SlideShare a Scribd company logo
1 of 35
Download to read offline
PHYS 705: Classical Mechanics
Canonical Transformation II
1
Example: Harmonic Oscillator
Define or 
( )f x kx 
m
0 x
2
( )
2
kx
U x 
2 2
2 2
mx kx
L T U   

L p
p mx x
x m

   

 

H px L 
2 2
2 2 2
2
2 2
2 2
m kx
p
m kx
m
p
m
x
x
p
  
  


2
21
2 2
p
H kx
m
 
k m  2
m k   
2 2
2 2 2 2 21
2 2 2
p m
H x p m x
m m

   
(in x & p)
2
Example: Harmonic Oscillator
H p
x
p m

 


Application of the Hamilton’s Equations give,
( )f x kx 
m
0 x
2
( )
2
kx
U x 
2 2
22
2
H m
p x m x
x m



     


 2 2 2 21
2
H p m x
m
  Combining the two equations, we have the
standard equation for SHO:
2
0x x 
Notice that the system is not cyclic with the original variable x. We will
attempt to find a canonical transformation from (x, p) to (X, P) such that X
is cyclic so that P is constant.
3
Example: Harmonic Oscillator
   
 
 cos sin (*)
g P
p g P X x X
m
 
With the form of H as sums of squares , we will try
to exploit
 2 2 2 21
2
H p m x
m
 
 Let try
X is cyclic in K !
2 2
sin cos 1 
Substituting these into our Hamiltonian, we have
 
   2 2
2 2 2 2 2
2 2
1
cos sin
2 2
g P g P
K g P X m X
m m m


 
   
 
Now, we need to find the right g(P) such that the transformation is canonical.
 Try the following type 1 generating function: ( , , )F F x X t
(with x and X being the indep vars)
4
Example: Harmonic Oscillator
F
p
x



As in previous examples, we will try to write p (now the dep var for F) in
terms of the (indep var) (x, X) by dividing the two equations in CT:
F
P
X

 

cot
F
p m x X
x


 

 g Pp
x

 
cos X
g P  
cot
sin 1
m X
X m



For F to be a canonical transformation, it has to satisfy the partial derivative
relations (Type 1 in Table 9.1 in G):
The first partial derivative equation (left) gives:
2
( , , ) cot
2
m x
F F x X t X

 
or cotp m x X
5
Example: Harmonic Oscillator
Then, substituting this trial solution of F into the 2nd partial derivative
relation:
2
( , , ) cot
2
m x
F F x X t X

 
Solving for x (old) in term of (new), we have:
F
P
X

 

2 2
2 2
1 1
2 sin 2 sin
m x m x
P
X X
  
    
 
 ,X P
6
2 2
2 sin
P
x X
m
 2
sin
P
x X
m

Example: Harmonic Oscillator
To get the second transformation for p (old) in terms of (new), we can
use our previous relation and our newly derived eq:
2
sin cot 2 cos
P
p m X X m P X
m
 

 
   
 
 cotp m x X
7
 ,X P
 ,x X P
2
sin
P
x X
m

cotp m x X
2 cosp m P X
Example: Harmonic Oscillator
Since we explicitly calculated this pair of transformations
using the appropriate generating function, they are canonical:
By comparing with our original transformation equation (Eq. (*)), we have:
  2 (*')g P m P
2
sin
P
x X
m

 
 
sin
cos
g P
x X
m
p g P X




 
gives
Then, the transformed Hamiltonian is:
 2
2
2 2
g P m P
K P
m m

  
2 cosp m P X
8
    , , ,x X P p X P
Example: Harmonic Oscillator
With the transformed Hamiltonian , the Hamilton’s Equations
give,
**Notice how simple the EOM are in the new transformed cyclic variables. In
most application, the goal is to find a new set of canonical variables so that
there are as many cyclic variables as possible.
(X is cyclic)
K P E 
0
K
P
X
P const

  

 
 K
X
P
X t

 

 

  
 depends on IC
9
**P is just the rescaled total energy E and X is just a rescaled and shifted time.
** is an example of an Action-Angle pair of canonical variables. ,P X
Example: Harmonic Oscillator
Using the inverse transform:
2
sin
P
x X
m

 
2
sin
P
x t
m
 

 
10
X t   P const
 2 cosp m P t   
The EOM in can be written in terms of the original variable:
2 cosp m P X
 ,X P
Example: Harmonic Oscillator
 2
2
sin
E
x t
m
 

 
11
 2 cosp mE t  
2mE
2
2E
m
p
x
E

P
X
2
Phase Space area
is invariant!
2 E
area



Then with K P E 
X t  
P const
“Symplectic” Approach & Poisson Bracket
Let consider a time-independent canonical transformation:
Now, let consider the full time derivative of :
 
 
,
,
j j
j j
Q Q q p
P P q p


(We assume the transformation
not explicitly depending on time )
jQ
j j j
j i i
i i
dQ Q Q
Q q p
dt q p
 
  
 
   (E’s sum rule over i)
Using the Hamilton’s equations, we can rewrite the equation as:
(E’s sum rule over i)(*)
j j
j
i i i i
H H
p
Q
q
Q
Q
q p

 



 
 

12
“Symplectic” Approach & Poisson Bracket
Now, if the transformation is canonical, we also must have
Using the inverse transform , we can consider
H (the original Hamiltonian) as a function of Q and P, i.e,
( , ), ( , )j j j jq q Q P p p Q P 
    , , ,H H q Q P p Q P
(Note: since canonical
trans does not dep on time explicitly)
Then, we can evaluate the RHS of the equation for in the 1st line as:
j
j j
K H
Q
P P
 
 
 
 K H F t   H
jQ
(**)i i
j
j i j i j
q pH H H
Q
P q P p P
   
  
    

13
“Symplectic” Approach & Poisson Bracket
Comparing the two expressions for , Eq. (*) and (**),
we must have the following equalities for all pairs:
(subscripts denote the functional dependence of the quantities)
(**)j
i i
i i
j j
H p H
P
q
P
Q
q p
 
 





(*)j
i i
j j
ii
H H
Q
p qp
Q Q
q


 

  



, ,
j i
i jq p Q P
Q p
q P
   
          , ,
j i
i jq p Q P
Q q
p P
   
         
AND
Similar considerations for will give a different but similar pairs of relations:jP
, ,
j i
i jq p Q P
P p
q Q
   
          , ,
j i
i jq p Q P
P q
p Q
   
         
AND
jQ
14
 ,i j
“Symplectic” Approach & Poisson Bracket
, ,
j i
i jq p Q P
Q p
q P
   
          , ,
j i
i jq p Q P
Q q
p P
   
         
, ,
j i
i jq p Q P
P p
q Q
   
          , ,
j i
i jq p Q P
P q
p Q
   
         
These four conditions for various are called the “direct conditions” for a
canonical transformation.
 ,i j
15
Poisson Bracket
For any two function and depending on q and p the Poisson
Bracket is defined as:
PB is analogous to the Commutator in QM:
  ,
, q p
j j j j
u v u v
u v
q p p q
        
                   
(E’s sum rule
for n dof)
16
 ,u q p  ,v q p
   
1 1
,u v uv vu
i i
 
 
where u and v are two QM operators
Some Basic Property of Poisson Brackets
General properties for Poisson brackets with respect to an arbitrary pair of
variables (x, y) (not necessarily canonical variables):
 
   
     
     
     
, 0
, ,
, , ,
, , ,
, , , , , , 0
u u
u v v u
au bv w a u w b v w
uv w u w v u v w
u v w v w u w u v

 
  
 
            





(the x, y subscripts are suppressed here)
(anti-symmetric)
(linearity)
(distributive)
(Jacobi’s Identity)
17
, ,u v w are some arbitrary functions of and a & b are some constants. ,x y
“Symplectic” Approach & Poisson Bracket
Now, if we substitute the canonical variables themselves as (u, v) & (x, y) , we have:
, ,
, ,
, , 0
, ,
j k j kq p q p
j k j k jkq p q p
q q p p
q p p q 
       
       


(hw)
And, under a canonical transformation , we can also show that:( , ) ( , )q p Q P
18
These are called the Fundamental Poisson Brackets.
The Fundamental Poisson Brackets are invariant under a CT !
, ,
, ,
, , 0
, ,
j k j kq p q p
j k j k jkq p q p
Q Q P P
Q P P Q 
       
       


Fundamental Poisson Brackets & CT
19
,
,
j j
j k q p
i i
k
i
k
i
Q Q
Q Q
q
QQ
qpp
 
   


   
0
j j j
i kk i
ii
k
q
Q
P P P
q Qp
p
Q
  
  
   




j j ji
k
i
jk
i i kk
Q Q Q
q p
q
Q Q Q
p

  





 
 
, ,
, ,j k k j jkq p q p
P Q Q P          
(E’s sum rule on i index)
Using the Direct
Conditions of the CT
The Fundamental Poisson Brackets are invariant under a CT !
0j j j
i i k
i
k
i
k
Q Q Q
q
q
P
p
Pp P
  
    
   



,
,
j j
j k q p
i i
k
i
k
i
P P
P P
q
PP
qpp
 
   


   
,
, j j
j k q p
i i
k
i
k
i
Q Q
Q P
q
PP
qpp
 
   


   
“Symplectic” Approach & Poisson Bracket
20
A general Poisson Bracket is invariant under a CT:
(time-invariant case) !
  ,
, q p
u v    , ,q p Q P
  ,
,
i i
Q P
ii
v
u
uu
P
v
Q P
v
Q






 


k k
k
j j
j i j
j j
j i j
k k
k i i i k ik ii
q pv v q pv v
q Q
q p
q P p
q pu u u u
q P p Pq Q p QPQ p
   
 
   
 

   
    
   
   
  
 
        

,,, ,
, , , ,jj k j k j kQ P Q P Q P
j k j k j k j k
k Q P
u v u v u v u v
q q q p p p
q q q p p q p
q
p
p
       
               
    
multiply out and regroup
  ,
,jk q p
j k j k j j j j
jk
u v u v u v u v
u v
q p p q q p p q

       
   
     

 
“Symplectic” Approach & Poisson Bracket
, ,
, ,j k j k jkq p Q P
Q P q p        
The invariant of the Poisson brackets under the canonical variables CT defines
the “symplectic” structure of the canonical transformation.
   , ,
, ,Q P q p
u v u v
Thus, in general, if we are calculating a Poisson Bracket with respect to a pair of
canonical variable, we can drop the q,p subscript.
   ,
, ,q p
u v u v
“Symplectic” Approach & Poisson Bracket
Note that this symplectic structure for the canonical transformation can also be
expressed elegantly using the matrix notation that we have introduced earlier :
Recall that the Hamilton Equations can be written in a matrix form,
H


η J
η

, ; 1, ,j j j n jq p j n     
, ;
j jj j n
H H H H
q p
      
    
      η η
with
and
 
  
 
0 I
J
I 0
22
“Symplectic” Approach & Poisson Bracket
Now, let the 2n-column vector corresponding to the new set of canonical
coordinates
And, we can write a transformation from (q, p)  (Q, P) as a vector equation:
ζ Mη 
Then, by chain rule, the time derivatives of the variables are related by:
where
ζ
,j jQ P
 ζ ζ η
, , 1, ,2
j
jk
k
M j k n



 


(Jacobian matrix)
Substituting the Hamilton Equation back into above, we have:
H


ζ MJ
η

ζη
23
“Symplectic” Approach & Poisson Bracket
Considering the inverse transformation (Q, P)  (q, p) and by chain rule, we
can rewrite the right most factor as:
or, in matrix notation:
sum over k
T H


ζ MJM
ζ

k
j k j
H H 
  
 

  
TH H 

 
M
η ζ
Putting this back into our dynamic equation, we have,
ζ η
k k
j
kj
k
M 





 
Previously,
Here,
j
j
k
k
k k
M
H H
 
 

 


24
“Symplectic” Approach & Poisson Bracket
Now, if the coordinate transformation is canonical, then the
Hamiltonian equation must also be satisfied in this new set of coordinates:
Comparing this equation with our previous equation:
H


ζ J
ζ

We can see that in order for to be a valid canonical
transformation, we need to have M satisfying the following condition:
 ζ ζ η
T H


ζ MJM
ζ

 ζ ζ η
T
MJM J
25
(this condition is typically easier to use
than the direction condition for a CT)
“Symplectic” Approach & Poisson Bracket
In terms of these matrix notation, we can also write the Poisson bracket as,
And if is a canonical transformation, then Fundamental
Poisson Brackets can simply written as,
 ,
u v
u v
 

 η
J
η η
 ζ ζ η
   , , η ζ
ζ ζ η η J
26
Poisson Bracket & Dynamics
Consider some physical quantity u as a function of the PS variables :
- Its full time derivative is given by:
j j
j j
du u u u
q p
dt q p t
  
  
  
 
  ,
, q p
u H
( , , )u u q p t
- Applying the Hamilton’s Equations: ,j j
j j
H H
q p
p q
 
  
 
 
j j j j
du u H u H u
dt q p p q t
    
  
    
27
Poisson Bracket & Dynamics
So, we arrived at the following general equation of motion for u(t):
 We have explicitly written this equation without reference to any
particular set of canonical variables to emphasize the fact that the form of
the equation is invariant to any canonical transformations
 Obviously, we need to use the appropriate Hamiltonian in the given
coordinates.
 ,
du u
u u H
dt t

  


Applying the above equation with u = H, we have and:
dH H
dt t



 , 0H H 
28
Poisson Bracket & Dynamics
General Comments:
1. If , we get back the Hamilton’s Equations:
,j j
j
H
q q H
p

    

j ju q or p
,j j
j
H
p p H
q

     
and (hw)
2. If u is a constant of motion, i.e., 0
du
dt

 ,
u
u H
t

 

Specifically, for u explicitly not depends on time, i.e., ,0
u
t



 , 0u H 
29
 ,
du u
u u H
dt t

  


0
du
dt

(assumer u has no
explicit time
dependence, i.e., )
Poisson Bracket & Dynamics
The PB is analogous to the Commutator in QM:
CM
(Poisson Bracket)
(u is some quantum
observable here)
 The Heisenberg equation of motion for u in QM is given by:
 ,u H  
1
,u H
i
QM
(QM Commutator)
 ,
du
i u H
dt

 The statement on the vanishing of the Poisson bracket for u being a
constant of motion in CM (a conserved quantity) corresponds to the
statement that u commute with H in QM :  , 0u H 
0
u
t



30
Poisson Bracket & Dynamics
3. Poisson’s Theorem
- Let u, v be two constants of motion, i.e.,    , , 0u H v H 
(Jacob’s Identity)
- Now, let Taylor’s expand u(t) around u(0) for t small:
 ,u vThen, is another constant of motion !
Check:        , , , , , , , ,u v H H u v u v H v H u                 
4. Assume that u does not explicitly depend on time so that
 , (*)
du
u H
dt

2 2
2
0 0
( ) (0)
2!
du t d u
u t u t
dt dt
   
 , ,u v H     , ,u Hv    0
31
Poisson Bracket & Dynamics
- Using Eq (*), we have
And,
(evaluated at t = 0)
 
2
2 0
00
, ,
d u d du
u H H
dt dt dt
 
     
 
   
2
0 0
( ) (0) , , ,
2!
t
u t u t u H u H H      
 0
0
,
du
u H
dt

(evaluated at t = 0)
- Substituting these two terms and similar ones into our Taylor’s expansion
for u(t), we have
32
Poisson Bracket & Dynamics
So, one can formally write down the time evolution of u(t) as a series
solution in terms of the Poisson brackets evaluated at t = 0 !
   
2
0 0
( ) (0) , , ,
2!
t
u t u t u H u H H      
The Hamiltonian is the generator of the system’s motion in time !
This has a direct correspondence to the QM interpretation of H:
 The above Taylor’s expansion can be written as an “operator” eq:
ˆ
( ) (0)Ht
u t e u
   0
ˆwhere 0 ,H u u H
/
( ) (0)iHt
u t e u 
(QM propagator)
33
Poisson Bracket & Dynamics
A simple example in applying to a freely falling particle:
   
2
0 0
( ) (0) , , ,
2!
t
z t z t z H z H H      
34
z
2
2
p
H mgz
m
 
 ,
z H z H p
z H
z p p z m
   
  
   
Now, we evaluate the different PBs:
 
   , , 1
, ,
z H z HH H
z H z mg g
z p p z m
  
             
 , , , 0z H H H     
u z
Poisson Bracket & Dynamics
At , we have initial conditions:
   
2
0 0
( ) (0) , , ,
2!
t
z t z t z H z H H      
35
z
2
2
p
H mgz
m
 
  0
0
,
p
z H
m

We then have,
  0
, ,z H H g       0
, , , 0z H H H     
20
0( )
2
p g
z t z t t
m
  
Substituting them into the expansion,
0t     0 00 , 0z z p p 

More Related Content

What's hot

Lecture Ch 08
Lecture Ch 08Lecture Ch 08
Lecture Ch 08rtrujill
 
Introduction to perturbation theory, part-1
Introduction to perturbation theory, part-1Introduction to perturbation theory, part-1
Introduction to perturbation theory, part-1Kiran Padhy
 
5 introduction to quantum mechanics
5 introduction to quantum mechanics5 introduction to quantum mechanics
5 introduction to quantum mechanicsSolo Hermelin
 
Particle in a box- Application of Schrodinger wave equation
Particle in a box- Application of Schrodinger wave equationParticle in a box- Application of Schrodinger wave equation
Particle in a box- Application of Schrodinger wave equationRawat DA Greatt
 
Simple harmonic oscillator - Classical Mechanics
Simple harmonic oscillator - Classical MechanicsSimple harmonic oscillator - Classical Mechanics
Simple harmonic oscillator - Classical MechanicsDebashis Baidya
 
Magnetostatics (1)
Magnetostatics (1)Magnetostatics (1)
Magnetostatics (1)Kumar
 
Motion of particle in the central potential in classical physics
Motion of particle in the central potential in classical physicsMotion of particle in the central potential in classical physics
Motion of particle in the central potential in classical physicsKrishna Jangid
 
Eema magnetic properties of materials
Eema magnetic properties of materialsEema magnetic properties of materials
Eema magnetic properties of materialsDebi Prasad Dash
 
Introduction to quantum mechanics and schrodinger equation
Introduction to quantum mechanics and schrodinger equationIntroduction to quantum mechanics and schrodinger equation
Introduction to quantum mechanics and schrodinger equationGaurav Singh Gusain
 
Kittel c. introduction to solid state physics 8 th edition - solution manual
Kittel c.  introduction to solid state physics 8 th edition - solution manualKittel c.  introduction to solid state physics 8 th edition - solution manual
Kittel c. introduction to solid state physics 8 th edition - solution manualamnahnura
 
Statistical mechanics
Statistical mechanics Statistical mechanics
Statistical mechanics Kumar
 

What's hot (20)

STATISTICAL MECHNICE
STATISTICAL MECHNICE STATISTICAL MECHNICE
STATISTICAL MECHNICE
 
Lecture Ch 08
Lecture Ch 08Lecture Ch 08
Lecture Ch 08
 
LORENTZ TRANSFORMATION Pooja chouhan
LORENTZ TRANSFORMATION Pooja chouhanLORENTZ TRANSFORMATION Pooja chouhan
LORENTZ TRANSFORMATION Pooja chouhan
 
Introduction to perturbation theory, part-1
Introduction to perturbation theory, part-1Introduction to perturbation theory, part-1
Introduction to perturbation theory, part-1
 
Statistical Mechanics B.Sc. Sem VI
Statistical Mechanics B.Sc. Sem VIStatistical Mechanics B.Sc. Sem VI
Statistical Mechanics B.Sc. Sem VI
 
5 introduction to quantum mechanics
5 introduction to quantum mechanics5 introduction to quantum mechanics
5 introduction to quantum mechanics
 
Lecture7
Lecture7Lecture7
Lecture7
 
Semiconductor
SemiconductorSemiconductor
Semiconductor
 
Particle in a box- Application of Schrodinger wave equation
Particle in a box- Application of Schrodinger wave equationParticle in a box- Application of Schrodinger wave equation
Particle in a box- Application of Schrodinger wave equation
 
Simple harmonic oscillator - Classical Mechanics
Simple harmonic oscillator - Classical MechanicsSimple harmonic oscillator - Classical Mechanics
Simple harmonic oscillator - Classical Mechanics
 
Magnetostatics (1)
Magnetostatics (1)Magnetostatics (1)
Magnetostatics (1)
 
Motion of particle in the central potential in classical physics
Motion of particle in the central potential in classical physicsMotion of particle in the central potential in classical physics
Motion of particle in the central potential in classical physics
 
Eema magnetic properties of materials
Eema magnetic properties of materialsEema magnetic properties of materials
Eema magnetic properties of materials
 
Central force
Central forceCentral force
Central force
 
Introduction to quantum mechanics and schrodinger equation
Introduction to quantum mechanics and schrodinger equationIntroduction to quantum mechanics and schrodinger equation
Introduction to quantum mechanics and schrodinger equation
 
Kittel c. introduction to solid state physics 8 th edition - solution manual
Kittel c.  introduction to solid state physics 8 th edition - solution manualKittel c.  introduction to solid state physics 8 th edition - solution manual
Kittel c. introduction to solid state physics 8 th edition - solution manual
 
Wave function
Wave functionWave function
Wave function
 
Origin of quantum mechanics
Origin of quantum mechanicsOrigin of quantum mechanics
Origin of quantum mechanics
 
Statistical mechanics
Statistical mechanics Statistical mechanics
Statistical mechanics
 
Relativity
RelativityRelativity
Relativity
 

Similar to 015 canonical tranformation ii

Exact Quasi-Classical Asymptoticbeyond Maslov Canonical Operator and Quantum ...
Exact Quasi-Classical Asymptoticbeyond Maslov Canonical Operator and Quantum ...Exact Quasi-Classical Asymptoticbeyond Maslov Canonical Operator and Quantum ...
Exact Quasi-Classical Asymptoticbeyond Maslov Canonical Operator and Quantum ...ijrap
 
Quantum Transitions And Its Evolution For Systems With Canonical And Noncanon...
Quantum Transitions And Its Evolution For Systems With Canonical And Noncanon...Quantum Transitions And Its Evolution For Systems With Canonical And Noncanon...
Quantum Transitions And Its Evolution For Systems With Canonical And Noncanon...vcuesta
 
PDE Constrained Optimization and the Lambert W-Function
PDE Constrained Optimization and the Lambert W-FunctionPDE Constrained Optimization and the Lambert W-Function
PDE Constrained Optimization and the Lambert W-FunctionMichael Maroun
 
Boolean Programs and Quantified Propositional Proof System -
Boolean Programs and Quantified Propositional Proof System - Boolean Programs and Quantified Propositional Proof System -
Boolean Programs and Quantified Propositional Proof System - Michael Soltys
 
2019 helicoid and factor exhaustion law
2019 helicoid and factor exhaustion law2019 helicoid and factor exhaustion law
2019 helicoid and factor exhaustion lawRichard Anthony Baum
 
Statistical approach to quantum field theory
Statistical approach to quantum field theoryStatistical approach to quantum field theory
Statistical approach to quantum field theorySpringer
 
Mathematical foundations of computer science
Mathematical foundations of computer scienceMathematical foundations of computer science
Mathematical foundations of computer scienceBindhuBhargaviTalasi
 
schluter_presentation (1).pdf
schluter_presentation (1).pdfschluter_presentation (1).pdf
schluter_presentation (1).pdfsoukat2
 
Talk at Seminari de Teoria de Nombres de Barcelona 2017
Talk at Seminari de Teoria de Nombres de Barcelona 2017Talk at Seminari de Teoria de Nombres de Barcelona 2017
Talk at Seminari de Teoria de Nombres de Barcelona 2017mmasdeu
 
Logic and proof
Logic and proofLogic and proof
Logic and proofSuresh Ram
 
Realizations, Differential Equations, Canonical Quantum Commutators And Infin...
Realizations, Differential Equations, Canonical Quantum Commutators And Infin...Realizations, Differential Equations, Canonical Quantum Commutators And Infin...
Realizations, Differential Equations, Canonical Quantum Commutators And Infin...vcuesta
 
Sawinder Pal Kaur PhD Thesis
Sawinder Pal Kaur PhD ThesisSawinder Pal Kaur PhD Thesis
Sawinder Pal Kaur PhD ThesisSawinder Pal Kaur
 
Thermodynamics of crystalline states
Thermodynamics of crystalline statesThermodynamics of crystalline states
Thermodynamics of crystalline statesSpringer
 
Thermodynamics of crystalline states
Thermodynamics of crystalline statesThermodynamics of crystalline states
Thermodynamics of crystalline statesSpringer
 

Similar to 015 canonical tranformation ii (20)

LieGroup
LieGroupLieGroup
LieGroup
 
Exact Quasi-Classical Asymptoticbeyond Maslov Canonical Operator and Quantum ...
Exact Quasi-Classical Asymptoticbeyond Maslov Canonical Operator and Quantum ...Exact Quasi-Classical Asymptoticbeyond Maslov Canonical Operator and Quantum ...
Exact Quasi-Classical Asymptoticbeyond Maslov Canonical Operator and Quantum ...
 
Quantum Transitions And Its Evolution For Systems With Canonical And Noncanon...
Quantum Transitions And Its Evolution For Systems With Canonical And Noncanon...Quantum Transitions And Its Evolution For Systems With Canonical And Noncanon...
Quantum Transitions And Its Evolution For Systems With Canonical And Noncanon...
 
PDE Constrained Optimization and the Lambert W-Function
PDE Constrained Optimization and the Lambert W-FunctionPDE Constrained Optimization and the Lambert W-Function
PDE Constrained Optimization and the Lambert W-Function
 
Boolean Programs and Quantified Propositional Proof System -
Boolean Programs and Quantified Propositional Proof System - Boolean Programs and Quantified Propositional Proof System -
Boolean Programs and Quantified Propositional Proof System -
 
DMS UNIT-1 ppt.pptx
DMS UNIT-1 ppt.pptxDMS UNIT-1 ppt.pptx
DMS UNIT-1 ppt.pptx
 
2019 helicoid and factor exhaustion law
2019 helicoid and factor exhaustion law2019 helicoid and factor exhaustion law
2019 helicoid and factor exhaustion law
 
Statistical approach to quantum field theory
Statistical approach to quantum field theoryStatistical approach to quantum field theory
Statistical approach to quantum field theory
 
Mathematical foundations of computer science
Mathematical foundations of computer scienceMathematical foundations of computer science
Mathematical foundations of computer science
 
schluter_presentation (1).pdf
schluter_presentation (1).pdfschluter_presentation (1).pdf
schluter_presentation (1).pdf
 
Dicrete structure
Dicrete structureDicrete structure
Dicrete structure
 
Talk at Seminari de Teoria de Nombres de Barcelona 2017
Talk at Seminari de Teoria de Nombres de Barcelona 2017Talk at Seminari de Teoria de Nombres de Barcelona 2017
Talk at Seminari de Teoria de Nombres de Barcelona 2017
 
Logic and proof
Logic and proofLogic and proof
Logic and proof
 
H02402058066
H02402058066H02402058066
H02402058066
 
Realizations, Differential Equations, Canonical Quantum Commutators And Infin...
Realizations, Differential Equations, Canonical Quantum Commutators And Infin...Realizations, Differential Equations, Canonical Quantum Commutators And Infin...
Realizations, Differential Equations, Canonical Quantum Commutators And Infin...
 
Chap05
Chap05Chap05
Chap05
 
Chebyshev Inequality
Chebyshev InequalityChebyshev Inequality
Chebyshev Inequality
 
Sawinder Pal Kaur PhD Thesis
Sawinder Pal Kaur PhD ThesisSawinder Pal Kaur PhD Thesis
Sawinder Pal Kaur PhD Thesis
 
Thermodynamics of crystalline states
Thermodynamics of crystalline statesThermodynamics of crystalline states
Thermodynamics of crystalline states
 
Thermodynamics of crystalline states
Thermodynamics of crystalline statesThermodynamics of crystalline states
Thermodynamics of crystalline states
 

Recently uploaded

Call Girls in Munirka Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
Call Girls in Munirka Delhi 💯Call Us 🔝9953322196🔝 💯Escort.Call Girls in Munirka Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
Call Girls in Munirka Delhi 💯Call Us 🔝9953322196🔝 💯Escort.aasikanpl
 
Scheme-of-Work-Science-Stage-4 cambridge science.docx
Scheme-of-Work-Science-Stage-4 cambridge science.docxScheme-of-Work-Science-Stage-4 cambridge science.docx
Scheme-of-Work-Science-Stage-4 cambridge science.docxyaramohamed343013
 
Solution chemistry, Moral and Normal solutions
Solution chemistry, Moral and Normal solutionsSolution chemistry, Moral and Normal solutions
Solution chemistry, Moral and Normal solutionsHajira Mahmood
 
Grafana in space: Monitoring Japan's SLIM moon lander in real time
Grafana in space: Monitoring Japan's SLIM moon lander  in real timeGrafana in space: Monitoring Japan's SLIM moon lander  in real time
Grafana in space: Monitoring Japan's SLIM moon lander in real timeSatoshi NAKAHIRA
 
Call Girls in Aiims Metro Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
Call Girls in Aiims Metro Delhi 💯Call Us 🔝9953322196🔝 💯Escort.Call Girls in Aiims Metro Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
Call Girls in Aiims Metro Delhi 💯Call Us 🔝9953322196🔝 💯Escort.aasikanpl
 
‏‏VIRUS - 123455555555555555555555555555555555555555
‏‏VIRUS -  123455555555555555555555555555555555555555‏‏VIRUS -  123455555555555555555555555555555555555555
‏‏VIRUS - 123455555555555555555555555555555555555555kikilily0909
 
Spermiogenesis or Spermateleosis or metamorphosis of spermatid
Spermiogenesis or Spermateleosis or metamorphosis of spermatidSpermiogenesis or Spermateleosis or metamorphosis of spermatid
Spermiogenesis or Spermateleosis or metamorphosis of spermatidSarthak Sekhar Mondal
 
Best Call Girls In Sector 29 Gurgaon❤️8860477959 EscorTs Service In 24/7 Delh...
Best Call Girls In Sector 29 Gurgaon❤️8860477959 EscorTs Service In 24/7 Delh...Best Call Girls In Sector 29 Gurgaon❤️8860477959 EscorTs Service In 24/7 Delh...
Best Call Girls In Sector 29 Gurgaon❤️8860477959 EscorTs Service In 24/7 Delh...lizamodels9
 
Cytokinin, mechanism and its application.pptx
Cytokinin, mechanism and its application.pptxCytokinin, mechanism and its application.pptx
Cytokinin, mechanism and its application.pptxVarshiniMK
 
Transposable elements in prokaryotes.ppt
Transposable elements in prokaryotes.pptTransposable elements in prokaryotes.ppt
Transposable elements in prokaryotes.pptArshadWarsi13
 
Call Us ≽ 9953322196 ≼ Call Girls In Lajpat Nagar (Delhi) |
Call Us ≽ 9953322196 ≼ Call Girls In Lajpat Nagar (Delhi) |Call Us ≽ 9953322196 ≼ Call Girls In Lajpat Nagar (Delhi) |
Call Us ≽ 9953322196 ≼ Call Girls In Lajpat Nagar (Delhi) |aasikanpl
 
Recombinant DNA technology( Transgenic plant and animal)
Recombinant DNA technology( Transgenic plant and animal)Recombinant DNA technology( Transgenic plant and animal)
Recombinant DNA technology( Transgenic plant and animal)DHURKADEVIBASKAR
 
BIOETHICS IN RECOMBINANT DNA TECHNOLOGY.
BIOETHICS IN RECOMBINANT DNA TECHNOLOGY.BIOETHICS IN RECOMBINANT DNA TECHNOLOGY.
BIOETHICS IN RECOMBINANT DNA TECHNOLOGY.PraveenaKalaiselvan1
 
Speech, hearing, noise, intelligibility.pptx
Speech, hearing, noise, intelligibility.pptxSpeech, hearing, noise, intelligibility.pptx
Speech, hearing, noise, intelligibility.pptxpriyankatabhane
 
Call Girls in Hauz Khas Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
Call Girls in Hauz Khas Delhi 💯Call Us 🔝9953322196🔝 💯Escort.Call Girls in Hauz Khas Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
Call Girls in Hauz Khas Delhi 💯Call Us 🔝9953322196🔝 💯Escort.aasikanpl
 
LIGHT-PHENOMENA-BY-CABUALDIONALDOPANOGANCADIENTE-CONDEZA (1).pptx
LIGHT-PHENOMENA-BY-CABUALDIONALDOPANOGANCADIENTE-CONDEZA (1).pptxLIGHT-PHENOMENA-BY-CABUALDIONALDOPANOGANCADIENTE-CONDEZA (1).pptx
LIGHT-PHENOMENA-BY-CABUALDIONALDOPANOGANCADIENTE-CONDEZA (1).pptxmalonesandreagweneth
 
Bentham & Hooker's Classification. along with the merits and demerits of the ...
Bentham & Hooker's Classification. along with the merits and demerits of the ...Bentham & Hooker's Classification. along with the merits and demerits of the ...
Bentham & Hooker's Classification. along with the merits and demerits of the ...Nistarini College, Purulia (W.B) India
 
Manassas R - Parkside Middle School 🌎🏫
Manassas R - Parkside Middle School 🌎🏫Manassas R - Parkside Middle School 🌎🏫
Manassas R - Parkside Middle School 🌎🏫qfactory1
 
Call Us ≽ 9953322196 ≼ Call Girls In Mukherjee Nagar(Delhi) |
Call Us ≽ 9953322196 ≼ Call Girls In Mukherjee Nagar(Delhi) |Call Us ≽ 9953322196 ≼ Call Girls In Mukherjee Nagar(Delhi) |
Call Us ≽ 9953322196 ≼ Call Girls In Mukherjee Nagar(Delhi) |aasikanpl
 

Recently uploaded (20)

Call Girls in Munirka Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
Call Girls in Munirka Delhi 💯Call Us 🔝9953322196🔝 💯Escort.Call Girls in Munirka Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
Call Girls in Munirka Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
 
Scheme-of-Work-Science-Stage-4 cambridge science.docx
Scheme-of-Work-Science-Stage-4 cambridge science.docxScheme-of-Work-Science-Stage-4 cambridge science.docx
Scheme-of-Work-Science-Stage-4 cambridge science.docx
 
Solution chemistry, Moral and Normal solutions
Solution chemistry, Moral and Normal solutionsSolution chemistry, Moral and Normal solutions
Solution chemistry, Moral and Normal solutions
 
Hot Sexy call girls in Moti Nagar,🔝 9953056974 🔝 escort Service
Hot Sexy call girls in  Moti Nagar,🔝 9953056974 🔝 escort ServiceHot Sexy call girls in  Moti Nagar,🔝 9953056974 🔝 escort Service
Hot Sexy call girls in Moti Nagar,🔝 9953056974 🔝 escort Service
 
Grafana in space: Monitoring Japan's SLIM moon lander in real time
Grafana in space: Monitoring Japan's SLIM moon lander  in real timeGrafana in space: Monitoring Japan's SLIM moon lander  in real time
Grafana in space: Monitoring Japan's SLIM moon lander in real time
 
Call Girls in Aiims Metro Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
Call Girls in Aiims Metro Delhi 💯Call Us 🔝9953322196🔝 💯Escort.Call Girls in Aiims Metro Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
Call Girls in Aiims Metro Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
 
‏‏VIRUS - 123455555555555555555555555555555555555555
‏‏VIRUS -  123455555555555555555555555555555555555555‏‏VIRUS -  123455555555555555555555555555555555555555
‏‏VIRUS - 123455555555555555555555555555555555555555
 
Spermiogenesis or Spermateleosis or metamorphosis of spermatid
Spermiogenesis or Spermateleosis or metamorphosis of spermatidSpermiogenesis or Spermateleosis or metamorphosis of spermatid
Spermiogenesis or Spermateleosis or metamorphosis of spermatid
 
Best Call Girls In Sector 29 Gurgaon❤️8860477959 EscorTs Service In 24/7 Delh...
Best Call Girls In Sector 29 Gurgaon❤️8860477959 EscorTs Service In 24/7 Delh...Best Call Girls In Sector 29 Gurgaon❤️8860477959 EscorTs Service In 24/7 Delh...
Best Call Girls In Sector 29 Gurgaon❤️8860477959 EscorTs Service In 24/7 Delh...
 
Cytokinin, mechanism and its application.pptx
Cytokinin, mechanism and its application.pptxCytokinin, mechanism and its application.pptx
Cytokinin, mechanism and its application.pptx
 
Transposable elements in prokaryotes.ppt
Transposable elements in prokaryotes.pptTransposable elements in prokaryotes.ppt
Transposable elements in prokaryotes.ppt
 
Call Us ≽ 9953322196 ≼ Call Girls In Lajpat Nagar (Delhi) |
Call Us ≽ 9953322196 ≼ Call Girls In Lajpat Nagar (Delhi) |Call Us ≽ 9953322196 ≼ Call Girls In Lajpat Nagar (Delhi) |
Call Us ≽ 9953322196 ≼ Call Girls In Lajpat Nagar (Delhi) |
 
Recombinant DNA technology( Transgenic plant and animal)
Recombinant DNA technology( Transgenic plant and animal)Recombinant DNA technology( Transgenic plant and animal)
Recombinant DNA technology( Transgenic plant and animal)
 
BIOETHICS IN RECOMBINANT DNA TECHNOLOGY.
BIOETHICS IN RECOMBINANT DNA TECHNOLOGY.BIOETHICS IN RECOMBINANT DNA TECHNOLOGY.
BIOETHICS IN RECOMBINANT DNA TECHNOLOGY.
 
Speech, hearing, noise, intelligibility.pptx
Speech, hearing, noise, intelligibility.pptxSpeech, hearing, noise, intelligibility.pptx
Speech, hearing, noise, intelligibility.pptx
 
Call Girls in Hauz Khas Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
Call Girls in Hauz Khas Delhi 💯Call Us 🔝9953322196🔝 💯Escort.Call Girls in Hauz Khas Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
Call Girls in Hauz Khas Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
 
LIGHT-PHENOMENA-BY-CABUALDIONALDOPANOGANCADIENTE-CONDEZA (1).pptx
LIGHT-PHENOMENA-BY-CABUALDIONALDOPANOGANCADIENTE-CONDEZA (1).pptxLIGHT-PHENOMENA-BY-CABUALDIONALDOPANOGANCADIENTE-CONDEZA (1).pptx
LIGHT-PHENOMENA-BY-CABUALDIONALDOPANOGANCADIENTE-CONDEZA (1).pptx
 
Bentham & Hooker's Classification. along with the merits and demerits of the ...
Bentham & Hooker's Classification. along with the merits and demerits of the ...Bentham & Hooker's Classification. along with the merits and demerits of the ...
Bentham & Hooker's Classification. along with the merits and demerits of the ...
 
Manassas R - Parkside Middle School 🌎🏫
Manassas R - Parkside Middle School 🌎🏫Manassas R - Parkside Middle School 🌎🏫
Manassas R - Parkside Middle School 🌎🏫
 
Call Us ≽ 9953322196 ≼ Call Girls In Mukherjee Nagar(Delhi) |
Call Us ≽ 9953322196 ≼ Call Girls In Mukherjee Nagar(Delhi) |Call Us ≽ 9953322196 ≼ Call Girls In Mukherjee Nagar(Delhi) |
Call Us ≽ 9953322196 ≼ Call Girls In Mukherjee Nagar(Delhi) |
 

015 canonical tranformation ii

  • 1. PHYS 705: Classical Mechanics Canonical Transformation II 1
  • 2. Example: Harmonic Oscillator Define or  ( )f x kx  m 0 x 2 ( ) 2 kx U x  2 2 2 2 mx kx L T U     L p p mx x x m          H px L  2 2 2 2 2 2 2 2 2 2 m kx p m kx m p m x x p         2 21 2 2 p H kx m   k m  2 m k    2 2 2 2 2 2 21 2 2 2 p m H x p m x m m      (in x & p) 2
  • 3. Example: Harmonic Oscillator H p x p m      Application of the Hamilton’s Equations give, ( )f x kx  m 0 x 2 ( ) 2 kx U x  2 2 22 2 H m p x m x x m             2 2 2 21 2 H p m x m   Combining the two equations, we have the standard equation for SHO: 2 0x x  Notice that the system is not cyclic with the original variable x. We will attempt to find a canonical transformation from (x, p) to (X, P) such that X is cyclic so that P is constant. 3
  • 4. Example: Harmonic Oscillator        cos sin (*) g P p g P X x X m   With the form of H as sums of squares , we will try to exploit  2 2 2 21 2 H p m x m    Let try X is cyclic in K ! 2 2 sin cos 1  Substituting these into our Hamiltonian, we have      2 2 2 2 2 2 2 2 2 1 cos sin 2 2 g P g P K g P X m X m m m           Now, we need to find the right g(P) such that the transformation is canonical.  Try the following type 1 generating function: ( , , )F F x X t (with x and X being the indep vars) 4
  • 5. Example: Harmonic Oscillator F p x    As in previous examples, we will try to write p (now the dep var for F) in terms of the (indep var) (x, X) by dividing the two equations in CT: F P X     cot F p m x X x       g Pp x    cos X g P   cot sin 1 m X X m    For F to be a canonical transformation, it has to satisfy the partial derivative relations (Type 1 in Table 9.1 in G): The first partial derivative equation (left) gives: 2 ( , , ) cot 2 m x F F x X t X    or cotp m x X 5
  • 6. Example: Harmonic Oscillator Then, substituting this trial solution of F into the 2nd partial derivative relation: 2 ( , , ) cot 2 m x F F x X t X    Solving for x (old) in term of (new), we have: F P X     2 2 2 2 1 1 2 sin 2 sin m x m x P X X            ,X P 6 2 2 2 sin P x X m  2 sin P x X m 
  • 7. Example: Harmonic Oscillator To get the second transformation for p (old) in terms of (new), we can use our previous relation and our newly derived eq: 2 sin cot 2 cos P p m X X m P X m             cotp m x X 7  ,X P  ,x X P 2 sin P x X m  cotp m x X 2 cosp m P X
  • 8. Example: Harmonic Oscillator Since we explicitly calculated this pair of transformations using the appropriate generating function, they are canonical: By comparing with our original transformation equation (Eq. (*)), we have:   2 (*')g P m P 2 sin P x X m      sin cos g P x X m p g P X       gives Then, the transformed Hamiltonian is:  2 2 2 2 g P m P K P m m     2 cosp m P X 8     , , ,x X P p X P
  • 9. Example: Harmonic Oscillator With the transformed Hamiltonian , the Hamilton’s Equations give, **Notice how simple the EOM are in the new transformed cyclic variables. In most application, the goal is to find a new set of canonical variables so that there are as many cyclic variables as possible. (X is cyclic) K P E  0 K P X P const         K X P X t            depends on IC 9 **P is just the rescaled total energy E and X is just a rescaled and shifted time. ** is an example of an Action-Angle pair of canonical variables. ,P X
  • 10. Example: Harmonic Oscillator Using the inverse transform: 2 sin P x X m    2 sin P x t m      10 X t   P const  2 cosp m P t    The EOM in can be written in terms of the original variable: 2 cosp m P X  ,X P
  • 11. Example: Harmonic Oscillator  2 2 sin E x t m      11  2 cosp mE t   2mE 2 2E m p x E  P X 2 Phase Space area is invariant! 2 E area    Then with K P E  X t   P const
  • 12. “Symplectic” Approach & Poisson Bracket Let consider a time-independent canonical transformation: Now, let consider the full time derivative of :     , , j j j j Q Q q p P P q p   (We assume the transformation not explicitly depending on time ) jQ j j j j i i i i dQ Q Q Q q p dt q p           (E’s sum rule over i) Using the Hamilton’s equations, we can rewrite the equation as: (E’s sum rule over i)(*) j j j i i i i H H p Q q Q Q q p            12
  • 13. “Symplectic” Approach & Poisson Bracket Now, if the transformation is canonical, we also must have Using the inverse transform , we can consider H (the original Hamiltonian) as a function of Q and P, i.e, ( , ), ( , )j j j jq q Q P p p Q P      , , ,H H q Q P p Q P (Note: since canonical trans does not dep on time explicitly) Then, we can evaluate the RHS of the equation for in the 1st line as: j j j K H Q P P        K H F t   H jQ (**)i i j j i j i j q pH H H Q P q P p P              13
  • 14. “Symplectic” Approach & Poisson Bracket Comparing the two expressions for , Eq. (*) and (**), we must have the following equalities for all pairs: (subscripts denote the functional dependence of the quantities) (**)j i i i i j j H p H P q P Q q p          (*)j i i j j ii H H Q p qp Q Q q            , , j i i jq p Q P Q p q P               , , j i i jq p Q P Q q p P               AND Similar considerations for will give a different but similar pairs of relations:jP , , j i i jq p Q P P p q Q               , , j i i jq p Q P P q p Q               AND jQ 14  ,i j
  • 15. “Symplectic” Approach & Poisson Bracket , , j i i jq p Q P Q p q P               , , j i i jq p Q P Q q p P               , , j i i jq p Q P P p q Q               , , j i i jq p Q P P q p Q               These four conditions for various are called the “direct conditions” for a canonical transformation.  ,i j 15
  • 16. Poisson Bracket For any two function and depending on q and p the Poisson Bracket is defined as: PB is analogous to the Commutator in QM:   , , q p j j j j u v u v u v q p p q                              (E’s sum rule for n dof) 16  ,u q p  ,v q p     1 1 ,u v uv vu i i     where u and v are two QM operators
  • 17. Some Basic Property of Poisson Brackets General properties for Poisson brackets with respect to an arbitrary pair of variables (x, y) (not necessarily canonical variables):                         , 0 , , , , , , , , , , , , , , 0 u u u v v u au bv w a u w b v w uv w u w v u v w u v w v w u w u v                           (the x, y subscripts are suppressed here) (anti-symmetric) (linearity) (distributive) (Jacobi’s Identity) 17 , ,u v w are some arbitrary functions of and a & b are some constants. ,x y
  • 18. “Symplectic” Approach & Poisson Bracket Now, if we substitute the canonical variables themselves as (u, v) & (x, y) , we have: , , , , , , 0 , , j k j kq p q p j k j k jkq p q p q q p p q p p q                    (hw) And, under a canonical transformation , we can also show that:( , ) ( , )q p Q P 18 These are called the Fundamental Poisson Brackets. The Fundamental Poisson Brackets are invariant under a CT ! , , , , , , 0 , , j k j kq p q p j k j k jkq p q p Q Q P P Q P P Q                   
  • 19. Fundamental Poisson Brackets & CT 19 , , j j j k q p i i k i k i Q Q Q Q q QQ qpp             0 j j j i kk i ii k q Q P P P q Qp p Q               j j ji k i jk i i kk Q Q Q q p q Q Q Q p              , , , ,j k k j jkq p q p P Q Q P           (E’s sum rule on i index) Using the Direct Conditions of the CT The Fundamental Poisson Brackets are invariant under a CT ! 0j j j i i k i k i k Q Q Q q q P p Pp P                , , j j j k q p i i k i k i P P P P q PP qpp             , , j j j k q p i i k i k i Q Q Q P q PP qpp            
  • 20. “Symplectic” Approach & Poisson Bracket 20 A general Poisson Bracket is invariant under a CT: (time-invariant case) !   , , q p u v    , ,q p Q P   , , i i Q P ii v u uu P v Q P v Q           k k k j j j i j j j j i j k k k i i i k ik ii q pv v q pv v q Q q p q P p q pu u u u q P p Pq Q p QPQ p                                              ,,, , , , , ,jj k j k j kQ P Q P Q P j k j k j k j k k Q P u v u v u v u v q q q p p p q q q p p q p q p p                              multiply out and regroup   , ,jk q p j k j k j j j j jk u v u v u v u v u v q p p q q p p q                      
  • 21. “Symplectic” Approach & Poisson Bracket , , , ,j k j k jkq p Q P Q P q p         The invariant of the Poisson brackets under the canonical variables CT defines the “symplectic” structure of the canonical transformation.    , , , ,Q P q p u v u v Thus, in general, if we are calculating a Poisson Bracket with respect to a pair of canonical variable, we can drop the q,p subscript.    , , ,q p u v u v
  • 22. “Symplectic” Approach & Poisson Bracket Note that this symplectic structure for the canonical transformation can also be expressed elegantly using the matrix notation that we have introduced earlier : Recall that the Hamilton Equations can be written in a matrix form, H   η J η  , ; 1, ,j j j n jq p j n      , ; j jj j n H H H H q p                   η η with and        0 I J I 0 22
  • 23. “Symplectic” Approach & Poisson Bracket Now, let the 2n-column vector corresponding to the new set of canonical coordinates And, we can write a transformation from (q, p)  (Q, P) as a vector equation: ζ Mη  Then, by chain rule, the time derivatives of the variables are related by: where ζ ,j jQ P  ζ ζ η , , 1, ,2 j jk k M j k n        (Jacobian matrix) Substituting the Hamilton Equation back into above, we have: H   ζ MJ η  ζη 23
  • 24. “Symplectic” Approach & Poisson Bracket Considering the inverse transformation (Q, P)  (q, p) and by chain rule, we can rewrite the right most factor as: or, in matrix notation: sum over k T H   ζ MJM ζ  k j k j H H           TH H     M η ζ Putting this back into our dynamic equation, we have, ζ η k k j kj k M         Previously, Here, j j k k k k M H H          24
  • 25. “Symplectic” Approach & Poisson Bracket Now, if the coordinate transformation is canonical, then the Hamiltonian equation must also be satisfied in this new set of coordinates: Comparing this equation with our previous equation: H   ζ J ζ  We can see that in order for to be a valid canonical transformation, we need to have M satisfying the following condition:  ζ ζ η T H   ζ MJM ζ   ζ ζ η T MJM J 25 (this condition is typically easier to use than the direction condition for a CT)
  • 26. “Symplectic” Approach & Poisson Bracket In terms of these matrix notation, we can also write the Poisson bracket as, And if is a canonical transformation, then Fundamental Poisson Brackets can simply written as,  , u v u v     η J η η  ζ ζ η    , , η ζ ζ ζ η η J 26
  • 27. Poisson Bracket & Dynamics Consider some physical quantity u as a function of the PS variables : - Its full time derivative is given by: j j j j du u u u q p dt q p t              , , q p u H ( , , )u u q p t - Applying the Hamilton’s Equations: ,j j j j H H q p p q          j j j j du u H u H u dt q p p q t              27
  • 28. Poisson Bracket & Dynamics So, we arrived at the following general equation of motion for u(t):  We have explicitly written this equation without reference to any particular set of canonical variables to emphasize the fact that the form of the equation is invariant to any canonical transformations  Obviously, we need to use the appropriate Hamiltonian in the given coordinates.  , du u u u H dt t       Applying the above equation with u = H, we have and: dH H dt t     , 0H H  28
  • 29. Poisson Bracket & Dynamics General Comments: 1. If , we get back the Hamilton’s Equations: ,j j j H q q H p        j ju q or p ,j j j H p p H q        and (hw) 2. If u is a constant of motion, i.e., 0 du dt   , u u H t     Specifically, for u explicitly not depends on time, i.e., ,0 u t     , 0u H  29  , du u u u H dt t       0 du dt 
  • 30. (assumer u has no explicit time dependence, i.e., ) Poisson Bracket & Dynamics The PB is analogous to the Commutator in QM: CM (Poisson Bracket) (u is some quantum observable here)  The Heisenberg equation of motion for u in QM is given by:  ,u H   1 ,u H i QM (QM Commutator)  , du i u H dt   The statement on the vanishing of the Poisson bracket for u being a constant of motion in CM (a conserved quantity) corresponds to the statement that u commute with H in QM :  , 0u H  0 u t    30
  • 31. Poisson Bracket & Dynamics 3. Poisson’s Theorem - Let u, v be two constants of motion, i.e.,    , , 0u H v H  (Jacob’s Identity) - Now, let Taylor’s expand u(t) around u(0) for t small:  ,u vThen, is another constant of motion ! Check:        , , , , , , , ,u v H H u v u v H v H u                  4. Assume that u does not explicitly depend on time so that  , (*) du u H dt  2 2 2 0 0 ( ) (0) 2! du t d u u t u t dt dt      , ,u v H     , ,u Hv    0 31
  • 32. Poisson Bracket & Dynamics - Using Eq (*), we have And, (evaluated at t = 0)   2 2 0 00 , , d u d du u H H dt dt dt               2 0 0 ( ) (0) , , , 2! t u t u t u H u H H        0 0 , du u H dt  (evaluated at t = 0) - Substituting these two terms and similar ones into our Taylor’s expansion for u(t), we have 32
  • 33. Poisson Bracket & Dynamics So, one can formally write down the time evolution of u(t) as a series solution in terms of the Poisson brackets evaluated at t = 0 !     2 0 0 ( ) (0) , , , 2! t u t u t u H u H H       The Hamiltonian is the generator of the system’s motion in time ! This has a direct correspondence to the QM interpretation of H:  The above Taylor’s expansion can be written as an “operator” eq: ˆ ( ) (0)Ht u t e u    0 ˆwhere 0 ,H u u H / ( ) (0)iHt u t e u  (QM propagator) 33
  • 34. Poisson Bracket & Dynamics A simple example in applying to a freely falling particle:     2 0 0 ( ) (0) , , , 2! t z t z t z H z H H       34 z 2 2 p H mgz m    , z H z H p z H z p p z m            Now, we evaluate the different PBs:      , , 1 , , z H z HH H z H z mg g z p p z m                   , , , 0z H H H      u z
  • 35. Poisson Bracket & Dynamics At , we have initial conditions:     2 0 0 ( ) (0) , , , 2! t z t z t z H z H H       35 z 2 2 p H mgz m     0 0 , p z H m  We then have,   0 , ,z H H g       0 , , , 0z H H H      20 0( ) 2 p g z t z t t m    Substituting them into the expansion, 0t     0 00 , 0z z p p 