Some of the key driving forces behind the transition from the UMTS based cellular system to the Long Term Evolution Advanced (LTE-A) are to improve the mean and the cell-edge throughput, improve the user fairness, and improve the quality of service (QoS) satisfaction for all users. In the latter system, relays appear as one of the most prominent enabler for improving the cell-edge user experience while increasing the system’s fairness. In this white paper, we present the basics of relay deployments in LTE-A networks. Moreover, we analyze resource allocation problem for Relay Nodes (RN) deployments and present some of the solutions for improvement in system resource usage and QoS satisfaction. Afterwards, we introduce the capabilities of NOMOR’s LTE-A system level simulator and evaluate the performance of LTE-A relay systems under the described solutions.
Some of the key driving forces behind the transition from the UMTS based cellular system to the Long Term Evolution Advanced (LTE-A) are to improve the mean and the cell-edge throughput, improve the user fairness, and improve the quality of service (QoS) satisfaction for all users. In the latter system, relays appear as one of the most prominent enabler for improving the cell-edge user experience while increasing the system’s fairness. In this white paper, we present the basics of relay deployments in LTE-A networks. Moreover, we analyze resource allocation problem for Relay Nodes (RN) deployments and present some of the solutions for improvement in system resource usage and QoS satisfaction. Afterwards, we introduce the capabilities of NOMOR’s LTE-A system level simulator and evaluate the performance of LTE-A relay systems under the described solutions.