SlideShare a Scribd company logo
1 of 17
Download to read offline
Ezgi Canay†
Maxim Eingorn‡
Duel of
cosmological screening lengths
†Department of Physics, Istanbul Technical University, Istanbul, Turkey
‡Department of Mathematics and Physics, North Carolina Central University,
Durham, North Carolina, U.S.A.
Phys. Dark Univ.29, 100565 (2020); arXiv:2002.00437
DOI:10.1016/j.dark.2020.100565
• Introduction
• Screening of gravity
• from discrete cosmology
(first-order metric corrections, velocity-dependent contribution to the scalar perturbation)
• from linear perturbation theory
• Combined approach
• velocity-dependent contribution to the scalar perturbation - revisited
• novel expression for the gravitational potential
• effective screening length
• Conclusion
Outline
Weak field limit of general relativity
Newtoniangravitational interactionbetween nonrelativistic massive
bodies at sub-horizoncosmological scales
(perturbed FLRW spacetime)
Can both concepts coexist?
YES!
What is the appropriate analytical expression for the gravitational potential?
How does the interaction range compare to the
size of the largest known cosmic structures?
Yukawa-type screening of gravity proposed within the scheme of
discrete cosmology & relativistic perturbation theory
How is it modified at large distances?
Introduction
Nonrelativistic matter presented as separate point-like particles → 𝜌 = σ 𝑛 𝑚 𝑛 𝛿 𝒓 − 𝒓 𝑛
Perturbations in discrete cosmology (for pure ΛCDM model - negligible radiation):
𝑑𝑠2 = 𝑎2 𝑑𝜂2 − 𝛿 𝛼𝛽 𝑑𝑥 𝛼 𝑑𝑥 𝛽
3ℋ2
𝑎2
= 𝜅 ҧ𝜀 + Λ
2ℋ′
+ ℋ2
𝑎2
= Λ
𝑑𝑠2
= 𝑎2
1 + 2Φ 𝑑𝜂2
+ 2𝐵 𝛼 𝑑𝑥 𝛼
𝑑𝜂 − 1 − 2Φ 𝛿 𝛼𝛽 𝑑𝑥 𝛼
𝑑𝑥 𝛽
• 𝜂: conformal time
• 𝑎 𝜂 : scale factor
• 𝑥 𝛼
: comoving coordinates ; 𝛼, 𝛽 = 1,2,3
• ℋ ≡ 𝑎′Τ 𝑎 ; ′ ≡ 𝑑Τ 𝑑𝜂
• 𝜅 ≡ 8𝜋𝐺 𝑁Τ 𝑐4
; 𝐺 𝑁: Newtonian gravitational constant
• 𝜀ҧ: average energy density of nonrelativistic matter
Unperturbed FLRW metric:
𝜌: mass density
Perturbed metric for the inhomogeneous Universe:
Weak gravitational field limit Metric corrections are considered as 1st order quantities.
• Φ 𝜂, 𝒓 : scalar perturbation
• 𝐁 𝜂, 𝒓 : vector perturbation
Screening in discrete cosmology
• ∆≡ 𝛿 𝛼𝛽
𝜕2
/(𝜕𝑥 𝛼
𝜕𝑥 𝛽
)
• ҧ𝜌: average mass density ( ҧ𝜀 = Τҧ𝜌𝑐2
𝑎3
)
• 𝛿𝜌 𝜂, 𝒓 ≡ 𝜌 − ҧ𝜌
• ෥𝒗 𝑛: peculiar velocity of the nth particle
Einstein equations yield:
∆Φ −
3𝜅 ҧ𝜌𝑐2
2𝑎
Φ =
𝜅𝑐2
2𝑎
𝛿𝜌 −
3𝜅𝑐2
ℋ
2𝑎
Ξ
Φ =
1
3
−
𝜅𝑐2
8𝜋𝑎
෍
𝑛
𝑚 𝑛
𝒓 − 𝒓 𝑛
exp −𝑞 𝑛
+
3𝜅𝑐2ℋ
8𝜋𝑎
෍
𝑛
𝑚 𝑛 ෥𝒗 𝑛(𝒓 − 𝒓 𝑛)
|𝒓 − 𝒓 𝑛|
1 − 1 + 𝑞 𝑛 exp(−𝑞 𝑛)
𝑞 𝑛
2
∆𝐁 −
2𝜅 ҧ𝜌𝑐2
𝑎
𝐁 = −
2𝜅𝑐2
𝑎
෍
𝑛
𝜌 𝑛෥𝒗 𝑛 − ∇Ξ
𝐁 =
𝜅𝑐2
8𝜋𝑎
෍
𝑛
቎
𝑚 𝑛෥𝒗 𝑛
|𝒓 − 𝒓 𝑛|
3 + 2 3𝑞 𝑛 + 4𝑞 𝑛
2 exp(−2𝑞 𝑛/ 3) − 3
𝑞 𝑛
2
+ ൩
𝑚 𝑛 ෥𝒗 𝑛 𝒓 − 𝒓 𝑛
𝒓 − 𝒓 𝑛
3
𝒓 − 𝒓 𝑛
9 − 9 + 6 3𝑞 𝑛 + 4𝑞 𝑛
2 exp(−2𝑞 𝑛/ 3)
𝑞 𝑛
2
Ξ =
1
4𝜋
෍
𝑛
𝑚 𝑛
෥𝒗 𝑛(𝒓 − 𝒓 𝑛)
𝒓 − 𝒓 𝑛
3
∆Ξ = ∇ ෍
𝑛
𝜌 𝑛෥𝒗 𝑛 →
Screening in discrete cosmology
• Φ, 𝐁 are valid for all scales & conform with
- Minkowski background limit
- (sub-horizon) Newtonian cosmological approximation
• Screening of gravity hinted by Φ
𝒒 𝑛 𝜂, 𝒓 ≡
3𝜅 ҧ𝜌𝑐2
2𝑎
𝒓 − 𝒓 𝑛 =
𝑎 𝒓 − 𝒓 𝑛
𝜆
, 𝜆 ≡
2𝑎3
3𝜅 ҧ𝜌𝑐2
𝜆 Screening length defining the interaction range
M. Eingorn, ApJ 825, 84 (2016); arXiv:1509.03835
Screening in discrete cosmology
𝒇 𝑛 = −
𝜅𝑐2
8𝜋
൥
𝑚 𝑛 𝒓 − 𝒓 𝑛
𝒓 − 𝒓 𝑛
3
1 + 𝑞 𝑛 exp(−𝑞 𝑛) + ℋ
𝑚 𝑛 ෥𝒗 𝑛 𝒓 − 𝒓 𝑛
𝒓 − 𝒓 𝑛
3
(𝒓 − 𝒓 𝑛)
×
9 1 + 𝑞 𝑛 + Τ𝑞 𝑛
2 3 exp(−𝑞 𝑛) − 9 + 6 3𝑞 𝑛 + 4𝑞 𝑛
2 exp(−2𝑞 𝑛/ 3)
𝑞 𝑛
2
+ ൩ℋ
𝑚 𝑛෥𝒗 𝑛
𝒓 − 𝒓 𝑛
3 + 2 3𝑞 𝑛 + 4𝑞 𝑛
2
exp(−2𝑞 𝑛/ 3) − 3 1 + 𝑞 𝑛 exp(−𝑞 𝑛)
𝑞 𝑛
2
𝒇 𝑛 𝜂, 𝒓 : force per unit mass induced by the nth particle
𝑎෥𝒗 𝑘
′ = −𝑎 ∇Φ| 𝒓=𝒓 𝑘
+ ℋ𝐁| 𝒓=𝒓 𝑘
= ෍
𝑛≠𝑘
𝒇 𝑛 𝜂, 𝒓 𝑘
Equation of motion of an arbitrary
particle of the system:
Velocity-dependent contribution to Φ
𝑎෥𝒗 𝑘
′
= −𝑎 ∇Φ| 𝒓=𝒓 𝑘
+ ℋ𝐁| 𝒓=𝒓 𝑘
= ෍
𝑛≠𝑘
𝒇 𝑛 𝜂, 𝒓 𝑘
overall velocity-dependent part in
𝒇 𝑛 for various 𝑞 𝑛:
Τ3𝐻𝜆𝑎𝑣 𝑛 𝑐2 ~2 ÷ 4 × 10−3
velocity-dependent part in Φ only:
1 ÷ 2 × 10−2
for 𝑞 𝑛 ≤ 3
𝑎෥𝒗 𝑘
′
= −𝑎 ∇෩Φ| 𝒓=𝒓 𝑘
෩Φ =
1
3
−
𝜅𝑐2
8𝜋𝑎
෍
𝑛
𝑚 𝑛
|𝒓 − 𝒓 𝑛|
exp(−𝑞 𝑛)෩Φ: ෥𝒗 𝑛-free part of Φ ∆෩Φ −
3𝜅 ҧ𝜌𝑐2
2𝑎
෩Φ =
𝜅𝑐2
2𝑎
𝛿𝜌
No source containing Ξ!
• 𝐻 = 𝑐ℋ/𝑎 ;
𝐻0 ≈ 70 km s−1
Mpc−1
• 𝑎𝑣 𝑛 = 𝑐 ෤𝑣 𝑛 ;
𝑎𝑣 𝑛 0 ~ 250 ÷ 500 km s−1
• 𝜆0 ≈ 3.7 Gpc
Velocity-dependent contribution to Φ
Gravitational field
generated by
point-like mass
continuous distribution of mass (example: ball of comoving radius 𝑟𝑏 and uniform mass
density 𝜌 𝑏 > ҧ𝜌):
Velocity-dependent contribution seems inessential
for cosmological simulation purposes.
෩Φ 𝑏 = −
𝜅𝑐2
𝜆3
2𝑎4
𝜌 𝑏 − ҧ𝜌
𝑟
𝑎𝑟𝑏
𝜆
cosh
𝑎𝑟𝑏
𝜆
− sinh
𝑎𝑟𝑏
𝜆
exp −
𝑎𝑟
𝜆
,
Φ 𝑣𝑏 = −
3𝜅𝑐2ℋ𝜆5
2𝑎6
𝜌 𝑏 ෤𝑣 𝑏
𝑟2
× −
1
3
𝑎𝑟𝑏
𝜆
3
+ 1 +
𝑎𝑟
𝜆
𝑎𝑟𝑏
𝜆
cosh
𝑎𝑟𝑏
𝜆
− sinh
𝑎𝑟𝑏
𝜆
exp −
𝑎𝑟
𝜆
,
∆෩Φ −
3𝜅 ҧ𝜌𝑐2
2𝑎
෩Φ =
𝜅𝑐2
2𝑎
𝛿𝜌
∆Φ 𝑣 −
3𝜅 ҧ𝜌𝑐2
2𝑎
Φ 𝑣 = −
3𝜅𝑐2
ℋ
2𝑎
Ξ
Φ 𝑣: velocity-dependent part of Φ
Φ 𝑣 =
3𝜅𝑐2
ℋ
8𝜋𝑎
෍
𝑛
𝑚 𝑛 ෥𝒗 𝑛(𝒓 − 𝒓 𝑛)
|𝒓 − 𝒓 𝑛|
1 − 1 + 𝑞 𝑛 exp(−𝑞 𝑛)
𝑞 𝑛
2
Φ 𝑣𝑏
෩Φ 𝑏
∝
3ℋ𝜆 ෤𝑣 𝑏
𝑎
𝜌 𝑏
𝜌 𝑏 − ҧ𝜌
Velocity-dependent contribution to Φ
Comoving screening length 𝑙:
𝑙 ≡
1
3ℋ2 𝑓
, 𝑓 ≡
𝑑 ln 𝐷1
𝑑 ln 𝑎
𝐷1
(+)
∝ 𝐻 න
𝑑𝑎
𝑎𝐻 3 ∝
ℋ
𝑎
න
𝑑𝑎
ℋ3
𝐷1
(−)
∝
ℋ
𝑎
∆Φ − 3ℋ
𝐷1
′
𝐷1
Φ =
1
2
𝜅𝑎2
𝛿𝜀
Φ′
+ ℋΦ =
𝐷1
′
𝐷1
Φ
𝐷1
′′
+ ℋ𝐷1
′
+ ℋ′
− ℋ2
𝐷1 = 0
Relativistic perturbation theory applicable to large scales 𝛿𝜀 𝜂, 𝒓 ≪ ҧ𝜀
∆Φ − 3ℋ Φ′
+ ℋΦ =
1
2
𝜅𝑎2
𝛿𝜀
Φ′ + ℋΦ = −
1
2
𝜅𝑎2 ҧ𝜀𝜈
Φ′′ + 3ℋΦ′ + 2ℋ′ + ℋ2 Φ = 0
𝜈 𝜂, 𝒓 : velocity potential
Φ =
𝐷1
𝑎
𝜙
𝐷1 𝜂 : linear growth factor
𝜙 𝒓
O. Hahn, A. Paranjape, Phys. Rev. D 94,
083511 (2016); arXiv:1602.07699
F. Bernardeau, S. Colombi, E. Gaztañaga, R.
Scoccimarro, Phys. Rept. 367, 1 (2002);
arXiv:astro-ph/0112551
Screening in linear perturbation theory
∆Φ − 3ℋ
𝐷1
′
𝐷1
Φ =
1
2
𝜅𝑎2
𝛿𝜀 ∆Φ −
3𝜅 ҧ𝜌𝑐2
2𝑎
Φ =
𝜅𝑐2
2𝑎
𝛿𝜌 −
3𝜅𝑐2
ℋ
2𝑎
Ξ
෩Φ Φ 𝑣
𝐷1
′
𝐷1
Φ = −
1
2
𝜅𝑎2 ҧ𝜀𝜈
Φ does not explicitly contribute to the
energy density fluctuation
𝑙(𝜂)
𝛿𝜀 =
𝑐2
𝑎3
𝛿𝜌 +
3 ҧ𝜌𝑐2
𝑎3
Φ
From linear perturbation theory: From discrete cosmology:
Helmholtz equations compared
Large-scale spatial regions: Ξ = ҧ𝜌𝜈 ∆Φ −
3𝜅 ҧ𝜌𝑐2
2𝑎
Φ =
𝜅𝑐2
2𝑎
𝛿𝜌 −
3𝜅 ҧ𝜌𝑐2ℋ
2𝑎
𝜈
𝛿𝜌 =
2𝐷1
𝜅𝑐2
∆𝜙 −
6ℋ𝐷1
′
𝜅𝑐2
+
3 ҧ𝜌𝐷1
𝑎
𝜙 ෢𝛿𝜌 = −
2
𝜅𝑐2
𝐷1 𝑘2 + 3ℋ𝐷1
′
+
3𝜅 ҧ𝜌𝑐2 𝐷1
2𝑎
෠𝜙
Fourier
Transform
Can the term ∝ 𝜈 be safely ignored?
matter-dominated
evolution stage:
෢𝛿𝜌 ∝ 𝑘2 ෠𝜙 𝑎 +
5𝜅 ҧ𝜌𝑐2
2𝑘2
෢෪𝛿𝜌 ∝ 𝑘2 ෠𝜙 𝑎 +
3𝜅 ҧ𝜌𝑐2
2𝑘2
No!
𝐷1
(+)
∝ 𝑎
ℋ2 = 𝜅 ҧ𝜌𝑐2/(3𝑎)
growing mode :
෢𝛿𝜌′′
+ ℋ
1+2𝜒
1+𝜒
෢𝛿𝜌′
−
1
1+𝜒
𝜅ഥ𝜌 𝑐2
2𝑎
෢𝛿𝜌 = 0
M. Eingorn, R. Brilenkov, Phys. Dark Univ. 17,
63 (2017); arXiv:1509.08181
𝜒 ≡ 𝑎2
/(𝑘2
𝜆2
)
unsuitable unless 𝑎 ≫ 𝜅 ҧ𝜌𝑐2
/𝑘2
:
sufficiently small distances where cosmological screening is irrelevant
Structure growth & velocity-dependent contribution to Φ
Combine the screening mechanisms
Replace the source ∝ Ξ by the source ∝ 𝜈 ∝ Φ
- peculiar motion contribution to the gravitational field
is insignificant at small enough scales
- nonlinearity scale ~ 15 Mpc today is much less than
the investigated screening ranges
in the regions where the linear perturbation theory fails,
the source ∝ Ξ is ignored completely together with the term ∝ Φ
so as to yield the standard Poisson equation
∆Φ =
𝜅𝑐2
2𝑎
𝛿𝜌
Unified approach: effective screening length
∆Φ −
𝑎2
𝜆eff
2 Φ =
𝜅𝑐2
2𝑎
𝛿𝜌
𝜆eff 𝜂 : effective physical (non-comoving) screening length 1
𝜆eff
2 ≡
1
𝜆2
+
1
𝑎2 𝑙2
single velocity-independent source (scheme of linear
perturbation theory)
Source ∝ 𝛿𝜌 : analytically determined by the positions of gravitating masses (scheme of discrete cosmology)
1
𝜆eff
2 =
3
𝑎ℋ
න
𝑑𝑎
ℋ3
−1
=
3
𝑐2 𝑎2 𝐻
න
𝑑𝑎
𝑎3 𝐻3
−1
𝐻 = 𝐻0 ΩM
𝑎0
𝑎
3
+ ΩΛ ΩΛ ≡
Λ𝑐2
3𝐻0
2
ΩM ≡
𝜅 ҧ𝜌𝑐4
3𝐻0
2
𝑎0
3
Effective screening length
𝐻0 = 67.4 km s−1Mpc−1
ΩM = 0.315
ΩΛ = 0.685
Current values
𝜆0 = 3.74 Gpc , 𝑎𝑙 0 = 3.54 Gpc , 𝜆eff 0 = 2.57 Gpc
Effective screening length
During the matter-dominated stage: 𝐻2 = 𝐻0
2
ΩM Τ𝑎0 𝑎 3 → Τ1 𝐻 ∝ 𝑎 Τ3 2
𝜆eff =
2
15
𝑐
𝐻
, 𝜆 =
2
3
𝑐
𝐻
, 𝑎𝑙 =
1
3
𝑐
𝐻
𝜆eff < 𝜆 < 𝑎𝑙
Below the
characteristic comoving scale
𝑘−1 = Τ2𝑎 5𝜅 ҧ𝜌𝑐2 = Τ𝜆eff 𝑎
matter overdensity ෢𝛿𝜌
grows substantially.
𝜆eff : upper bound for cosmic
structure size
𝜆eff 0 ≈ 2.6 Gpc Her-CrB GW ≈ 2 ÷ 3 Gpc
I. Horváth, J. Hakkila, Z. Bagoly, A&A 561, L12 (2014);
arXiv:1401.0533
I. Horváth, Z. Bagoly, J. Hakkila, L.V. Toth, A&A 584, A48 (2015);
arXiv:1510.01933
Effective screening length
∆Φ −
𝑎2
𝜆eff
2 Φ =
𝜅𝑐2
2𝑎
𝛿𝜌 , Φ =
1
3
𝜆eff
𝜆
2
−
𝜅𝑐2
8𝜋𝑎
෍
𝑛
𝑚 𝑛
|𝒓 − 𝒓 𝑛|
exp −
𝑎|𝒓 − 𝒓 𝑛|
𝜆eff
divergent only at the positions of particles
valid for arbitrary distances
ensures Newtonian gravitational interaction at sub-horizon scales & in the Minkowski background limit
compact & convenient in comparison to
Φ =
1
3
−
𝜅𝑐2
8𝜋𝑎
෍
𝑛
𝑚 𝑛
|𝒓 − 𝒓 𝑛|
exp(−𝑞 𝑛) +
3𝜅𝑐2ℋ
8𝜋𝑎
෍
𝑛
𝑚 𝑛 ෥𝒗 𝑛(𝒓 − 𝒓 𝑛)
|𝒓 − 𝒓 𝑛|
1 − 1 + 𝑞 𝑛 exp(−𝑞 𝑛)
𝑞 𝑛
2
its average value equals zero: ഥΦ = 0
Conclusion

More Related Content

What's hot

Sweeping discussion on_dirac_fields_update1
Sweeping discussion on_dirac_fields_update1Sweeping discussion on_dirac_fields_update1
Sweeping discussion on_dirac_fields_update1
foxtrot jp R
 
Hawkinrad a source_notes ii _secured
Hawkinrad a source_notes ii _securedHawkinrad a source_notes ii _secured
Hawkinrad a source_notes ii _secured
foxtrot jp R
 
Dealinggreensfncsolft sqrd
Dealinggreensfncsolft  sqrdDealinggreensfncsolft  sqrd
Dealinggreensfncsolft sqrd
foxtrot jp R
 
PhD Defence Part 2
PhD Defence Part 2PhD Defence Part 2
PhD Defence Part 2
Daniel Theis
 

What's hot (19)

Sweeping discussion on_dirac_fields_update1
Sweeping discussion on_dirac_fields_update1Sweeping discussion on_dirac_fields_update1
Sweeping discussion on_dirac_fields_update1
 
5 cramer-rao lower bound
5 cramer-rao lower bound5 cramer-rao lower bound
5 cramer-rao lower bound
 
Hawkinrad a source_notes ii _secured
Hawkinrad a source_notes ii _securedHawkinrad a source_notes ii _secured
Hawkinrad a source_notes ii _secured
 
Rotation in 3d Space: Euler Angles, Quaternions, Marix Descriptions
Rotation in 3d Space: Euler Angles, Quaternions, Marix DescriptionsRotation in 3d Space: Euler Angles, Quaternions, Marix Descriptions
Rotation in 3d Space: Euler Angles, Quaternions, Marix Descriptions
 
Frequency analyis i - sqrd1062016
Frequency analyis i - sqrd1062016Frequency analyis i - sqrd1062016
Frequency analyis i - sqrd1062016
 
I. Antoniadis - "Introduction to Supersymmetry" 1/2
I. Antoniadis - "Introduction to Supersymmetry" 1/2I. Antoniadis - "Introduction to Supersymmetry" 1/2
I. Antoniadis - "Introduction to Supersymmetry" 1/2
 
Dealinggreensfncsolft sqrd
Dealinggreensfncsolft  sqrdDealinggreensfncsolft  sqrd
Dealinggreensfncsolft sqrd
 
Summerp62016update2 slideshare sqd
Summerp62016update2 slideshare  sqdSummerp62016update2 slideshare  sqd
Summerp62016update2 slideshare sqd
 
I. Antoniadis - "Introduction to Supersymmetry" 2/2
I. Antoniadis - "Introduction to Supersymmetry" 2/2I. Antoniadis - "Introduction to Supersymmetry" 2/2
I. Antoniadis - "Introduction to Supersymmetry" 2/2
 
Methods to determine pressure drop in an evaporator or a condenser
Methods to determine pressure drop in an evaporator or a condenserMethods to determine pressure drop in an evaporator or a condenser
Methods to determine pressure drop in an evaporator or a condenser
 
Sw2gr1 sqrd
Sw2gr1   sqrdSw2gr1   sqrd
Sw2gr1 sqrd
 
PhD Defence Part 2
PhD Defence Part 2PhD Defence Part 2
PhD Defence Part 2
 
Mathandphysicspart6subpart1 draftbacc
Mathandphysicspart6subpart1 draftbaccMathandphysicspart6subpart1 draftbacc
Mathandphysicspart6subpart1 draftbacc
 
Calculus of variations
Calculus of variationsCalculus of variations
Calculus of variations
 
Prime numbers
Prime numbersPrime numbers
Prime numbers
 
Fieldtheoryhighlights2015
Fieldtheoryhighlights2015Fieldtheoryhighlights2015
Fieldtheoryhighlights2015
 
HashiamKadhimFNLHD
HashiamKadhimFNLHDHashiamKadhimFNLHD
HashiamKadhimFNLHD
 
FGRessay
FGRessayFGRessay
FGRessay
 
Summerp62016update3 slideshare sqrdver2
Summerp62016update3 slideshare   sqrdver2Summerp62016update3 slideshare   sqrdver2
Summerp62016update3 slideshare sqrdver2
 

Similar to Duel of cosmological screening lengths

First-order cosmological perturbations produced by point-like masses: all sca...
First-order cosmological perturbations produced by point-like masses: all sca...First-order cosmological perturbations produced by point-like masses: all sca...
First-order cosmological perturbations produced by point-like masses: all sca...
Maxim Eingorn
 
SIAM-AG21-Topological Persistence Machine of Phase Transition
SIAM-AG21-Topological Persistence Machine of Phase TransitionSIAM-AG21-Topological Persistence Machine of Phase Transition
SIAM-AG21-Topological Persistence Machine of Phase Transition
Ha Phuong
 
7). mechanical waves (finished)
7). mechanical waves (finished)7). mechanical waves (finished)
7). mechanical waves (finished)
PhysicsLover
 

Similar to Duel of cosmological screening lengths (20)

A Mathematical Model for the Hormonal Responses During Neurally Mediated Sync...
A Mathematical Model for the Hormonal Responses During Neurally Mediated Sync...A Mathematical Model for the Hormonal Responses During Neurally Mediated Sync...
A Mathematical Model for the Hormonal Responses During Neurally Mediated Sync...
 
A Mathematical Model for the Hormonal Responses During Neurally Mediated Sync...
A Mathematical Model for the Hormonal Responses During Neurally Mediated Sync...A Mathematical Model for the Hormonal Responses During Neurally Mediated Sync...
A Mathematical Model for the Hormonal Responses During Neurally Mediated Sync...
 
Signals and systems-4
Signals and systems-4Signals and systems-4
Signals and systems-4
 
First-order cosmological perturbations produced by point-like masses: all sca...
First-order cosmological perturbations produced by point-like masses: all sca...First-order cosmological perturbations produced by point-like masses: all sca...
First-order cosmological perturbations produced by point-like masses: all sca...
 
Signals and systems-5
Signals and systems-5Signals and systems-5
Signals and systems-5
 
lec34.ppt
lec34.pptlec34.ppt
lec34.ppt
 
Engineering Physics
Engineering Physics Engineering Physics
Engineering Physics
 
Quantized and finite reference of frame
Quantized and finite reference of frame Quantized and finite reference of frame
Quantized and finite reference of frame
 
Exponential decay for the solution of the nonlinear equation induced by the m...
Exponential decay for the solution of the nonlinear equation induced by the m...Exponential decay for the solution of the nonlinear equation induced by the m...
Exponential decay for the solution of the nonlinear equation induced by the m...
 
SIAM-AG21-Topological Persistence Machine of Phase Transition
SIAM-AG21-Topological Persistence Machine of Phase TransitionSIAM-AG21-Topological Persistence Machine of Phase Transition
SIAM-AG21-Topological Persistence Machine of Phase Transition
 
lec29.ppt
lec29.pptlec29.ppt
lec29.ppt
 
7). mechanical waves (finished)
7). mechanical waves (finished)7). mechanical waves (finished)
7). mechanical waves (finished)
 
Chemical Bonding
Chemical BondingChemical Bonding
Chemical Bonding
 
Presentation
PresentationPresentation
Presentation
 
METEORITE SHOOTING AS A DIFFUSION PROBLEM
METEORITE SHOOTING AS A DIFFUSION PROBLEMMETEORITE SHOOTING AS A DIFFUSION PROBLEM
METEORITE SHOOTING AS A DIFFUSION PROBLEM
 
Light induced real-time dynamics for electrons
Light induced real-time dynamics for electronsLight induced real-time dynamics for electrons
Light induced real-time dynamics for electrons
 
lec23.ppt
lec23.pptlec23.ppt
lec23.ppt
 
Rogue Waves Poster
Rogue Waves PosterRogue Waves Poster
Rogue Waves Poster
 
PPTv2 (3).pptx
PPTv2 (3).pptxPPTv2 (3).pptx
PPTv2 (3).pptx
 
Dual Spaces of Generalized Cesaro Sequence Space and Related Matrix Mapping
Dual Spaces of Generalized Cesaro Sequence Space and Related Matrix MappingDual Spaces of Generalized Cesaro Sequence Space and Related Matrix Mapping
Dual Spaces of Generalized Cesaro Sequence Space and Related Matrix Mapping
 

Recently uploaded

Human genetics..........................pptx
Human genetics..........................pptxHuman genetics..........................pptx
Human genetics..........................pptx
Silpa
 
(May 9, 2024) Enhanced Ultrafast Vector Flow Imaging (VFI) Using Multi-Angle ...
(May 9, 2024) Enhanced Ultrafast Vector Flow Imaging (VFI) Using Multi-Angle ...(May 9, 2024) Enhanced Ultrafast Vector Flow Imaging (VFI) Using Multi-Angle ...
(May 9, 2024) Enhanced Ultrafast Vector Flow Imaging (VFI) Using Multi-Angle ...
Scintica Instrumentation
 
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
?#DUbAI#??##{{(☎️+971_581248768%)**%*]'#abortion pills for sale in dubai@
 
Module for Grade 9 for Asynchronous/Distance learning
Module for Grade 9 for Asynchronous/Distance learningModule for Grade 9 for Asynchronous/Distance learning
Module for Grade 9 for Asynchronous/Distance learning
levieagacer
 
POGONATUM : morphology, anatomy, reproduction etc.
POGONATUM : morphology, anatomy, reproduction etc.POGONATUM : morphology, anatomy, reproduction etc.
POGONATUM : morphology, anatomy, reproduction etc.
Silpa
 
biology HL practice questions IB BIOLOGY
biology HL practice questions IB BIOLOGYbiology HL practice questions IB BIOLOGY
biology HL practice questions IB BIOLOGY
1301aanya
 

Recently uploaded (20)

Molecular markers- RFLP, RAPD, AFLP, SNP etc.
Molecular markers- RFLP, RAPD, AFLP, SNP etc.Molecular markers- RFLP, RAPD, AFLP, SNP etc.
Molecular markers- RFLP, RAPD, AFLP, SNP etc.
 
Call Girls Ahmedabad +917728919243 call me Independent Escort Service
Call Girls Ahmedabad +917728919243 call me Independent Escort ServiceCall Girls Ahmedabad +917728919243 call me Independent Escort Service
Call Girls Ahmedabad +917728919243 call me Independent Escort Service
 
300003-World Science Day For Peace And Development.pptx
300003-World Science Day For Peace And Development.pptx300003-World Science Day For Peace And Development.pptx
300003-World Science Day For Peace And Development.pptx
 
Human genetics..........................pptx
Human genetics..........................pptxHuman genetics..........................pptx
Human genetics..........................pptx
 
module for grade 9 for distance learning
module for grade 9 for distance learningmodule for grade 9 for distance learning
module for grade 9 for distance learning
 
Thyroid Physiology_Dr.E. Muralinath_ Associate Professor
Thyroid Physiology_Dr.E. Muralinath_ Associate ProfessorThyroid Physiology_Dr.E. Muralinath_ Associate Professor
Thyroid Physiology_Dr.E. Muralinath_ Associate Professor
 
(May 9, 2024) Enhanced Ultrafast Vector Flow Imaging (VFI) Using Multi-Angle ...
(May 9, 2024) Enhanced Ultrafast Vector Flow Imaging (VFI) Using Multi-Angle ...(May 9, 2024) Enhanced Ultrafast Vector Flow Imaging (VFI) Using Multi-Angle ...
(May 9, 2024) Enhanced Ultrafast Vector Flow Imaging (VFI) Using Multi-Angle ...
 
Exploring Criminology and Criminal Behaviour.pdf
Exploring Criminology and Criminal Behaviour.pdfExploring Criminology and Criminal Behaviour.pdf
Exploring Criminology and Criminal Behaviour.pdf
 
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
 
Module for Grade 9 for Asynchronous/Distance learning
Module for Grade 9 for Asynchronous/Distance learningModule for Grade 9 for Asynchronous/Distance learning
Module for Grade 9 for Asynchronous/Distance learning
 
Climate Change Impacts on Terrestrial and Aquatic Ecosystems.pptx
Climate Change Impacts on Terrestrial and Aquatic Ecosystems.pptxClimate Change Impacts on Terrestrial and Aquatic Ecosystems.pptx
Climate Change Impacts on Terrestrial and Aquatic Ecosystems.pptx
 
Use of mutants in understanding seedling development.pptx
Use of mutants in understanding seedling development.pptxUse of mutants in understanding seedling development.pptx
Use of mutants in understanding seedling development.pptx
 
POGONATUM : morphology, anatomy, reproduction etc.
POGONATUM : morphology, anatomy, reproduction etc.POGONATUM : morphology, anatomy, reproduction etc.
POGONATUM : morphology, anatomy, reproduction etc.
 
PATNA CALL GIRLS 8617370543 LOW PRICE ESCORT SERVICE
PATNA CALL GIRLS 8617370543 LOW PRICE ESCORT SERVICEPATNA CALL GIRLS 8617370543 LOW PRICE ESCORT SERVICE
PATNA CALL GIRLS 8617370543 LOW PRICE ESCORT SERVICE
 
Introduction of DNA analysis in Forensic's .pptx
Introduction of DNA analysis in Forensic's .pptxIntroduction of DNA analysis in Forensic's .pptx
Introduction of DNA analysis in Forensic's .pptx
 
FAIRSpectra - Enabling the FAIRification of Spectroscopy and Spectrometry
FAIRSpectra - Enabling the FAIRification of Spectroscopy and SpectrometryFAIRSpectra - Enabling the FAIRification of Spectroscopy and Spectrometry
FAIRSpectra - Enabling the FAIRification of Spectroscopy and Spectrometry
 
biology HL practice questions IB BIOLOGY
biology HL practice questions IB BIOLOGYbiology HL practice questions IB BIOLOGY
biology HL practice questions IB BIOLOGY
 
Factory Acceptance Test( FAT).pptx .
Factory Acceptance Test( FAT).pptx       .Factory Acceptance Test( FAT).pptx       .
Factory Acceptance Test( FAT).pptx .
 
Site Acceptance Test .
Site Acceptance Test                    .Site Acceptance Test                    .
Site Acceptance Test .
 
Dr. E. Muralinath_ Blood indices_clinical aspects
Dr. E. Muralinath_ Blood indices_clinical  aspectsDr. E. Muralinath_ Blood indices_clinical  aspects
Dr. E. Muralinath_ Blood indices_clinical aspects
 

Duel of cosmological screening lengths

  • 1. Ezgi Canay† Maxim Eingorn‡ Duel of cosmological screening lengths †Department of Physics, Istanbul Technical University, Istanbul, Turkey ‡Department of Mathematics and Physics, North Carolina Central University, Durham, North Carolina, U.S.A. Phys. Dark Univ.29, 100565 (2020); arXiv:2002.00437 DOI:10.1016/j.dark.2020.100565
  • 2. • Introduction • Screening of gravity • from discrete cosmology (first-order metric corrections, velocity-dependent contribution to the scalar perturbation) • from linear perturbation theory • Combined approach • velocity-dependent contribution to the scalar perturbation - revisited • novel expression for the gravitational potential • effective screening length • Conclusion Outline
  • 3. Weak field limit of general relativity Newtoniangravitational interactionbetween nonrelativistic massive bodies at sub-horizoncosmological scales (perturbed FLRW spacetime) Can both concepts coexist? YES! What is the appropriate analytical expression for the gravitational potential? How does the interaction range compare to the size of the largest known cosmic structures? Yukawa-type screening of gravity proposed within the scheme of discrete cosmology & relativistic perturbation theory How is it modified at large distances? Introduction
  • 4. Nonrelativistic matter presented as separate point-like particles → 𝜌 = σ 𝑛 𝑚 𝑛 𝛿 𝒓 − 𝒓 𝑛 Perturbations in discrete cosmology (for pure ΛCDM model - negligible radiation): 𝑑𝑠2 = 𝑎2 𝑑𝜂2 − 𝛿 𝛼𝛽 𝑑𝑥 𝛼 𝑑𝑥 𝛽 3ℋ2 𝑎2 = 𝜅 ҧ𝜀 + Λ 2ℋ′ + ℋ2 𝑎2 = Λ 𝑑𝑠2 = 𝑎2 1 + 2Φ 𝑑𝜂2 + 2𝐵 𝛼 𝑑𝑥 𝛼 𝑑𝜂 − 1 − 2Φ 𝛿 𝛼𝛽 𝑑𝑥 𝛼 𝑑𝑥 𝛽 • 𝜂: conformal time • 𝑎 𝜂 : scale factor • 𝑥 𝛼 : comoving coordinates ; 𝛼, 𝛽 = 1,2,3 • ℋ ≡ 𝑎′Τ 𝑎 ; ′ ≡ 𝑑Τ 𝑑𝜂 • 𝜅 ≡ 8𝜋𝐺 𝑁Τ 𝑐4 ; 𝐺 𝑁: Newtonian gravitational constant • 𝜀ҧ: average energy density of nonrelativistic matter Unperturbed FLRW metric: 𝜌: mass density Perturbed metric for the inhomogeneous Universe: Weak gravitational field limit Metric corrections are considered as 1st order quantities. • Φ 𝜂, 𝒓 : scalar perturbation • 𝐁 𝜂, 𝒓 : vector perturbation Screening in discrete cosmology
  • 5. • ∆≡ 𝛿 𝛼𝛽 𝜕2 /(𝜕𝑥 𝛼 𝜕𝑥 𝛽 ) • ҧ𝜌: average mass density ( ҧ𝜀 = Τҧ𝜌𝑐2 𝑎3 ) • 𝛿𝜌 𝜂, 𝒓 ≡ 𝜌 − ҧ𝜌 • ෥𝒗 𝑛: peculiar velocity of the nth particle Einstein equations yield: ∆Φ − 3𝜅 ҧ𝜌𝑐2 2𝑎 Φ = 𝜅𝑐2 2𝑎 𝛿𝜌 − 3𝜅𝑐2 ℋ 2𝑎 Ξ Φ = 1 3 − 𝜅𝑐2 8𝜋𝑎 ෍ 𝑛 𝑚 𝑛 𝒓 − 𝒓 𝑛 exp −𝑞 𝑛 + 3𝜅𝑐2ℋ 8𝜋𝑎 ෍ 𝑛 𝑚 𝑛 ෥𝒗 𝑛(𝒓 − 𝒓 𝑛) |𝒓 − 𝒓 𝑛| 1 − 1 + 𝑞 𝑛 exp(−𝑞 𝑛) 𝑞 𝑛 2 ∆𝐁 − 2𝜅 ҧ𝜌𝑐2 𝑎 𝐁 = − 2𝜅𝑐2 𝑎 ෍ 𝑛 𝜌 𝑛෥𝒗 𝑛 − ∇Ξ 𝐁 = 𝜅𝑐2 8𝜋𝑎 ෍ 𝑛 ቎ 𝑚 𝑛෥𝒗 𝑛 |𝒓 − 𝒓 𝑛| 3 + 2 3𝑞 𝑛 + 4𝑞 𝑛 2 exp(−2𝑞 𝑛/ 3) − 3 𝑞 𝑛 2 + ൩ 𝑚 𝑛 ෥𝒗 𝑛 𝒓 − 𝒓 𝑛 𝒓 − 𝒓 𝑛 3 𝒓 − 𝒓 𝑛 9 − 9 + 6 3𝑞 𝑛 + 4𝑞 𝑛 2 exp(−2𝑞 𝑛/ 3) 𝑞 𝑛 2 Ξ = 1 4𝜋 ෍ 𝑛 𝑚 𝑛 ෥𝒗 𝑛(𝒓 − 𝒓 𝑛) 𝒓 − 𝒓 𝑛 3 ∆Ξ = ∇ ෍ 𝑛 𝜌 𝑛෥𝒗 𝑛 → Screening in discrete cosmology
  • 6. • Φ, 𝐁 are valid for all scales & conform with - Minkowski background limit - (sub-horizon) Newtonian cosmological approximation • Screening of gravity hinted by Φ 𝒒 𝑛 𝜂, 𝒓 ≡ 3𝜅 ҧ𝜌𝑐2 2𝑎 𝒓 − 𝒓 𝑛 = 𝑎 𝒓 − 𝒓 𝑛 𝜆 , 𝜆 ≡ 2𝑎3 3𝜅 ҧ𝜌𝑐2 𝜆 Screening length defining the interaction range M. Eingorn, ApJ 825, 84 (2016); arXiv:1509.03835 Screening in discrete cosmology
  • 7. 𝒇 𝑛 = − 𝜅𝑐2 8𝜋 ൥ 𝑚 𝑛 𝒓 − 𝒓 𝑛 𝒓 − 𝒓 𝑛 3 1 + 𝑞 𝑛 exp(−𝑞 𝑛) + ℋ 𝑚 𝑛 ෥𝒗 𝑛 𝒓 − 𝒓 𝑛 𝒓 − 𝒓 𝑛 3 (𝒓 − 𝒓 𝑛) × 9 1 + 𝑞 𝑛 + Τ𝑞 𝑛 2 3 exp(−𝑞 𝑛) − 9 + 6 3𝑞 𝑛 + 4𝑞 𝑛 2 exp(−2𝑞 𝑛/ 3) 𝑞 𝑛 2 + ൩ℋ 𝑚 𝑛෥𝒗 𝑛 𝒓 − 𝒓 𝑛 3 + 2 3𝑞 𝑛 + 4𝑞 𝑛 2 exp(−2𝑞 𝑛/ 3) − 3 1 + 𝑞 𝑛 exp(−𝑞 𝑛) 𝑞 𝑛 2 𝒇 𝑛 𝜂, 𝒓 : force per unit mass induced by the nth particle 𝑎෥𝒗 𝑘 ′ = −𝑎 ∇Φ| 𝒓=𝒓 𝑘 + ℋ𝐁| 𝒓=𝒓 𝑘 = ෍ 𝑛≠𝑘 𝒇 𝑛 𝜂, 𝒓 𝑘 Equation of motion of an arbitrary particle of the system: Velocity-dependent contribution to Φ
  • 8. 𝑎෥𝒗 𝑘 ′ = −𝑎 ∇Φ| 𝒓=𝒓 𝑘 + ℋ𝐁| 𝒓=𝒓 𝑘 = ෍ 𝑛≠𝑘 𝒇 𝑛 𝜂, 𝒓 𝑘 overall velocity-dependent part in 𝒇 𝑛 for various 𝑞 𝑛: Τ3𝐻𝜆𝑎𝑣 𝑛 𝑐2 ~2 ÷ 4 × 10−3 velocity-dependent part in Φ only: 1 ÷ 2 × 10−2 for 𝑞 𝑛 ≤ 3 𝑎෥𝒗 𝑘 ′ = −𝑎 ∇෩Φ| 𝒓=𝒓 𝑘 ෩Φ = 1 3 − 𝜅𝑐2 8𝜋𝑎 ෍ 𝑛 𝑚 𝑛 |𝒓 − 𝒓 𝑛| exp(−𝑞 𝑛)෩Φ: ෥𝒗 𝑛-free part of Φ ∆෩Φ − 3𝜅 ҧ𝜌𝑐2 2𝑎 ෩Φ = 𝜅𝑐2 2𝑎 𝛿𝜌 No source containing Ξ! • 𝐻 = 𝑐ℋ/𝑎 ; 𝐻0 ≈ 70 km s−1 Mpc−1 • 𝑎𝑣 𝑛 = 𝑐 ෤𝑣 𝑛 ; 𝑎𝑣 𝑛 0 ~ 250 ÷ 500 km s−1 • 𝜆0 ≈ 3.7 Gpc Velocity-dependent contribution to Φ
  • 9. Gravitational field generated by point-like mass continuous distribution of mass (example: ball of comoving radius 𝑟𝑏 and uniform mass density 𝜌 𝑏 > ҧ𝜌): Velocity-dependent contribution seems inessential for cosmological simulation purposes. ෩Φ 𝑏 = − 𝜅𝑐2 𝜆3 2𝑎4 𝜌 𝑏 − ҧ𝜌 𝑟 𝑎𝑟𝑏 𝜆 cosh 𝑎𝑟𝑏 𝜆 − sinh 𝑎𝑟𝑏 𝜆 exp − 𝑎𝑟 𝜆 , Φ 𝑣𝑏 = − 3𝜅𝑐2ℋ𝜆5 2𝑎6 𝜌 𝑏 ෤𝑣 𝑏 𝑟2 × − 1 3 𝑎𝑟𝑏 𝜆 3 + 1 + 𝑎𝑟 𝜆 𝑎𝑟𝑏 𝜆 cosh 𝑎𝑟𝑏 𝜆 − sinh 𝑎𝑟𝑏 𝜆 exp − 𝑎𝑟 𝜆 , ∆෩Φ − 3𝜅 ҧ𝜌𝑐2 2𝑎 ෩Φ = 𝜅𝑐2 2𝑎 𝛿𝜌 ∆Φ 𝑣 − 3𝜅 ҧ𝜌𝑐2 2𝑎 Φ 𝑣 = − 3𝜅𝑐2 ℋ 2𝑎 Ξ Φ 𝑣: velocity-dependent part of Φ Φ 𝑣 = 3𝜅𝑐2 ℋ 8𝜋𝑎 ෍ 𝑛 𝑚 𝑛 ෥𝒗 𝑛(𝒓 − 𝒓 𝑛) |𝒓 − 𝒓 𝑛| 1 − 1 + 𝑞 𝑛 exp(−𝑞 𝑛) 𝑞 𝑛 2 Φ 𝑣𝑏 ෩Φ 𝑏 ∝ 3ℋ𝜆 ෤𝑣 𝑏 𝑎 𝜌 𝑏 𝜌 𝑏 − ҧ𝜌 Velocity-dependent contribution to Φ
  • 10. Comoving screening length 𝑙: 𝑙 ≡ 1 3ℋ2 𝑓 , 𝑓 ≡ 𝑑 ln 𝐷1 𝑑 ln 𝑎 𝐷1 (+) ∝ 𝐻 න 𝑑𝑎 𝑎𝐻 3 ∝ ℋ 𝑎 න 𝑑𝑎 ℋ3 𝐷1 (−) ∝ ℋ 𝑎 ∆Φ − 3ℋ 𝐷1 ′ 𝐷1 Φ = 1 2 𝜅𝑎2 𝛿𝜀 Φ′ + ℋΦ = 𝐷1 ′ 𝐷1 Φ 𝐷1 ′′ + ℋ𝐷1 ′ + ℋ′ − ℋ2 𝐷1 = 0 Relativistic perturbation theory applicable to large scales 𝛿𝜀 𝜂, 𝒓 ≪ ҧ𝜀 ∆Φ − 3ℋ Φ′ + ℋΦ = 1 2 𝜅𝑎2 𝛿𝜀 Φ′ + ℋΦ = − 1 2 𝜅𝑎2 ҧ𝜀𝜈 Φ′′ + 3ℋΦ′ + 2ℋ′ + ℋ2 Φ = 0 𝜈 𝜂, 𝒓 : velocity potential Φ = 𝐷1 𝑎 𝜙 𝐷1 𝜂 : linear growth factor 𝜙 𝒓 O. Hahn, A. Paranjape, Phys. Rev. D 94, 083511 (2016); arXiv:1602.07699 F. Bernardeau, S. Colombi, E. Gaztañaga, R. Scoccimarro, Phys. Rept. 367, 1 (2002); arXiv:astro-ph/0112551 Screening in linear perturbation theory
  • 11. ∆Φ − 3ℋ 𝐷1 ′ 𝐷1 Φ = 1 2 𝜅𝑎2 𝛿𝜀 ∆Φ − 3𝜅 ҧ𝜌𝑐2 2𝑎 Φ = 𝜅𝑐2 2𝑎 𝛿𝜌 − 3𝜅𝑐2 ℋ 2𝑎 Ξ ෩Φ Φ 𝑣 𝐷1 ′ 𝐷1 Φ = − 1 2 𝜅𝑎2 ҧ𝜀𝜈 Φ does not explicitly contribute to the energy density fluctuation 𝑙(𝜂) 𝛿𝜀 = 𝑐2 𝑎3 𝛿𝜌 + 3 ҧ𝜌𝑐2 𝑎3 Φ From linear perturbation theory: From discrete cosmology: Helmholtz equations compared
  • 12. Large-scale spatial regions: Ξ = ҧ𝜌𝜈 ∆Φ − 3𝜅 ҧ𝜌𝑐2 2𝑎 Φ = 𝜅𝑐2 2𝑎 𝛿𝜌 − 3𝜅 ҧ𝜌𝑐2ℋ 2𝑎 𝜈 𝛿𝜌 = 2𝐷1 𝜅𝑐2 ∆𝜙 − 6ℋ𝐷1 ′ 𝜅𝑐2 + 3 ҧ𝜌𝐷1 𝑎 𝜙 ෢𝛿𝜌 = − 2 𝜅𝑐2 𝐷1 𝑘2 + 3ℋ𝐷1 ′ + 3𝜅 ҧ𝜌𝑐2 𝐷1 2𝑎 ෠𝜙 Fourier Transform Can the term ∝ 𝜈 be safely ignored? matter-dominated evolution stage: ෢𝛿𝜌 ∝ 𝑘2 ෠𝜙 𝑎 + 5𝜅 ҧ𝜌𝑐2 2𝑘2 ෢෪𝛿𝜌 ∝ 𝑘2 ෠𝜙 𝑎 + 3𝜅 ҧ𝜌𝑐2 2𝑘2 No! 𝐷1 (+) ∝ 𝑎 ℋ2 = 𝜅 ҧ𝜌𝑐2/(3𝑎) growing mode : ෢𝛿𝜌′′ + ℋ 1+2𝜒 1+𝜒 ෢𝛿𝜌′ − 1 1+𝜒 𝜅ഥ𝜌 𝑐2 2𝑎 ෢𝛿𝜌 = 0 M. Eingorn, R. Brilenkov, Phys. Dark Univ. 17, 63 (2017); arXiv:1509.08181 𝜒 ≡ 𝑎2 /(𝑘2 𝜆2 ) unsuitable unless 𝑎 ≫ 𝜅 ҧ𝜌𝑐2 /𝑘2 : sufficiently small distances where cosmological screening is irrelevant Structure growth & velocity-dependent contribution to Φ
  • 13. Combine the screening mechanisms Replace the source ∝ Ξ by the source ∝ 𝜈 ∝ Φ - peculiar motion contribution to the gravitational field is insignificant at small enough scales - nonlinearity scale ~ 15 Mpc today is much less than the investigated screening ranges in the regions where the linear perturbation theory fails, the source ∝ Ξ is ignored completely together with the term ∝ Φ so as to yield the standard Poisson equation ∆Φ = 𝜅𝑐2 2𝑎 𝛿𝜌 Unified approach: effective screening length
  • 14. ∆Φ − 𝑎2 𝜆eff 2 Φ = 𝜅𝑐2 2𝑎 𝛿𝜌 𝜆eff 𝜂 : effective physical (non-comoving) screening length 1 𝜆eff 2 ≡ 1 𝜆2 + 1 𝑎2 𝑙2 single velocity-independent source (scheme of linear perturbation theory) Source ∝ 𝛿𝜌 : analytically determined by the positions of gravitating masses (scheme of discrete cosmology) 1 𝜆eff 2 = 3 𝑎ℋ න 𝑑𝑎 ℋ3 −1 = 3 𝑐2 𝑎2 𝐻 න 𝑑𝑎 𝑎3 𝐻3 −1 𝐻 = 𝐻0 ΩM 𝑎0 𝑎 3 + ΩΛ ΩΛ ≡ Λ𝑐2 3𝐻0 2 ΩM ≡ 𝜅 ҧ𝜌𝑐4 3𝐻0 2 𝑎0 3 Effective screening length
  • 15. 𝐻0 = 67.4 km s−1Mpc−1 ΩM = 0.315 ΩΛ = 0.685 Current values 𝜆0 = 3.74 Gpc , 𝑎𝑙 0 = 3.54 Gpc , 𝜆eff 0 = 2.57 Gpc Effective screening length
  • 16. During the matter-dominated stage: 𝐻2 = 𝐻0 2 ΩM Τ𝑎0 𝑎 3 → Τ1 𝐻 ∝ 𝑎 Τ3 2 𝜆eff = 2 15 𝑐 𝐻 , 𝜆 = 2 3 𝑐 𝐻 , 𝑎𝑙 = 1 3 𝑐 𝐻 𝜆eff < 𝜆 < 𝑎𝑙 Below the characteristic comoving scale 𝑘−1 = Τ2𝑎 5𝜅 ҧ𝜌𝑐2 = Τ𝜆eff 𝑎 matter overdensity ෢𝛿𝜌 grows substantially. 𝜆eff : upper bound for cosmic structure size 𝜆eff 0 ≈ 2.6 Gpc Her-CrB GW ≈ 2 ÷ 3 Gpc I. Horváth, J. Hakkila, Z. Bagoly, A&A 561, L12 (2014); arXiv:1401.0533 I. Horváth, Z. Bagoly, J. Hakkila, L.V. Toth, A&A 584, A48 (2015); arXiv:1510.01933 Effective screening length
  • 17. ∆Φ − 𝑎2 𝜆eff 2 Φ = 𝜅𝑐2 2𝑎 𝛿𝜌 , Φ = 1 3 𝜆eff 𝜆 2 − 𝜅𝑐2 8𝜋𝑎 ෍ 𝑛 𝑚 𝑛 |𝒓 − 𝒓 𝑛| exp − 𝑎|𝒓 − 𝒓 𝑛| 𝜆eff divergent only at the positions of particles valid for arbitrary distances ensures Newtonian gravitational interaction at sub-horizon scales & in the Minkowski background limit compact & convenient in comparison to Φ = 1 3 − 𝜅𝑐2 8𝜋𝑎 ෍ 𝑛 𝑚 𝑛 |𝒓 − 𝒓 𝑛| exp(−𝑞 𝑛) + 3𝜅𝑐2ℋ 8𝜋𝑎 ෍ 𝑛 𝑚 𝑛 ෥𝒗 𝑛(𝒓 − 𝒓 𝑛) |𝒓 − 𝒓 𝑛| 1 − 1 + 𝑞 𝑛 exp(−𝑞 𝑛) 𝑞 𝑛 2 its average value equals zero: ഥΦ = 0 Conclusion