 atm + Cw ∙ εw,1 atm − Δε Δε Δε Le = 3.6 × V A V → Volume of gas body , A → surface area of enclosure αg = αc + αw − Δα Δα = Δε CO2: αc = Cc × ( Tg Ts ) 0.65 × εc (Ts, PcLTs Tg ) H2O: αw = Cw × ( Tg Ts ) 0.65 × εw (Ts, PwLTs Tg ) α = ε Ts = Tg 𝑄 𝑒 = 𝐴 𝑠 ∙ 𝜀 𝑔 ∙ 𝜎𝑇𝑔 4 𝐴 𝑠 𝜎𝑇4 𝑄̇ 𝑎 = 𝐴 𝑠 ∙ 𝛼 𝑔 ∙ 𝜎𝑇4 𝑄̇ 𝑛𝑒𝑡 = 𝑄 𝑒 − 𝑄̇ 𝑎 = (𝐴 𝑠 ∙ 𝜀 𝑔 ∙ 𝜎𝑇𝑔 4 ) − (𝐴 𝑠 ∙ 𝛼 𝑔 ∙ 𝜎𝑇4 ) 𝑄̇ 𝑛𝑒𝑡 = 𝐴 𝑠 ∙ 𝜎 × (𝜀 𝑔 𝑇𝑔 4 − 𝛼 𝑔 𝑇4 ) → 𝐵𝑙𝑎𝑐𝑘 𝐸𝑛𝑐𝑙𝑜𝑠𝑢𝑟𝑒
  • 21. εs 𝑄̇ 𝑛𝑒𝑡,𝑔𝑟𝑎𝑦 = 𝜀 𝑠 + 1 2 𝑄̇ 𝑛𝑒𝑡,𝑏𝑙𝑎𝑐𝑘 = 𝜀 𝑠 + 1 2 × 𝐴 𝑠 ∙ 𝜎 × (𝜀 𝑔 𝑇𝑔 4 − 𝛼 𝑔 𝑇4 )